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Abstract. We consider an open subset of the Hurwitz space consisting of
meromorphic functions of a given degree defined on closed Riemann surfaces

of a given genus and having no real critical values. To each function in this

open set we assign a braid in the braid group of the underlying closed surface
and characterise all braids which might appear using this construction. We

introduce the equivalence relation among these braids such that the braids

corresponding to the meromorphic functions from the same connected com-
ponent of the above Hurwitz space are equivalent while non-equivalent braids

correspond to distinct connected components. Several special families of mero-

morphic functions, some applications, and further problems are discussed.

To Seryozha Natanzon, in memoriam

1. Introduction

In what follows, we discuss the connected components of the spaces of meromor-
phic functions on Riemann surfaces with only simple critical values none of which
is real. The main motivation of our study comes from a large assortment of prob-
lems in mathematical physics related to the perturbation theory of linear operators,
see e.g. [11, 24, 25] and references therein. In this theory, one typically considers
perturbations of the form A + tB where A is the initial and B is the perturbing
operators while t ∈ C is the perturbation parameter.

Under some additional assumptions on A and B one obtains the (analytic) spec-
tral curve Υ ⊂ C2 with coordinates (λ, t) where λ is the spectral parameter. The
restriction of Υ to any fixed value of t gives the spectrum of the operator A + tB
(assumed discrete). Projection of the spectral curve Υ ⊂ C2 onto the t-axis defines
a meromorphic function on Υ whose branching points are called the level crossings
of the pencil A+ tB; they are exactly the values of parameter t for which the spec-
trum of the pencil is non-simple. Special cases of such meromorphic functions will
be the main object of our study. Numerous papers in theoretical and mathemati-
cal physics discuss level crossings and their properties for various concrete quantum
mechanical and other systems; in particular, they determine the convergence radius
for the perturbation expansion. One of the most recent examples of such study can
be found in [9] containing a nice introduction to the subject.

If A and B are self-adjoint operators (satisfying with some additional technical
and genericity assumptions) one can show that the projection of the spectral curve
Υ onto the t-axis is a meromorphic function without real critical values. This
phenomenon baptised as avoided level crossings has been observed already at the
dawn of quantum mechanics in the 1920’s. Avoided level crossings mean that the
spectrum of the pencil A + tB is simple for all real values of the parameter t. It
occurs in many pencils of non-self-adjoint operators as well.
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In mathematical language most of problems about level crossings can be formu-
lated as the questions about real and complex pencils of divisors on algebraic curves.
Our main goal below is to study the notion of avoided level crossings from the per-
spective of algebraic geometry and, especially, braid theory using, in particular, the
mapping class groups of the underlying surfaces.

For a start, consider the simplest case of pencils of binary forms. Given a pair
P1(u, v) and P2(u, v) of binary forms of degree d with complex coefficients, consider
the real pencil

P(u, v, α : β) := αP1(u, v) + βP2(u, v) (1.1)

where (α : β) are homogeneous coordinates on RP 1. One can easily observe that if
P1 and P2 are generic then, for every point (α : β) ∈ RP 1, the form P(u, v, α : β)
will have d distinct simple roots in CP 1 ≃ S2. Furthermore, the space Θ0

d of generic
real pencils is disconnected and the physics problems we mentioned above lead, in
particular, to the question of enumeration of these components.

A natural invariant of such connected component can be obtained as follows.
Identiying RP1 with an oriented circle and considering the roots of P(u, v, α : β) = 0
for each (α : β) we obtain a loop in the space of bivariate homogeneous polynomials
of degree d without multiple roots, i.e. a spherical braid. The following natural
questions arise:

– do different components of Θ0
d correspond to non-equivalent braids?

– which braids in the braid group of S2 appear as the braids of such pencils?

Complexification of the above real pencil can be viewed as a map CP1 → CP1

assigning to (u, v) ∈ CP1 the parameter (α : β) such that (u, v) is one of the roots
of P(u, v, α : β) = 0. Our braid then coincides with the pre-image of RP1 ⊂ CP1

in the sense that the union of its strands is exactly the pre-image of the real line.
The above construction of the braid as well as the mentioned questions about

connected components have an obvious extension to the case when the source of
the map is a Riemann surface of an arbitrary genus. The corresponding analogs of
the sets Θ0

d are the open subsets Hnr
g,d ⊂ Hg,d of the (small) Hurwitz space which,

by definition, consists of all degree d meromorphic functions on closed Riemann
surfaces of genus g with simple critical values none of which is real. To a connected
component of Hnr

g,d we assign the equivalence class of the braid of a close surface of

genus g; cf. [2] and Section 2 for basic definitions and for an appropriate equivalence
relation.

Precise description of the above equivalence relation uses the action of the map-
ping class group of a closed surface of genus g exceeding 1 on the conjugacy classes
of the braid group of the surface on d strings; in the case of surfaces of genus 0
or 1 we use its quotient by the center. This action comes from the classical exact
sequence relating the mapping class group of a surface with that of this surface
with additional marked points (cf. section 2.3). Braids in the braid group of the
surface which we construct are very special and belong to natural abelian subgroups
of the braid groups of surfaces which we call the “boundary braids”. We give the
characterization of boundary braids in terms of the geometry of the surface, in
terms of generators of the braid group of surfaces and the corresponding to these
braids classes of the mapping class group of a surface with marked points in terms
of Nielsen-Thurston classification (cf. Section 2.4).

Our main results show that connected components of Hnr
g,d are enumerated by

the equivalences classes of such braids and we give a characterization of the braids
corresponding to such components.

These results on the enumeration of the connected components of the above open
subspace of the Hurwitz space which is defined in terms of its real structure can be
compared with those of the article [4] in which the main object of study is a cellular
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decomposition of a (different) open subset ofHg,d formed by the so-called lemniscate
generic functions. These are meromorphic functions having all critical values with
distinct absolute values assumed different from zero and infinity; this situation can
be also related to the real structure of the Hurwitz space. Connected components
appearing below have more complicated fundamental groups than contractible cells
of [4]; they are rather homeomorphic to Hurwitz spaces of different degrees and
genera.

The content of the article is as follows. In § 2 we introduce the subgroups of
boundary braids to which the braids of meromorphic functions naturally belong
and recall some basic material about the braid groups as well as the mapping class
groups on surfaces. We describe the boundary braids in terms of the (standard)
generators of the braid group, viewing braids in terms of the relevant configuration
spaces. Further we give a description of the classes in the mapping class group
corresponding to the boundary braids by means of the Nielsen–Thurston theory.
In § 3 we address the enumeration of the connected components of Hnr

g,d by relating
them to the classification of our braids of meromorphic functions. Our main result
is a description of the connected components of Hnr

g,d as the orbits of the mapping
class group of a closed surface acting on the conjugacy classes of the subgroups of
boundary braids. (However in the case of surfaces of genus zero and one, the action
is on the conjugacy classes of the quotient of the braid group by the respective
centers; this specifies the equivalence class of the braid since each coset of the
center determines the braid we attach to a point in the Hurwitz space.) In § 4
we discuss special classes of meromorphic functions f . For example, we look at
meromorphic functions induced by generic projections of plane curves. Finally, in
§ 5 we suggest some further directions of study and make additional remarks about
the role of planarity in this circle of questions, see Problem 7. We formulate several
problems more closely related to mathematical physics in which one considers the
restrictions of connected components ofHnr

g,d to specific families of Riemann surfaces
such as plane curves coming from real pencils of matrices etc. Restrictions of our
connected components to such families may split further; in order to understand and
enumerate these connected components novel techniques/ideas should be applied.
It seems likely that in the case of projections of plane real curves techniques related
to the Hilbert 16-th problem might be useful. We plan to investigate this subject
further; as an example of similar activity we explicitly calculate the braids obtained
from real plane curves, but without real points, see § 4.
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2. Boundary braids in the braid groups of surfaces and systems of
ovals.

In this section we describe the class of braids which will later appear in our enu-
meration of connected components of the spaces of meromorphic functions without
real critical values. These braids are defined as the elements of certain abelian
subgroups of the braid groups of surfaces which we call the subgroups of boundary
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braids. We describe boundary braids algebraically, i.e. in terms of the (standard)
generators of the braid groups of surfaces, and also as the elements of the mapping
class groups using the Nielsen-Thurston classification of the latter.

2.1. Boundary braids. Recall that the braid group Bn(F, k) of n strands of a
surface F with k punctures and with (possibly nonempty) boundary is defined as
the fundamental group of the configuration space of n points on F (cf. [2], [8]).
More precisely,

Bn(F, k) = π1(((F − [k])n \∆)/Symn, f) (2.1)

where, as above, [k] ⊂ F is a subset consisting of k fixed points, and the diagonal
∆ is defined as

∆ = {(x1, . . . , xn)| xi ∈ F \ [k], i = 1, . . . , n, and ∃i ̸= j such that xi = xj}.
In (2.1) the quotient is taken with respect to the free action of the symmetric group
Symn on n letters acting by permuting the components in the Cartesian product
(F \ [k])n; the base point f of the fundamental group is a Symn-orbit of some point
in (F \∆)n.

Let D∗ be a punctured disk and βi ∈ Bmi
(D∗) = Bmi

(D, 1), i = 1, . . . , k be a

collection of braids in D∗. Define d :=
∑k

1 mi. For each 1 ≤ i ≤ k, select a homeo-
morphism between D∗ and the annulus which is the closure of the collar of the i-th
connected component of the boundary of F . Such collection of homeomorphisms
induces the homomorphism Φm1,...,mk

:
∏

i Bmi(D
∗) → Bd(F, k).

Definition 1. Let F be a surface with k ≥ 1 punctures and let βi ∈ Bmi(D
∗) be a

rotation about the puncture of D∗ by an angle which is an integer multiple of 2π
mi

1

A boundary braid of d :=
∑

mi strands on a punctured surface F is a braid in the

abelian subgroup of Brd(F, k) formed by the braids Φm1,..,mk
(β1, . . . , βk) ∈ Brd(F )

with (β1, . . . , βn) ∈
∏

i Bmi
(D∗).

The full boundary braid is the braid in the subgroup of boundary braids where
βi is the positive rotation by 2π

mi
, (i.e. βi is the positive generator of Bmi

(D∗)).

Denote by BBm1,...,mk
(F ) the subgroup of boundary braids in Bd(F, k) and we

shall sometimes refer to a conjugate of this subgroup in Bd(F, k) as a subgroup of
boundary braids as well.

Definition 2. A boundary braid in a closed oriented surface E is the image of a
boundary braid in a punctured surface F under the homomorphism induced by a
homeomorphism of the surface F onto the interior of a proper subsurface of E, (cf.
[21], Sect. 2).

Alternatively, a braid in Bd(E) is a boundary braid if and only if there exists a
collection of oriented simple closed curves α1, . . . , αk in E such that E \ ∪iαi has
at least two connected components and this braid is the image of a boundary braid
of one of these components. In particular, one can view a boundary braid as the
result of a rotation of points equidistantly placed along the curves αi.

Definition 3. A collection of ovals (i.e. simple closed curves) in E is called a
separating oriented collection if

a) connected components of the complement to the union of ovals in E are split
into two disjoint classes called the positive and the negative classes respectively
in such a way that each oval belongs to the boundaries of exactly two connected
components, one in each class,

1i.e. the loop βi in (2.1) with F = D∗ corresponds to the rotation of the set of mi points
positioned equidistantly on a circle in D∗ centered at the puncture mapping this set of mi points
onto itself
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b) we assume that orientations of the ovals are consistent with the above splitting
into the positive and the negative connected components in the following sense:

i) the orientation of the closure of each connected component of the complement
to the union of ovals in the positive class is induced from the orientation of the
ambient closed surface;

ii) the orientation of each oval is such that together with the normal vector
pointing inside the component from the positive class to which this oval belongs
induce the positive orientation of this connected component.

From Definitions 2 – 3 we obtain that each separating oriented collection of ovals
corresponds to the subgroup of boundary braids in the braid group of the surface E.
Moreover, the subgroups of boundary braids contain semigroups of positive braids,
corresponding to rotations of the ovals in the position direction. We will refer to a
braid in this abelian subgroup of Bd(E) as a boundary braid corresponding to the
chosen separating oriented collection of ovals.

In what follows, we need a result about the maps of braid groups induced by
embeddings. Let F ⊂ E be a proper subsurface of a closed surface E. Assume now
that p1, . . . , pn ∈ F and pn+1, . . . , pm ∈ E \ F .

Proposition 1 (see [21]). Let F be a connected subsurface of E such that none of

the connected components of E \ F is a disk or each connected component contains
the points pi, i = 1, . . . ,m. Then the homomorphism

Bn(F ) → Bm(E) (2.2)

is injective.

The next important proposition describes the structure of the subgroups of
boundary braids.

Proposition 2. For any k-tuple of positive integers m1,m2, . . . ,mk, k ≥ 1, the

group BBm1,...,mk
is a free abelian subgroup of Brd(F, k), d =

∑k
1 mi of rank k.

For a closed oriented surface E, the subgroup of boundary braids is free abelian
whose rank equals the number of ovals, except for the case E = S2 with k = 1. In
the latter situation, BBm(S2) = Z2m.

Proof. Recall that there exists a natural surjection Bd(F, k) → Symd sending a
braid to the induced permutation of the initial points of the strands. Its kernel
PBd(F, k) (called the pure braid group) is the fundamental group of the configura-
tion space Confd(F, k) of ordered collections of d points in the punctured surface
F with the set of punctures [k], (cf. [2], [8]). In other words,

Confd(F, k) =

[
d∏
1

(F \ [k])

]
\∆,

where ∆ is the collection of d-tuples having at least two coinciding components.
Moreover, the group Symd acts freely on Confd(F, k) and the group Bd(F, k) is
the fundamental group of the quotient Confd(F, k)/Symd.

The map Φ := Φm1,...,mk
:
∏

j Bmj
(D∗) → Bd(F, k) can be viewed as the ho-

momorphism of the fundamental groups induced by the map of the quotients of
configuration spaces:

k∏
i=1

Confmi
(D∗)/Symmi

→ Confd(F, k)/Symd. (2.3)

LetRotm1,...,mk
be the subgroup of

∏
j Bmj

(D∗) consisting of the braids (β1, . . . , βk)

where each βj is some power of the rotation by the angle 2π
mj

. Obviously, Rotm1,...,mk
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is a free abelian group with k generators. Therefore, to show the freeness of
BBm1,...,mk

= Φ(Rotm1,...,mk
) and the fact that its rank equals k, it suffices to

show that the intersection of this image with PBd(F, k) is a free abelian group of
rank k. Notice that in the diagram

Φ(Rotm1,...,mk
) ∩ PBd(F, k) → PBd(F, k)
↓ ↓

Φ(Rotm1,...,mk
) → Bd(F, k)

↓
Symd

(2.4)

the vertical arrows are injective and have the subgroups of finite index as their
images. Now if Φ(Rotm1,...,mk

) either has torsion or has rank smaller than k then
the latter diagram implies that Φ(Rotm1,...,mk

) ∩ PBd(F, k) will have rank strictly
smaller than k.

The group Φ(Rotm1,...,mr
)∩PBd(F, k) is the image in Bd(F, k) of the finite index

subgroup of Rotm1,...,mk
generated by the full twists of mi points in the disk D∗

corresponding to the i-th puncture. To show that this group is free abelian of rank
k it suffices to check that the image of the subgroup Φ(Rotm1,...,mr ) ∩ PBd(F, k)
in the abelianization of the pure braid group PBd(F, k) is a free abelian group of
rank k. Let us identify the abelianization of the fundamental group of a connected
topological space X with the first homology group H1(X,Z).

As a model of D∗ let us take the disk in C∗ centered at 0 and with radius 2. As
an m-tuple of points moving in D∗ we take the points ωj

m, j = 0, . . . ,m− 1 where
ωm = exp( 2πim ) is the primitive root of unity of degree m. The class of the full twist

in Bm(D∗) or PBm(D∗) is represented in the abelianization H1(D
∗)m \ ∆,Z)2

of PBm(D∗) by the homology class of the simple loop (. . . , ωj
me

2π
√

−1t
m , . . . ). Here

j = 0, 1, . . . ,m− 1 and 0 ≤ t ≤ 1. The map

H1((D
∗)m \∆) → H1((D

∗)m,Z) = Zm

induced by the inclusion sends this class to the class (1, . . . , 1) ∈ H1((D
∗)m,Z).

Hence its image in H1(D
∗,Z) under the map H1((D

∗)m,Z) → H1(D
∗,Z) sending

a homology class to the sum of all its coordinates equals m times the class positive
generator of H1(D

∗,Z), i.e. to the boundary of a small disk in D∗ centered at the
puncture.

Now consider a similar composition of the maps:

H1((F \ [k])d \∆,Z) → H1((F \ [k])d,Z) → H1((F \ [k])k,Z) (2.5)

induced by the inclusion and addition in the homology respectively. We claim that
for k > 1, the images (of the classes) of each of k generators of Rotm1,...,mk

span a
free abelian group in the latter homology group. Indeed, notice that H1(F \ [k]) ≃
Zk−1 ⊕ Z2g, where Zk−1 has k generators each being the class of the boundary of
a small disk centered at the respective punctures subject to one relation. By the
Künneth formula,

H1((F \ [k])k) = ⊕k
1H1(F \ [k]) = ⊕k

1(Zk−1 ⊕ Z2g).

Now for j = 1, . . . , k, the class of the braid which makes a complete turn about the
j-th puncture and which is trivial near the others, is given by the element having
all vanishing components except for the entry mj in the j-th direct summand. This
class is non-trivial unless k = 1, g = 0 in which case we have the braid corresponding
to the rotation of m uniformly distributed along a circle points which clearly has
infinite order (as the full twist in the Artin braid group).

2as above, ∆ denotes the diagonal consisting of collections of points in D∗ having at least two

equal components.
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zσ1

m1 mk

Figure 1. Illustration of the generators σ1 and z from Proposition 3

For k ≥ 2, the case of closed surfaces follows from that of punctured surfaces and
Proposition 1. If k = 1 and one of components of the complement to a considered
collection of ovals is a disk, then assuming that the second component is not a disk,
but the rotating points are in the disk, we also obtain that the group of boundary
braids is infinite cyclic. Finally, in the remaining case k = 1 when both components
of the complement to the oval are disks, we obtain the cyclic group of order 2m
since the full twist of m points in the braid group of the 2-dimensional sphere has
order 2, (cf. [8]).

□

Remark 1. The group of boundary braids is a subgroup of the braid group of the
disconnected surface ⊔kD

∗. We can show the injectivity of its image in B(F, k), but
this fact does not immediately follow from similar results of [21] since the argument
in loc. cit. is only applicable to embeddings of connected surfaces, (cf. also 1).

The following is an immediate consequence of Proposition 2.

Corollary 1. The full boundary braid has infinite order in Brd(F ) unless F = S2

and the braid corresponds to a single oval. In the latter case its order is 2d.

2.2. Boundary braids in terms of generators. Let F be an orientable surface
of genus g with k punctures. One can view F as a polygon P with 4g sides and with
k punctures [k] ⊂ P represented by small disks deleted from the polygon. We mark
d points in P , whose movements will form the braids in the braid group Bd(F, k)
of d strands and place the points and punctures along a horizontal segment in P
in such a way that d points come first and are ordered from left to right; they are
followed by k punctures (shown by small disks below). One identifies the opposite
sides of the polygon with appropriate orientation so that they correspond to 2g
generators of π1(F, b) where b is the image of the vertex, see Fig. 2.

Recall the definition of a good ordered system of generators of π1(D \ [N ], p0),
where D is a disk (which will be taken in P ), [N ] is a subset of D consisting
of N points (or punctures) positioned along a segment and p0 ∈ ∂D, (cf. [15]).
Such system corresponds to an ordered collection of loops; each loop is obtained
by at first moving from p0 along a straight segment connecting it to a point on
the boundary of one of non-intersecting disks centered at all N selected points
in D, then traversing the boundary of the respective disk in the counterclockwise
direction and finally returning back to p0 along the same straight segment.

In these notations we have the following result.

Proposition 3 (cf. [1]). The set of standard generators of Bd(F, k) consists of
the following three groups:

(i) σi, i = 1, . . . , d− 1 (Artin’s generators of the braid group of a disk);

(ii) ai, bi, i = 1, . . . , g, (braids in which only the point p1 moves through the walls
of the pairs of identified sides of P while other points pi, i > 1 are fixed; on the
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p1 pi pi+1 pd q1 qk

σi

p1 pi pi+1 pd q1 qk

ai

αr αr

βr

p1 pi pd q1 qi qk

zi

Figure 2. Generators of the braid group Bd(F, k).

closed surface these generators correspond to the motion along one of 2g standard
generators of the fundamental group of a closed surface of genus g).

(iii) zi, i = 1, . . . , k− 1 (braids in which only the point p1 is moving along the loops
encircling one of the first k − 1 punctures of a good ordered system of generators
of the fundamental group of the complement to the punctures in the polygon P ; the
braids represented by similar loops encircling one of the remaining marked points
are conjugates of zi by some of Artin’s generators σi’s).

Remark 2. For the sake of completeness, we presented in § 6 below the set of
relations among the latter standard generators. However these relations will not be
explicitly used in the present article.

The following Proposition gives an algebraic characterization of the boundary
braids in terms of the standard generators from Proposition 3. This description is
parallel to that of the braids corresponding to loops around projections of singular
points of plane curves via braid monodromy, (cf.[15]). We use the following rela-
tion between good ordered systems (w1, . . . , wk−1) and (w′

1, . . . , w
′
k−1) given by the

Hurwitz moves:

τi : (w1, . . . , wk−1) → (w1, . . . , wi−1, wiwi+1w
−1
i , wi, wi+1, . . . , wk−1) i = 1, . . . , k−2.

(2.6)

Proposition 4. Let p11, . . . , p
1
m1

, p21, . . . , p
2
m2

, . . . , pk1 , . . . , p
k
mk

be a collection of d =∑k
1 mi moving points in the braids group Bd(E, k) of a closed surface E with k
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punctures q1, . . . , qk. Assume that they are positioned inside the polygon P used
in Theorem 2 and aligned along a straight segment (which can be thought of as
a segment on R ⊂ C). Assume that the latter points are ordered left-to-right as
p11, . . . , p

1
m1

, p21, . . . , p
2
m2

, . . . , pk1 , . . . , p
k
mk

, q1, . . . , qk. Let σ1
1 , . . . , σ

k
mk−1 be the stan-

dard generators of the braid group of d =
∑k

1 mi strands corresponding to the clock-
wise half-twists of pairs of consecutive points and let z be the braid corresponding
to the motion of the rightmost point pkmk

around the puncture q1 in the counter-
clockwise direction. Then the following facts hold.

a) In the above notation, in the subgroup Bd(k) ⊂ Bd(E, k) generated by the
braids σ1

1 , . . . , σ
k
mk−1, together with z1, . . . , zk considered in Proposition 3, the above

braid z is conjugate to the braid z1. Additionally, the boundary braid obtained as
the clockwise rotation of the collection of points pk1 , . . . , p

1
mk

about the puncture q1
is given by

z−1σk
mk−1

. . . σk
1 . (2.7)

(Here the composition is written left-to-right).

b) The boundary braid corresponding to the rotation of the collection of points
pi1, . . . , p

i
mi

about the j-th puncture qj for (i, j) ̸= (k, 1) has the same form (2.7) in

which z is conjugate to the generator zj in Bd(k) and the factors σk
l , l = 1, . . . ,mk

are replaced by the factors σ̃i
1, . . . , σ̃

i
mi−1 obtained by application of a sequence of

Hurwitz moves (2.6) to σi
1, . . . , σ

i
mi−1.

Proof. Formula (2.7) follows immediately from the algebraic form of rotations in
Artin’s braid group (see e.g. [8], Sec. 9.2). It gives the required algebraic form in
the case when the rotating collection of points and the puncture about which this
collection is rotating are adjacent to each other.

In the remaining cases, applying a diffeomorphism of the disk containing all the
collections of points p = {pii′}, q = q1, · · · , qk which moves pi1, . . . , p

i
mi

to the
right in such a way that they will be located to the right of all remaining points
in p and to the left of all points in q leads to the relation (2.7) in which the
standard generators corresponding to the moving points pij are used as σ’s. (The
correspondence between the action of the diffeomorphism group of the disk on the
braids and the Hurwitz moves allows us to express these new generators in terms
of the original ones.) □

2.3. Action of the mapping class group on boundary braids. Denote by g
the genus of a closed oriented surface E and by Mod(E) the mapping class group
of E; we let Mod(E, d) be the mapping class group of E with d marked points.

Recall that one has the exact sequence:

Brd(E) → Mod(E, d) → Mod(E) → 0, (2.8)

(cf. [8], Theorem 9.1 or [2]).

If either E ≃ S2 is a 2-sphere or E ≃ T 2 is a 2-torus, then we get

0 → Z2 → Brd(S
2) → Mod(S2, d) → 0 (2.9)

and

0 → C → Brd((T
2) → Mod(T 2, d) → SL2(Z) → 0

respectively, where C is the center of Brd(T
2) and Z2 is the center of Brd(S

2), (cf.
[8], p. 245 or [2], Theorem 4.3).

In case when the surface E has a negative Euler characteristic, the left homo-
morphism in the sequence (2.8) is injective, i.e.

0 → Brd(E) → Mod(E, d) → Mod(E) → 0. (2.10)
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In particular, the mapping class group Mod(E) acts on the conjugacy classes
of Brd(E) (and on its quotients by the centers in the cases of non-negative Euler
characteristic (2.9)).

On the other hand, the mapping class group Mod(E) also acts on the isotopy
classes of separating collections of ovals. The next proposition compares its action
on the conjugacy classes of braids or the subgroups of boundary braids and on the
isotopy classes of separating oriented collections of ovals, (cf. Definitions 2, 3).

Proposition 5. Two subgroups of boundary braids (resp. the two full boundary
braids) with respect to two collections of ovals belong to the same orbit of the map-
ping class group if and only if the isotopy classes of oriented collections of ovals
belong to the same orbit of the mapping class group. In case of S2, the conjugacy
class of a boundary braid is determined by the isotopy class of the oriented collection
of ovals.

Proof. Indeed, let ϕ be a diffeomorphism of a closed surface E such that for two
systems of ovals {αi} and {βi}, one has ϕ(αi) = βi for every i. Let F be one of
the connected components of E \ ∪iα. Then ϕ induces the map between the braid
groups of each connected component of F and the respective connected component
of ϕ(F ). Note that since the points at which the image of the braid in F and
the braid in ϕ(F ) are based (cf. definition of a braid in § 1) do not necessarily
correspond to each other, the identification of the subgroups of boundary braids
requires a choice of a path in the configuration space connecting the points at which
these braids are based. This circumstance leads to ambiguity up to conjugation.

And vice versa, if two full boundary braids δ1, δ2 corresponding to two subsur-
faces F1, F2 of a surface E with negative Euler characteristic lie in the conjugacy
classes belonging to the same orbit of Mod(E), then the elements of Mod(E, d)
corresponding to the braids δi are conjugate by an element γ ∈ Mod(E, d). Then a
diffeomorphism representing γ sends the collection of ovals determining the group
of boundary braids containing δ1 to a collection of ovals determining the subgroup
of the boundary braids containing δ2. This observation settles the claim. □

2.4. Boundary braids and Nielsen–Thurston classification. Here we will de-
scribe the images of the boundary braids in the mapping class group in terms of
the Nielsen–Thurston classification, see (2.8). (We will use [8] as the main reference
for this material).

Recall that to an element [f ] of a mapping class group containing a diffeomor-
phism f ∈ Diff+(E, d) one associates a reduction system, i.e. a system of (defined
up to isotopy) pairwise non-intersecting simple closed curves ci, i = 1, . . . , N in
E \ [d] such that

(i) each ci is essential, i.e. non–contractible in E \ [n];
(ii) f(ci) = ci.
(iii) on each connected component of the complement to a canonical reduction

system, the restriction of the diffeomorphism is either periodic or pseudo–
Anosov.

Moreover, one obtains the canonical reduction system by taking the intersection
among all maximal reduction systems. (We refer to [8], Sect. 13.2.2 for the de-
tails of this construction). A diffeomorphism f ∈ Diff+(E, d) is called reducible
if its canonical reduction system is non–empty. By the Nielsen–Thurston clas-
sification, any diffeomorphism f ∈ Diff+(E, d) is either periodic, reducible, or
pseudo–Anosov, (cf. [8], Theorem 13.2).

The following result describes boundary braids in terms of the Nielsen–Thurston
theory.
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Proposition 6. A braid in Brd(E) is a boundary braid if and only if the corre-
sponding mapping class induces the identity class on each connected component of
the complement to its canonical reduction system different from an annulus and it
induces a periodic class on each connected component homeomorphic to an annulus.
In particular, boundary braids are pseudo–periodic, (cf. terminology used in [14]).

Proof. Let β be a boundary braid corresponding to a collection of braids βi ∈
Brmi

(D∗
i ), i = 1, . . . , k. The images of the boundaries of punctured disks D∗

i in
F composed with the embedding into E from Definitions 1 and 2 give collection
of simple closed curves ci, i = 1, . . . , k. Those of the latter curves which are not
null–homotopic in E \ [d] form a reduction system which is canonical. Furthermore,
the restriction of a homeomorphism representing β on E is trivial on all connected
components of E \∪ci which are different from either of the punctured disks. (Here
∪ci is the union of all ci’s in the canonical reduction system). On each of the
punctured disks the corresponding diffeomorphism is a rotation above the respective
puncture having a finite order in Diff+(D∗) (i.e. twice punctured sphere, cf. [8],
Sect. 7.1.1).

Vice versa, given a canonical reduction system of the diffeomorphism correspond-
ing to a braid β ∈ Brd(E), let Fi, i = 1, . . . , k be the collection of components
of the complement diffeomorphic to an annulus. By assumption of Proposition,
the diffeomorphism induces a finite order diffeomorphism in Diff+(D∗,mi) =
Diff+(S2,mi + 2) fixing two points. Such a diffeomorphism is isotopic to a rota-
tion about the axis containing two punctures ([8], sect. 7.1.1), i.e. corresponds to
a braid βi in BBmi(D

∗). Since the diffeomorphism corresponding to β is isotopic
to identity on the complement to Fi, i = 1, . . . , k the braid β is just the product of
the braids βi.

□

3. Meromorphic functions without real critical values.

Recall the problems from the introduction we address in this paper:

Problem 1. Describe the equivalence class of the closed spherical braid attached
to a pencil of binary forms as well as the set of the equivalence classes of closed
d-stranded spherical braids which might occur for (generic) pencils of binary forms
of degree d.

Problem 2. Enumerate connected components of Θ0
d of the space of pencils of

binary (1.1) such that P(u, v, α : β) = 0 has no multiple roots for all (α : β) ∈ RP1.

Problem 3. Describe the equivalence class of the braid attached to a meromorphic
function as well as the set of equivalence classes of all d-stranded braids which might
occur on Riemann surfaces of genus g from meromorphic functions of degree d.

Problem 4. Enumerate connected components of Hnr
g,d ⊂ Hg,d.

In this section we address all these questions. We start by setting up the nota-
tions. Given a meromorphic function f : E → CP 1 ⊃ RP 1 of degree d without real
critical values, let Nf := f−1(RP 1) ⊂ E be the pre-image of the real line in CP 1.
Notice that since f has no real critical values, Nf is a collection {O1, O2, . . . , Oℓ}
of smooth simple closed disjoint curves endowed with orientation corresponding to
the positive direction of R ⊂ RP 1. The set CP 1 \RP 1 splits into the upper and the
lower half-planes H+ and H− respectively. Each connected component of E \ Nf

is mapped by f either onto H+ or onto H− and hence the set of connected com-
ponents splits into positive and negative classes (cf. Definition 2) denoted E+ and
E− respectively. In particular, Nf is a separating oriented collection of ovals.
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Each oval Oj is assigned a positive integer mj which is the degree of the restric-
tion f : Oj → RP 1. Since by our assumption of absence of real critical values,
f restricted to Oj has no critical points, we obtain that mj equals the number of
times the oval Oj wraps around RP 1 under f . Obviously, m1 +m2 + · · ·+mℓ = d.
We will call a labeled collection of ovals a collection in which each oval is assigned
a positive integer.

Since Problems 1 – 2 are the special cases of Problems 3 – 4, we will concentrate
on settling the latter questions. To address Problem 3 consider the (small) Hurwitz
space Hg,d of meromorphic functions f : E → CP 1 of a given degree d on smooth
compact Riemann surfaces of genus g with only simple critical values=branching
points. Recall that the number of these critical values equals 2d + 2g − 2. (We
consider meromorphic functions up to triangular equivalence, i.e. functions fi :
Ei → CP 1, i = 1, 2 are called equivalent if and only if there exists a biholomorphic
map ϕ : E1 → E2 such that f1 = f2 ◦ ϕ.)

Recall that Hg,d is a smooth quasi-projective complex manifold, (cf. [22]). In
fact, since all the critical points of meromorphic functions are assumed to be simple,
it is a finite unbranched cover of the configurations space of unordered distinct
tuples of points in CP 1 of cardinality 2d + 2g − 2. Denote by Hnr

g,d ⊂ Hg,d the

subset of meromorphic functions without real critical values. (Hnr
g,d is a Zariski

open subset of Hg,d viewed as a quasi-projective manifold over R and hence is
smooth.) For obvious reasons, it is an open complex submanifold of Hg,d.

Definition 4. Let f : E → CP 1 be a meromorphic function from Hnr
g,d and let

Nf := f−1(RP 1) ⊂ E be the corresponding labeled collection of ovals. The isotopy
class of the map S1 → (Ed \∆)/Symd given by t → f−1(t) ⊂ t× E considered as
an element in Brd(E) is called the braid of f .

Clearly, a braid in Definition 4 is the full boundary braid in the subgroup of
boundary braids corresponding to the system of ovals Nf considered in § 2, (cf.
Def. 1).

The braid of a meromorphic function can be described in terms of the mapping
class group–valued monodromy of a curve on an algebraic surface, (cf. [13]). Recall
that a pencil of curves p : Z → CP 1 on a complex algebraic surface Z and a curve
C ⊂ Z with the set of critical values Cr ⊂ CP 1 of both p and its restriction to
C corresponds the homomorphism of braid monodromy from π1(CP 1 \ Cr, b) into
the mapping class group Mod(E, d) where E is a generic fiber of p and d is the
intersection index of a fiber of p and C. Specifically, for a loop γ representing a
class in π1(CP 1 \ Cr, b) one selects a trivialization of the locally trivial fibration
of pair (p−1(γ), p−1(γ) ∩ C) ⊂ (Z,C) i.e. a map [0, 1] × (p−1(b), p−1(b) ∩ C) →
(p−1(γ), p−1(γ) ∩ C) which for any t ∈ [0, 1] restricts to a diffeomorphism of t ×
(p−1(b), p−1(b) ∩ C) onto its image. Then to γ one associate the diffeomorphism
of p−1(b) taking the image of a point in (0, x) ∈ 0× p−1(b) ∈ [0, 1]× p−1(b) to the
image in p−1(b) ⊂ p−1(γ) of the point (1, x) ∈ [0, 1]× p−1(b) (cf. [13] for details of
this construction). UNCLEAR.

Note that each trivialization of the pair (p−1(γ), p−1(γ)∩C) over γ induces a dif-
feomorphism of the pair p−1(b), p−1(b)∩C i.e. induces an element inMod(p−1(b), d)
where d = Card(p−1(b)∩C). Moreover, a trivialization of the locally trivial fibration
p−1(γ) → γ by the same construction as outlined above induces a diffeomorphism
of p−1(b). The class of this diffeomorphism in Mod(p−1(b)) is the image of the class
corresponding to γ in Mod(p−1(b), d) by right map in sequence (2.8).

If p is the projection of a direct product with a curve, then the mapping class
group–valued monodromy of the pair (Z,C) has as the image a subgroup of the
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kernel of the right map in the sequence (2.8) since the mapping class group–valued
monodromy of fibration of direct product Z = E × CP 1 → CP 1 is trivial. UN-
CLEAR. In other words, we have the monodromy map with values in Bd(E); in
cases when the left map in (2.8) is not injective, the values are in the quotient of
the corresponding braid group.

Lemma 1. Let f : E → CP 1 be a meromorphic function taken from Hnr
g,d. Set

Z = E×CP 1 and let C ⊂ Z be the graph of f . Then the braid of the meromorphic
function f is the image of the class of the loop represented by the real line in
π1(CP 1 \ Cr) under the mapping class group–valued monodromy of the graph C
corresponding to the projection ν : Z → CP 1.

Proof. Note that the critical values of the restriction of the projection ν coincides
with the critical set of f . Further, since f ∈ Hnr

g,d, the real line in CP 1 defines

a loop in π1(CP 1 \ Cr, 0). Comparison of the definitions immediately implies the
claim. □

3.1. Connected components of Hnr
g,d and systems of ovals. The following

Proposition gives a condition for two separating oriented collections of ovals to be
in the same orbit of the mapping class group in terms of topology of connected
components of their complements.

Proposition 7. Let C1, C2 be two oriented collections of ovals on a surface E and
let E+

i , E−
i , i = 1, 2 be corresponding positive and negative classes of components of

the complement to each collection, (cf. Definition 3). The isotopy classes of C1 and
C2 belong to the same orbit of the mapping class group Mod(E) if and only if there
exist one-to-one correspondences between the connected components of E+

1 and E+
2

(resp. E−
1 and E−

2 ), preserving the topological type of connected components 3 and
a one-to-one correspondence between the ovals of C1 and C2 such that the incidence
relation between components and ovals is preserved.

Proof. Given collections of ovals α1, . . . , αd and β1, . . . , βd, let ϕ be the element of
the mapping class group such that ϕ(αi) = βi. Then there exists a diffeomorphism
of E representing the class of ϕ satisfying the same relation for the ovals and which
induces a diffeomorphsim between corresponding elements of pairs of surfaces into
which αi (resp. βi) split E. Similarly, the one-to-one correspondence allows us to
make a choice of diffeomorphisms between connected components of the elements of
pairs into which E is split by each collection of ovals. This choice of diffeomorphisms
of ovals extends to a global diffeomorphism of the surface representing the required
element of the mapping class group. □

The following lemma describes critical points of generic maps of a surface with
a boundary which send this surface to a fixed disk and its boundary to the circle
bounding this disk. The space of such generic maps turns out to be connected.

Lemma 2. Given a smooth connected surface W of genus g ≥ 0 with k ≥ 1
boundary components O1, O2, . . . , Ok equipped with positive integers (multiplicities)

m1,m2, . . . ,mk, d =
∑k

j=1 mj assigned to each component, there exists a mero-

morphic function ϕ : W → D̄ of degree d with simple critical values at a given set
of d+ 2g+ k− 2 points in an open disk D with the following additional properties:

(i) ϕ sends each connected component of the boundary of W locally diffeomorphically
on the boundary of D̄ where D̄ denotes the closure of D;
(ii) the restriction of ϕ onto each Oi has degree mi, i = 1, . . . , k.

3i.e. preserving the genus and the number of boundary components
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Finally, the set of all meromorphic functions ϕ with the above properties is con-
nected.

Proof. Lemma 2 has been settled in § 3.1, Lemmas 1-3 of [19]. Alternatively, the
connectedness of the latter space of meromorphic functions can be deduced from the
uniqueness of Hurwitz action on the factorizations of products of cycles of lengths
m1, . . . ,mk in the symmetric group Symd into transpositions, (cf. [12]). (The
number of critical points is immediate from the Riemann-Hurwitz formula.) □

For the next Proposition, consider the lift of the action of the group of orientation–
preserving diffeomorphisms of a closed surface E on oriented collections of ovals to
its action on the covering space of the latter space consisting of labeled oriented
collections of ovals, see Lemma 2. Namely, we define the action of ϕ ∈ Diff+(E)
as ϕ(Oi,mi) := (ϕ(Oi),mi). In fact, we consider the action of the isotopy classes
of diffeomorphisms, i.e. the action of the mapping class group of E on the isotopy
classes of collections of labeled ovals.

Proposition 8. In the above notation, connected components of Hnr
g,d are in one–

to–one correspondence with the orbits of the mapping class group acting on the
isotopy classes of oriented collections of ovals {O1, O2, . . . , Oℓ} on a fixed surface
of genus g equipped with positive multiplicities {m1,m2, . . . , mℓ} adding up to d.

Proof. For any two meromorphic functions fi : Ci → CP 1, i = 1, 2 within a given
connected component of Hnr

g,d, a choice of trivialization over a path connecting f1
with f2 produces a diffeomorphism between C1 and C2. This diffeomorphism maps
the collections of ovals on C1 with multiplicities given by the degrees f1 restricted to
each connected component of the preimage of the real axis onto that of C2 and f2.
It also matches the connected components of pre-images f−1

i (H+), i = 1, 2 (resp.

f−1
i (H−), i = 1, 2). After selecting diffeomorphisms between C1 and C2 with a
fixed surface E, we obtain two isotopy classes of labeled oriented ovals in E which
are mapped to one another by an element of the mapping class group of E.

To show the opposite implication in Proposition 8, suppose that we have a surface
E endowed with labeled oriented collection of ovals with multiplicities adding up
to d. Using Lemma 2 we can construct a meromorphic function of each connected
component of the complement in E to this collection of ovals with prescribed de-
grees of covering on each boundary components. Then we can glue these “partial”
meromorphic functions into a global meromorphic function f : E → CP 1 ⊃ RP 1

of degree d.

Now let Ci, i = 1, 2 be two collections of ovals with multiplicities in the same orbit
of the group of diffeomorphisms. An orientation preserving diffeomorphism taking
one onto the other induces the correspondence between connected components in
positive (respectively negative) class matching the multiplicities of the boundary
components. The connectedness claim in Lemma 2 shows that two meromorphic
functions fi, i = 1, 2 in Hnr

g,d having the same combinatorial information can be
deformed one into the other inside Hnr

g,d.
□

3.2. Connected components of Hnr
g,d and boundary braids. Each oriented

collection of ovals determines a subgroup of boundary braids and vice versa. Our
main Theorem 1 relates the connected components of Hnr

g,d and the orbits of the
mapping class group acting on abelian subgroups of the braid group representing
boundary braids.

Theorem 1. The map sending each connected component of Hnr
g,d to the respective

orbit of the mapping class group Mod(E) of a closed surface E of genus g acting
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on the conjugacy classes of the full boundary braids of the group Brd(E) via the
sequences (2.8), (2.9) is injective.

Proof. Let βi, i = 1, 2 be the braids of two meromorphic functions f1 and f2 such
that β2 = ϕ(αβ1α

−1) for an appropriate element ϕ ∈ Mod(E) of the mapping class
group of a surface E of genus g and a braid α ∈ Brd(E). Since βi are the boundary
braids they correspond to two systems of oriented label collections of ovals. It
follows from Proposition 5, that these collections are mapped one onto the other
by an element of the mapping class group as well. Now since both f1 and f2 have
the same degrees as coverings of RP 1 ⊂ CP 1, Proposition 8 implies that from this
relation between the collections of ovals follows that the functions lie in the same
connected component of Hnr

g,d. □

4. Special classes of meromorphic functions

4.1. Hurwitz spaces Hnr
0,d of rational functions. The next claims can be easily

derived from the earlier results of [16, 17], but they also follow from the above more
general Theorem 1 and Proposition 8.

Proposition 9. Consider the space Ratnrd of all rational functions of degree d with
all non-real critical values. Then connected components of Ratnrd are in on-to-one
correspondence with the equivalence classes consisting of a collection of disjoint
ovals {O1, O2, . . . , Oℓ} in CP 1 together with a collection of positive multiplicities
{m1,m2, . . . , mℓ} adding up to d.

Similar results can be found in e.g. [3, 19].

Proposition 10. For F ≃ CP 1 ≃ S2, the representative of the conjugacy class
of the braid corresponding to a given collection of ovals in CP 1 with the positive
multiplicities is obtained by the same construction as in Proposition 8.

Proof. The argument follows that in Proposition 8. □

Proposition 11. In case F ≃ CP 1 ≃ S2, the conjugacy classes of the collections
of ovals (without multiplicities) are in one-to-one correspondence with (the isomor-
phism classes of planar) directed graphs on S2 and the conjugacy classes of the
collections of ovals (without multiplicities) are in one-to-one correspondence with
(the isomorphism classes of planar) directed graphs on S2 equipped with positive
integer weights of their vertices.

Proof. Given a collection of the ovals in S2, we assign a vertex to each connected
component of the complement to this collection and to each oval we assign the
oriented edge directed away from the vertex representing connected component
mapped to H+. □

Remark 3. Apparently, Proposition 11 can de extended to surfaces of all genera,
but the respective combinatorial gadgets are not very illuminating, comp. [6].

4.2. Case of special real meromorphic functions. Assume now that a Rie-
mann surface E is equipped with an anti-holomorphic involution σ (complex con-
jugation) and that a meromorphic function f : E → CP1 is equivariant with respect
to σ and complex conjugation [u : v] → [ū, v̄] on CP1. Such functions f are clas-
sically referred to as real meromorphic functions. Connected components of the
spaces of generic rational and generic meromorphic functions have been earlier
studied in [19, 6] respectively.

We say that a real meromorphic function f : E → CP1 is special if it has no real
critical values. Notice that generic real meromorphic functions might have simple
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real critical values which implies that condition of speciality substantially restricts
the class of real meromorphic functions under consideration. However special mero-
morphic functions of a given degree form full-dimensional subsets among all real
meromorphic functions of the same degree.

Proposition 12. Space of special real meromorphic functions of degree d on a
surface of genus g is real manifold of dimension equal to complex dimension of the
whole (small) Hurwitz space.

Proof. The (small) Hurwitz space is an etale cover of the configuration space of
b = 2d − 2g − 2 points and has complex dimension b. For real meromorphic func-
tions, non-real critical values come in conjugate pairs and hence for any special real
meromorphic function, the number of critical points in the upper half-plane equals
d − g − 1. A connected component of the space of special real meromorphic func-
tions containing a function f consists of functions determined by the set of critical
points in the upper half-plane and having the same monodromy factorization as
f . (The critical points in the lower half-plane and the respective monodromy are
uniquely determined via complex conjugation.) Clearly, the complex conjugation of
CP 1 lifts to the complex conjugation of the domain of each meromorphic function
obtained through this construction. This connected component is an etale cover of
the configuration space of d − g − 1 points in the upper half-plane and hence has
real dimension 2d− 2g − 2. □

Now we study the monodromy of special real meromorphic functions, arising
restrictions on the system of ovals, and some examples of boundary braids occurring
for special real meromorphic functions. Given such a function f , notice that the
equivariance and the absence of its real critical values implies that σ (resp. complex
conjugation) acts freely on the set of critical points (resp. critical values) of f , i.e.
these actions have no fixed points. Moreover, as already mentioned earlier, Hurwitz
monodromy has a natural split into the monodromies corresponding to the critical
values lying in the upper resp. the lower half-planes.

In the case when a meromorphic function f : E → CP1 is real, a good ordered
system of generators of π1(CP1 \Cr, b) can be selected as a good ordered system of
generators of the fundamental group of any disk containing b ∪Cr and compatible
with complex conjugation, (cf. Section 2.2). Here Cr is the set of critical values
of f and b ∈ RP 1. Indeed let γ1, . . . , γN be a good ordered system of generators
of π1(H+ \ (Cr ∩ H+), b) and let γ̄i be the loop conjugate to γi, i = 1, . . . , N and
lying in the lower half-plane H−. Then

γ1, . . . , γN−1, γN , γ̄−1
N , γ̄−1

N−1, . . . , γ̄
−1
1 (4.1)

is a good ordered system of generators of π1(CP1 \ Cr, b).
Now let us compare the braids introduced earlier with those corresponding

to the upper and the lower half-planes. As in Section 2, set E+ = f−1(H+),
E− = f−1(H−), and B = f−1(b), cardB = deg(f). As before, E+ and E− will be
equipped with the orientations induced by the complex structure so that the com-
plex conjugation E+ → E− reverses the orientation. Consider the corresponding
maps of the braid groups:{

i+ : Br(E+, B) → Br(E,B)

i− : Br(E−, B) → Br(E,B)

induced by the embedding of subsurfaces.

It was already mentioned that unless E− (resp. E+) is a disk these maps are
injections, (cf. Proposition 1).
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Note that for any γ ∈ π1(H+ \Cr, b) (resp. γ ∈ π1(H− \Cr, b)), its preimage in
E+ (resp. in E−) induces a path in the configuration space of subsets of cardinality
cardB in E+, i.e. a braid in Br(E+, B) (resp. in Br(E−, B)). In particular, we
obtain the homomorphisms:

M+ : π1(H+ \ Cr, b) → Br(E+, B) (4.2)

and

M− : π1(H− \ Cr,B) → Br(E−, B)

called Hurwitz braid monodromy4 where both maps are restrictions of the mon-
odromy

M : π1(CP1 \ Cr, b) → Br(E,B).

The above braid coincides with M+(γN · . . . · γ1), where γN · . . . · γ1 is the element
of the fundamental group corresponding to the loop represented by the real axis
RP 1 ⊂ CP 1. It can also be expressed as M−(γ̄N · . . . · γ̄1). Using decomposition of
the loop corresponding to the real axis in H̄ we immediately obtain the following.

Proposition 13. Let γ1, . . . , γN be a good order system of generators of π1(H+ \
Cr, b). The identity

γ1 . . . γN = γ̄1 . . . γ̄N (4.3)

holds in π1(CP2 \ Cr, b)) which implies that

i+(M+(γ1 . . . γN )) = i−(M−(γ̄N . . . γ̄1)).

Projecting smooth real plane algebraic curves onto CP 1 from a real point in CP 2

we obtain interesting examples of real meromorphic functions. If such a projection
has no real critical points one has the following result (whose proof is standard).

Proposition 14. Let Γ ⊂ CP 2 be a real algebraic curve of degree d whose projection
on the real x-axis has d real pre-images and no real critical points. Then for even
d, the pre-image of the real axis in Γ is a union of d

2 circles each being a double

covering the real axis. For d odd, in addition to
[
d
2

]
“double” circles there is one

more circle covering the real axis diffeomorphically.

Note that Proposition 13 describes two factorizations of the braid in Proposi-
tion 14.

4.2.1. Examples. Let us give an explicit calculation of the braid corresponding to
the real axis in a special case. Namely, let Cd ⊂ CP 2 be the complex projective
curve given by xd + yd + zd = 0 usually referred to as the Fermat curve and let
π : Cd → CP1 be projection of Cd onto the real x-axis RP 1

x (i.e. the projection
centered at [0, 1, 0] ∈ CP2).

Example 1. For d = 2, C2 is a rational curve and the preimage π−1(RP 1
x ) of the

real x-axis is given by

π−1(RP 1
x ) = [x,±i

√
1 + x2, 1] ∪ [1,±i, 0] ⊂ CP1,

i.e. it has no real points and π has two critical points [±i, 0, 1]. In particular,
π−1(RP 1

x ) is a circle. (Projection on the y-axis is the complement to the interval
(−i, i) of the imaginary axis). M(γ1) = σ1 ∈ B2(S

2) (resp. M(γ1) = σ−1
1 ) is

positive (resp. negative) rotation of a pair of points on C2. Relation (4.3) reduces
to σ = σ−1 in Br(S2, 2) ≃ Z2.

4to distinguish from the braid monodromy introduced in [15]
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Figure 3. Splitting of C4 into 2 connected components

Example 2. Now let d be an even integer greater than 2. Then Cd has no real
points and d critical values of its projection onto the x-axis are given by ωk :=

exp
(

(2k−1)πi
d

)
. They belong to H+ (resp. to H−) for k = 1, . . . , d

2 (resp. for

k = d
2 + 1, . . . , d).

The points of Cd ⊂ CP 2 which project onto the origin x = 0 are of the form
(0, ωk, 1). The lift of the preimage of the positive (resp. the negative) x-semi-axis

with the initial point (0, ωk, 1) is given by (x, α(x)ωk, 1) where α(x) = (1 + xd)
1
d

and x ≥ 0 for the positive semi-axis (resp. x ≤ 0 for the negative semi-axis).
Notice that limx→±∞(x, α(x)ωk, 1) = (1,±ωk, 0). Hence traversing the real axis

first from 0 to ∞ along the positive semi-axis and then returning back to 0 along
the negative semi-axis (in positive direction) interchanges the points (0, ωk, 1) and
(0, ω−1

k , 1). Hence the preimage of the real axis RP 1
x consists of d

2 circles each

covering RP 1
x twice, as pointed out in Proposition 14.

Hence Cd (which is a compact Riemann surface of genus 1
2 (d− 1)(d− 2)) splits

by these d
2 circles into the union of two diffeomorphic surfaces with opposite orien-

tation, see Fig. 3. Direct calculation shows that this split of Cd by the preimage
of the real axis gives a decomposition of Cd into a union of two surfaces of genus
(d−1)2

2 punctured at d
2 points. Additionally, the braid we are interested in is the

rotation by the angle π along the system of ovals providing the split.

4.3. Deformations of meromorphic functions. In this subsection we discuss
what happens to the braid of a meromorphic function f : E → CP1 having simple
critical points and no real critical values when f is deformed in such a way that all
the critical points remain simple, but exactly one of the critical values crosses the
real axis RP 1.

Our goal is to compare the braid of a function f with one of the critical values
c0 located close to the real line in the lower half-plane and the braid of the function
f̃ which is obtained from f as the end function of a deformation starting with f
and which moves the critical c0 of f value across the real axis from the lower to the
upper half-plane, while other critical values remaining in their respective half-planes
during the deformation.

To fix our notations let us, without loss of generality, assume that c0 lies inside a
half-disk D0 bounded by a small semicircle in the lower half-plane and the interval
of the real axis. Let γ ∈ π1(CP1 \ Cr(f), b), b ∈ RP 1 be the class represented by
the loop given by the real axis where (as above) Cr(f) is the set of critical values
of f . Let δc0 ∈ π1(H− \ Cr, b) be the class represented by the loop consisting of
the interval in real axis connecting the base point b ∈ R with the right end of the
semi-circle bounding the semi-disk containing c0, and then followed by the interval
in R connecting the left end of the semicircle and the base point b.
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b

H−

H+

Cr(f)

RP 1

c0
δ0

Figure 4. Deformation of a meromorphic function

Observe that H+\Cr(f̃) is a retract of H+\Cr(f)∪(D0\c0)) 5 which implies the

isomorphism π1(H+ \Cr(f̃), b) → π1(H+ \Cr(f)∪ (D0 \c0)) with this isomorphism

taking the class of f̃−1(RP 1) ∈ π1(H+ \ Cr(f̃), b) to the class of δc0 followed by
the class of f−1(RP 1), see Fig. 4 where the orientation of the loop RP 1 given by
moving in negative direction. UNCLEAR

Let (i1, i2) be the transposition corresponding to δ0 and let (τ1, . . . , τk) be the
cycle decomposition of the permutation corresponding to the image of γ in the
Hurwitz monodromy π1(CP1\Cr(f), b) → Symd. Recall that the ovals in f−1(RP 1)
correspond to the cycles τi and the braid for each cycle is represented by the rotation
by the angle 2π

l(τi)
, where l(τi) is the length of the cycle.

There are two distinct cases to consider:

(1) i1 and i2 belong to a single cycle τ1;
(2) i1 and i2 lie in distinct cycles, say τ1 and τ2.

Case 1. We can assume that the cycle τ1 is written in the form (i1, a, i2, b) for some
ordered subsets of [1, . . . , d]. One has the following cycle decomposition

(i1, i2)(i1, a, i2, b) = (i1, b)(i2, a) (4.4)

for the product (i1, i2)τ1 which should be read from left to right.
We claim that in this case the oval in f−1(RP 1) corresponding to the cycle τ1

splits in two disjoint ovals and the braid corresponding to the rotation by 2π
l(τ1)

splits

into the product of the braids corresponding to rotations by the angles 2π
1+card(a)

and 2π
1+card(b) . (Note that l(τ1) = 2 + card(a) + card(b)) respectively.

Case 2. The transposed elements i1, i2 ∈ [1, . . . , d] belong to a pair of disjoint cycles
τ1 = (i1, a) and τ2 = (i2, b). Similarly to (4.4) one has

(i1, i2)(i1, b)(i2a) = (i1ai2b). (4.5)

In this case, two ovals corresponding to the cycles τ1, τ2 merge into one.

Proposition 15. Let f : E → CP1 be a function without real critical values. A
deformation of f into the function f̃ during which one of the critical values of f
crosses the real axis from the lower half plane to upper half plane results in the
transformation of the system of ovals in which either one oval splits into two (Case
1) or two ovals merge into one (Case 2). The parameters (m1, . . . ,mr) specifying
the subgroups of boundary braids BBm1,..mr are transformed as described above.

5a retraction moves the arc of semicircle to its diameter along the vertical lines and is constant
outside a closed disk containing this semicircle
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5. Outlook

We conclude with several additional questions dealing with the special classes of
the families of meromorphic function similar to those which we have answered in
this paper.

1. What arrangements of ovals with multiplicities a given meromorphic function
f : F → CP 1 might get under possible choices of RP 1 ⊂ CP 1. Different choices of
RP 1 are different by a Möbius mapping. One should apparently use the dual plane
where critical values are lines and RP 1 is a point.

2. The next question is an analog of Problem 1 of § 3 in the case of square matrices
and is important in mathematical physics, signal processing, and (applied) linear
algebra, see e.g. [5, 10, 26]. Namely, given two d×d-matrices A and B with complex
entries, consider the projectivized real span M(A,B, α : β) := αA+ βB, where as
above (α : β) are homogeneous coordinates on RP 1. One can easily observe that if
A and B are generic then for every point (α : β) ∈ RP 1, M(A,B, α : β) will have
d distinct (simple) eigenvalues in C.

Therefore, for generic A and B, these eigenvalues depending on the parameter
(α : β) ∈ RP 1 traverse a closed braid in CP 1 × RP 1.

Problem 5. In the above notation, describe the equivalence class of the closed
braid in terms of (A,B) as well as the set of the equivalence classes of all d-stranded
braids which might occur when the latter construction is applied to (generic) pencils
of complex-valued d× d-matrices.

Observe that Problem 1 is a special case of Problem 5 if one considers pencils of

diagonal matrices. Identifying the space of complex-valued d×d-matrices with Cd2

and denoting the space of real pencils in Cd2

by Md, we define its subset M0
d ⊂ Md

consisting of all real matrix pencils forming closed braids, i.e., such that for each
value of (α : β) ∈ RP 1, all d eigenvalues are pairwise distinct.

Problem 6. Enumerate connected components of M0
d.

Again, braids corresponding to matrix pencils belonging to the same connected
component of M0

d are equivalent. Problem 6 asks whether different connected
components can have equivalent closed braids.

The latter problems about matrix pencils can be translated into questions about
projections of plane algebraic curves due to the following old result. Let us recall
the classical theorem about determinantal representations, see e.g. [7].

Theorem A. Every homogeneous polynomial in three variables of degree d can be
written as

f(x, y, z) = det(Ax+By + Cz)

where A, B and C are symmetric d× d-matrices. Here the coefficients of f and the
matrix entries are complex numbers.

3. The last problem we suggest is a refinement of the Problem 3 from § 3 related
to Problem 5 and projections of plane algebraic curves. A natural (sub)class of
meromorphic functions is associated to plane curves and their projections. Namely,
given a plane curve C ⊂ CP 2 and a point p ∈ CP 2, we obtain a meromorphic
function πp : C → CP 1 by projecting C onto the pencil of lines through p.

In fact, every meromorphic function f : F → CP 1 on any compact Riemann
surface F can be realized as the composition πp◦ν : F → CP 1 where ν : F → CP 2 is
a birational mapping of F onto the plane curve ν(F ) ⊂ CP 2 and πp : CP 2\p → CP 1

is the projection from a point p ∈ CP 2, see [20]. Obviously if deg f = d then
d′ := deg C ≥ d. In fact every meromorphic function f : F → CP 1 where the genus
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of F is g can be realized by a projection of a plane curve C of degree (at most)
d′ ≥ g + 2 from an appropriate point p. For many meromorphic functions, C can
be chosen of a much smaller degree, see examples in [20].

Definition 5. Define the planarity defect pdef(f) of a given meromorphic func-
tion f : F → CP 1 as

pdef(f) := min
ν

(deg(ν(F ))− deg(f)

such that f = πp ◦ ν, as above.

The space Hg,d of all meromorphic functions of degree d on Riemann surfaces of
genus g can be stratified as

H0
g,d ⊂ H1

g,d ⊂ · · · ⊂ Hℓ
g,d ⊂ · · · ⊂ HM(g,d)

g,d = Hg,d (5.1)

where Hℓ
g,d consists of all meromorphic functions in Hg,d whose planarity defect is

at most ℓ. The exact value M(g, d) is given by max
(
0,
⌈
g−d+2

2

⌉)
, see Corollary

1.15 of [20].

Problem 7. What spherical braids can occur from the meromorphic functions of
degree d on Riemann surfaces of genus g whose planarity defect is at most ℓ and
without real critical values?

Observe that applying projective transformations in the above construction, we
can once and forever fix the point p ∈ CP 2 and choose the affine chart C2 ⊂ CP 2

with p at infinity. We can also choose RP 1 ⊂ CP 1 in the pencil of lines through p.
Now we can consider the set of plane curves C ⊂ CP 2 such that the meromorphic

function f : C̃ → CP 1 ⊃ RP 1 induces by πp has no real critical values. This
construction together with the above one associates the set of admissible braids
appearing in each term Hℓ

g,d of the above filtration. In particular, for the final term

HM(g,d)
g,d = Hg,d the set of admissible braids is described in the previous section.

6. Appendix: Relations among the generators of the braids groups
of surfaces

Theorem 2 (cf. [1]). For n > 1, the braid group Bn(F, k) of n strands on a surface
F of genus g ≥ 0 with k ≥ 0 punctures has the presentation consisting of the braid
and mixed relations given below.

Braid relations: {
σiσi+1σi = σi+1σiσi+1

σiσj = σjσi |i− j| > 1.

Mixed relations:

(R1) : arσi = σiar, brσi = σibr, i ̸= 1, r = 1, . . . , g; (6.1)

(R2) : (σ−1
1 ar)

2 = (arσ
−1
1 )2, (σ−1

1 br)
2 = (brσ

−1
1 )2, 1 ≤ r ≤ g; (6.2)

(R3) :

{
[σ−1

1 asσ1, ar] = 1, [σ−1
1 bsσ1, br] = 1, s < r

[σ−1
1 asσ1, br] = 1, [σ−1

1 bsσ1, ar] = 1, s < r;

(R4) [σ−1
1 arσ

−1
1 , br] = 1, 1 ≤ r ≤ g; (6.3)

(R5) [zj , σi] = 1, i ̸= 1; j = 1, . . . , k − 1; (6.4)
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(R6) [σ−1
1 ziσi, ar] = [σ−1

1 ziσi, br] = 1, i ̸= 1; j = 1, . . . , p− 1, 1 ≤ r ≤ g; (6.5)

(R7) [σ−1
1 zjσ1, zl] = 1, j = 1, . . . , p− 1, j < l; (6.6)

(R8) [σ−1
1 zjσ

−1
1 , zj ] = 1, j = 1, . . . , p− 1. (6.7)

In other words, if g ≥ 1 one uses all the above relation and in the case g = 0 one
has generators σ1, .., σn−1, z1, .., zp−1 subject only to braid relations and relations
R(5), R(7), R(8).

In the case of a closed surface F , Bn(F ) is generated by σ1, ..., σn−1, a1, b1, ..., ag, bg
with braid relations, the relations R(1)−R(4) and the relation:

[a1, b
−1
1 ] · ... · [ag, b−1

g ] = σ1 · .... · σ2
n−1 · ... · σ1. (6.8)
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