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RANKS OF HOMOTOPY AND COHOMOLOGY GROUPS FOR

RATIONALLY ELLIPTIC SPACES AND ALGEBRAIC VARIETIES

ANATOLY LIBGOBER AND SHOJI YOKURA

Abstract. We discuss inequalities between the values of homotopical and cohomologi-

cal Poincaré polynomials of the self-products of rationally elliptic spaces. For rationally
elliptic quasi-projective varieties, we prove inequalities between the values of generating
functions for the ranks of the graded pieces of the weight and Hodge filtrations of the
canonical mixed Hodge structures on homotopy and cohomology groups. Several ex-
amples of such mixed Hodge polynomials and related inequalities for rationally elliptic
quasi-projective algebraic varieties are presented. One of the consequences is that the
homotopical (resp. cohomological) mixed Hodge polynomial of a rationally elliptic toric
manifold is a sum (resp. a product) of polynomials of projective spaces. We introduce an
invariant called stabilization threshold pp(X; ε) for a simply connected rationally elliptic
space X and a positive real number ε, and we show that the Hilali conjecture implies that
pp(X; 1) ≤ 3.

1. Introduction

A rationally elliptic space is a simply connected topological space X such that

dim (π∗(X) ⊗Q) < ∞ and dimH∗(X;Q) < ∞

where π∗(X) ⊗ Q :=
∑

i≥1 πi(X) ⊗ Q and H∗(X;Q) :=
∑

j≥0H
j(X;Q). This interesting

class of spaces has received considerable attention, but a complete picture of structure,
geometry or invariants of spaces in this class appears to be far from clear. Very strong
restrictions on the ranks of homotopy group were found a long time ago by J. B. Friedlander
and S. Halperin ( see [16] and also [14] or [15]). To recall them, let xi (resp. yj) denote a
basis of πodd(X)⊗Q (resp. πeven(X)⊗Q) and let n be the formal dimension of the space
X, i.e., the maximal degree n such that Hn(X;Q) 6= 0. We set

πeven(X)⊗Q :=
∑

k≥1

π2k(X) ⊗Q, πodd(X) ⊗Q :=
∑

k≥0

π2k+1(X) ⊗Q,

Heven(X;Q) :=
∑

k≥0

H2k(X;Q), Hodd(X;Q) :=
∑

k≥0

H2k+1(X;Q).

Then we have the following:

(a)
∑

i deg xi ≤ 2n− 1,
∑

j deg yj ≤ n.

(b) n =
∑

i deg xi −
∑

j(deg yj − 1).
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2 ANATOLY LIBGOBER AND SHOJI YOKURA

(c) χπ(X) := dim (πeven(X)⊗Q)− dim (πodd(X)⊗Q) ≤ 0.
(d) 0 ≤ χ(X) = dimHeven(X;Q)− dimHodd(X;Q).
(e) χ(X) > 0 ⇐⇒ χπ(X) = 0.
(f) Betti numbers bi = dimHi(X;Q) of X satisfy Poincaré duality [14, §38 Poincaré

Duality]. In particular bn = 1 and bn−1 = b1 = 0.
(g) Betti numbers satisfy inequalities: bm ≤ 1

2

(
n
m

)
,m 6= 0, n (cf. [27, Corollary to

Theorem 1]) 1

Moreover, the Hilali conjecture [20] (also see [21, 22]), which is still open, suggests that:

(1.1) dim (π∗(X) ⊗Q) ≤ dimH∗(X;Q).

The present paper, instead of (1.1), shows different types of inequalities between the
ranks of homotopy and cohomology groups of rationally elliptic spaces (cf. [30]). They are
stated in terms of the cohomological Poincaré polynomial and the homotopical Poincaré
polynomial. For a simply connected rationally elliptic space X we put

PX(t) :=
∑

k≥0

dimHk(X;Q)tk and P π
X(t) :=

∑

k≥2

dim(πk(X)⊗Q)tk.

In [30] the second named author showed that there exists a positive integer n0 such that
for all n > n0 one has P π

Xn(1) < PXn(1). Here Xn = X × · · · ×X︸ ︷︷ ︸
n

is the Cartesian product

of n copies of X. Below we show the following (announced in [31]):

Theorem 1.2. Let X be a simply connected rationally elliptic space. For any positive real
number ε there exists a positive integer n(ε) such that for all n ≥ n(ε) and all t ≥ ε

(1.3) P π
Xn(t) < PXn(t).

Remark 1.4. Note that, since X is simply connected, PX(t) = 1 implies that X is ra-
tionally homotopy equivalent to a point (cf. [14, Theorem 8.6]), and hence P π

X = 0. In
particular, the inequality (1.3) is satisfied with n(ε) = 1,∀ε > 0. Therefore, in Theorem 1.2
we assume that PX(t) > 1. We also note that the formal dimension of a simply connected
space is bigger than or equal to 2.

Theorem 1.2 suggests the following invariant of a rationally elliptic homotopy type:

Definition 1.5. The stabilization threshold is the smallest integers n(ε) such that inequal-
ity (1.3) takes place for all n ≥ n(ε).

We denote the stabilization threshold by pp(X; ε), where pp stands for “Poincaré poly-
nomial”. For example, for ε = 1 we have

(1) pp(S2n+1; 1) = 1,
(2) pp(S2n; 1) = 3,
(3) pp(CP 1, 1) = 3 and pp(CPn, 1) = 2 if n ≥ 2.

In terms of this invariant, the inequality of Theorem 1.2 implies the following:

1This inequality implies that dimH
∗(X;Q) ≤ 2n−1 + 1, which is sharper than dimH

∗(X;Q) ≤ 2n ([15,
Theorem 2.75]).
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Corollary 1.6. For any ε > 0 and r ≥ pp(X; ε) we have

r

(
n∑

i=2

dim (πi(X)⊗Q) εi

)
<

(
1 +

l∑

i=2

dimH i(X,Q)εi

)r

where n (resp. l) is the degree of homotopical (resp. cohomological) Poincare polynomial.

Note that inequality (1.1) is a special case of Corollary (1.6) for the spaces with stabi-
lization threshold pp(X; 1) = 1, but not for the spaces with pp(X; 1) ≥ 2. The argument
used in the proof of Theorem 1.2 is an elementary calculus observation and based only on
the difference in behavior of homotopy groups and cohomology groups in products.

Several results on stabilization threshold and specific values in some examples are pre-
sented in Sections 2, 3 and 4 respectively, but let us point out that we have the following
result about the upper bound of the stabilization threshold pp(X; 1):

Theorem 1.7. Let X be a simply connected rationally elliptic space of formal dimension
n ≥ 3. Then

pp(X; 1) ≤ n.

We also show that the Hilali conjecture implies sharp bound, independent of dimension:

Theorem 1.8. If a simply connected rationally elliptic space X satisfies the Hilali conjec-
ture, then we have

pp(X; 1) ≤ 3.

In particular, the question if 3 is an unconditional bound of the threshold pp(X; 1) is
a weakening of the Hilali conjecture. Note (see Corollary 3.6) that the threshold pp(X; 1)
does not exceed 3 if the formal dimension does not exceed 20 since the Hilali conjecture
is verified up in this range (see [7]). The Hilali conjecture is also valid for formal spaces
(see [21]), hence the stabilization threshold pp(X; 1) does not exceed 3 also for, e.g., the
following spaces, which are formal:

• compact Kähler manifolds [12],
• projective varieties with isolated normal singularities with high connectivity of links
[8], and

• smooth quasi-projective manifolds with pure Hodge structure (by Dupont’s “purity
implies formality” theorem [13]).

Now, let X be a quasi-projective algebraic variety. Both the homotopy and the coho-
mology groups carry mixed Hodge structures ( [10], [11], [25], [17],[18], [26]), which are
functorial for regular maps. An invariant of these mixed Hodge structures is given by the
generating functions for the dimensions of graded pieces of Hodge and weight filtrations as
follows:

(1.9) MHX(t, u, v) :=
∑

k,p,q

dim
(
GrpF •GrW•

p+qH
k(X;C)

)
tkupvq,
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where (W•, F
•) is the mixed Hodge structure of the cohomology groups.

MHπ
X(t, u, v) :=

∑

k,p,q

dim
(
Grp

F̃ •
GrW̃•

p+q((πk(X) ⊗ C)∨)
)
tkupvq,

where (W̃•, F̃
•) is the mixed Hodge structure of the dual of homotopy groups. They will be

called respectively the cohomological mixed Hodge polynomial and the homotopical mixed
Hodge polynomial of X. A refinement of Theorem 1.2 (announced in [31]) for algebraic
varieties is as follows:

Theorem 1.10. Let ε and r be positive real numbers such that ε < r and let Cε,r :=
[ε, r]× [ε, r]× [ε, r] ⊂ (R≥0)

3 be the cube of size r− ε. Let X be a rationally elliptic quasi-
projective variety. Then there exists a positive integer nε,r such that for all n ≥ nε,r the
following strict inequality holds:

MHπ
Xn(t, u, v) < MHXn(t, u, v)

for ∀(t, u, v) ∈ Cε,r.

Similarly to pp(X; 1), we can consider the smallest integer n0 such that for ∀n ≥ n0 the
following holds

MHπ
Xn(t, u, v) < MHXn(t, u, v) ∀t ≥ a,∀u ≥ b,∀v ≥ c.

We denote it by mhp(X; a, b, c), where mhp stands for “mixed Hodge polynomial”.
Actual calculations of homotopy and cohomology groups of rationally elliptic quasi-

projective varieties are rather sparse with the main focus being on low dimensional cases
(e.g., see [1], [3] and [19] where such rationally elliptic spaces are identified) and even less
is known about their mixed Hodge theory refinements. Therefore, besides inequalities, we
include several examples, in particular toric varieties and arrangements of linear subspaces
and calculate the stabilization thresholds for them.

It would be interesting to find non-trivial2 examples of singular algebraic varieties which
are rationally elliptic and study for their mixed homotopy and homology polynomials and
their stabilization thresholds.

In §2 we prove Theorems 1.2 and 1.10 and several results on stabilization thresholds.
Theorems 1.7 and 1.8 are proven in §3. In the final §4 we give explicit calculations of the
homotopical and cohomological mixed Hodge polynomials of several compact and open
manifolds, including some toric varieties and complement to arrangements of linear sub-
spaces in affine space. In this section we also introduce and discuss homotopical E-function
which is an analog of classical cohomological E-function.

2. Proofs of the main results

The isomorphisms πi(X×Y ) = πi(X)⊕πi(Y ) and the Künneth formula Hn(X×Y,Q) =∑
i+j=nH

i(X;Q)⊗Hj(Y ;Q) imply that the homotopical Poincaré polynomial P π
X(t) and

2A trivial example is X × C where X is any rationally elliptic smooth or singular variety and C is a
rational cuspidal curve (which is homeomorphic to S

2).
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the cohomological Poincaré polynomial PX(t) are respectively additive and multiplicative,
i.e.,

P π
X×Y (t) = P π

X(t) + P π
Y (t) and PX×Y (t) = PX(t)× PY (t),

which imply that Theorem 1.2 is an immediate consequence of the following:

Lemma 2.1. Let ε be a positive real number. Let P (x) and Q(x) be two polynomials of
the following types:

P (x) =

p∑

k=2

akx
k, ak ≥ 0, Q(x) = 1 +

q∑

k=2

bkx
k, bk ≥ 0, bq 6= 0.

Then there exists a positive integer n0 such that for ∀n ≥ n0

(2.2) nP (x) < Q(x)n (∀x ≥ ε).

Remark 2.3. For our purpose it is sufficient to consider bq = 1, but we do not assume it.

Proof of Lemma 2.1 . Select a positive integer N0 such that deg
(
Q(x)N0

)
> deg (N0P (x))

and take s0 > 1, s0 ∈ R such that Q(x)N0 > N0P (x) for any x > s0. Then R(s, r) defined
by R(s, r) := Q(s)r − rP (s) we have the following for all r ≥ N0 and all s > s0:

∂R(s, r)

∂r
= logQ(s) ·Q(s)r − P (s) > logQ(s) ·N0P (s)− P (s),

which is positive for all s > max(s0, e) since logQ(s) > 1, because Q(s) ≥ Q(e) = 1 +∑q
k=2 bke

k > e since bq 6= 0. Thus for all s > max(s0, e) the function R(s, r) is increasing

with respect to r and R(s,N0) = Q(s)N0 − N0P (s) > 0, thus, in particular R(x, n) =
Q(x)n − nP (x) > 0 for all x > max(s0, e) and for all n ≥ N0. Therefore we have that

nP (x) < Q(x)n for all x > max(s0, e) and for all n ≥ N0.

Now, we have the following

lim
n→∞

nP (ξ)

Q(ξ)n
= P (ξ) lim

n→∞

n

Q(ξ)n
= 0

for any fixed ξ ∈ [ε, s0], since Q(ξ) > 1 for ξ > 0. Therefore, we see that there exists an
integer n(ξ) such that for all n > n(ξ) one has nP (ξ) < Q(ξ)n. Having such an integer n(ξ)
for each ξ, we can find δξ such that for |x− ξ| < δξ and n > n(ξ) one has nP (ξ) < Q(ξ)n.
Selecting a finite set of ξi such that the intervals of length δξi centered at ξi cover [ε, s0],
we see that for N ≥ max{n(ξi), N0} one has (2.2) for all x ≥ ε. �

Remark 2.4. Let n(ε, P,Q) be the smallest integer n0 satisfying conditions of Lemma 2.1.
We can find an upper bound u of the threshold n(ε, P,Q), i.e., n(ε, P,Q) ≤ u, as follows.

(A) First we consider the case when 0 < ε ≤ 1: Let m be the number of the monomials
alix

li(1 ≤ i ≤ m) in P (x) and bqx
q be the top degree term of Q(x). Let ui be an upper

bound of the stabilization threshold n(ε,malix
li , 1+ bqx

q), i.e., n(ε,malix
li , 1+ bqx

q) ≤ ui,
and let u := max{u1, · · · , um}. Then for ∀n ≥ u we have for all i:

n(malix
li) < (1 + bqx

q)n ∀x ≥ ε



6 ANATOLY LIBGOBER AND SHOJI YOKURA

and hence

nP (x) =
n

m

m∑

i=1

malix
li <

1

m

m∑

1

(1 + bqx
q)n <

(
1 + bkx

k + · · · bqx
q
)n

= Q(x)n.

Therefore we get that n(ε, P,Q) ≤ u.
Now, each upper bound ui of the threshold n(ε,malix

li , 1 + bqx
q) is obtained as follows,

by considering the inequality n(maix
li) < (1 + bqx

q)n for (a) x > 1 and (b) ε ≤ x ≤ 1 :
(a) x > 1:

(1) Find an integer s such that sq > ℓi and s ≥ 2 (condition used in the next step),

(2) Find an integer n̂0 (depending on ali , bq, li, s) such that
mali
bsq

≤
1

n̂0

(
n̂0

s

)
for n̂0 ≥ s,

which implies that
mali
bsq

≤
1

n

(
n

s

)
for ∀n ≥ n̂0 ≥ s. (If s = 1, then 1

n

(
n
s

)
= 1 for ∀n,

in which case there might not exist such an integer n̂0, depending on the integers
m,ali , bq. )

Then, for ∀n ≥ n̂0:

n(malix
li) ≤

(
n

s

)
bsqx

ℓi <

(
n

s

)
bsqx

qs =

(
n

s

)
(bqx

q)s < (1 + bqx
q)n for x > 1

(b) ε ≤ x ≤ 1:
First we observe that xli ≤ 1 for ε ≤ x ≤ 1, hence it suffices to consider the inequality

n(mali) < (1 + bqx
q)n, which implies that n(malix

li) < (1 + bqx
q)n.

(3) Find a positive integer ñ0 which is larger than the largest of the roots of the
following equation:

(mali)y = (1 + bqε
q)y.

In order to show the inequality n(mali) < (1 + bqx
q)n for ∀n ≥ ñ0 and for x ∈ [ε, 1],

for a fixed u we consider the line z = e log(u)y, which as direct calculation readily shows,
is tangent to the curve z = uy at the point y∗(u) = 1

log(u) . Any other line through the

origin of (z, y)-plain either does not intersect z = uy or intersects it at two points. Taking
u = 1+ bqx

q, we conclude that if mali < e log(1+ bqx
q), then (mali)y < (1+ bqx

q)y for ∀y,
in particular, n(mali) < (1+bqx

q)n for ∀n. Otherwise, n(mali) < (1+bqx
q)n is satisfied for

∀n ≥ y0(x) where y0(x) is the largest coordinate of intersection of the line z = (mali)y and
exponential curve z = (1 + bqx

q)y. To get an upper bound on y0(x), x ∈ [ε, 1], note that
the largest y-coordinate of the intersection of the line z = (mali)y with the exponential
curve z = uy, is increasing when u is getting smaller and its minimal value is (1+ bqε

q),i.e.
for x = ε. Hence the upper bound of y0(x) is the largest of the roots of the equation
(mali)y = (1 + bqε

q)y. Therefore, we have that n(mali) < (1 + bqx
q)n for ∀n ≥ n̂0., i.e.,

n(malix
li) < (1 + bqx

q)n for ∀x ∈ [ε, 1].

Finally, we let ui = max{n̂0, ñ0}, then for ∀n ≥ ui we have

n(malix
li) < (1 + bqx

q)n for ∀x ≥ ε.



RANKS OF HOMOTOPY AND COHOMOLOGY GROUPS 7

(B) In the case when ε > 1: We do the same thing as in (a), just by replacing x > 1 by
x ≥ ε. Then we let ui := n̂0.

Remark 2.5. We have the following inequality for the stabilization thresholds:

(2.6) pp(X × Y ; ε) ≤ max{pp(X; ε), pp(Y ; ε)}

for a positive real number ε such that PX(ε) ≥ 2 and PY (ε) ≥ 2. Indeed, we let pp(X; ε) :=
nX and pp(Y ; ε) := nY , then we have

nP π
X(t) < PX(t)n ∀n ≥ nX ,∀t ≥ ε,

nP π
Y (t) < PY (t)

n, ∀n ≥ nY ,∀t ≥ ε.

Then for ∀n ≥ max{nX , nY } and ∀t ≥ ε we have

(2.7) n(P π
X(t) + P π

Y (t)) < PX(t)n + PY (t)
n.

Since PX(t) and PY (t) are increasing functions and PX(ε) ≥ 2 and PY (ε) ≥ 2, PX(t) ≥ 2
and PY (t) ≥ 2 for ∀t ≥ ε. Hence we have

(2.8) PX(t)n + PY (t)
n ≤ PX(t)n · PY (t)

n = (PX(t) · PY (t))
n .

PX(t)n + PY (t)
n ≤ PX(t)n · PY (t)

n follows from that

PX(t)n · PY (t)
n − PX(t)n − PY (t)

n = (PX(t)n − 1) (PY (t)
n − 1)− 1 ≥ 0

because PX(t)n − 1 ≥ 1 and PY (t)
n − 1 ≥ 1 for ∀t ≥ ε. Therefore it follows from (2.7)

and (2.8) that nP π
X×Y (t) < PX×Y (t)

n for ∀n ≥ max{nX , nY } and ∀t ≥ ε. Therefore we
get pp(X × Y ; ε) ≤ max{pp(X; ε), pp(Y ; ε)}. However, in general we have pp(X × Y ; ε) 6=
max{pp(X; ε), pp(Y ; ε)}. For example, we can see that pp(S2n; 1) = 3, but pp(S2n ×
S2n; 1) = 2.

Now we will turn to comparison of the homotopical and cohomological mixed Hodge
polynomials.

In fact the cohomological mixed Hodge polynomial is also multiplicative just like the
(cohomological) Poincaré polynomial PX(t)

MHX×Y (t, u, v) = MHX(t, u, v) ×MHY (t, u, v)

which follows from the fact that the mixed Hodge structure is compatible with the tensor
product (e.g., see [28].) On the other hand the homotopical mixed Hodge polynomial is
additive just like the homotopical Poincaré polynomial P π

X(t)

MHπ
X×Y (t, u, v) = MHπ

X(t, u, v) +MHπ
Y (t, u, v)

since π∗(X × Y ) = π∗(X) ⊕ π∗(Y ) and the category of mixed Hodge structures is abelian
and the direct sum of a mixed Hodge structure is also a mixed Hodge structure. In this
paper the following special multiplicativity and additivity are sufficient:

(2.9) MHXn(t, u, v) = {MHX(t, u, v)}n,

(2.10) MHπ
Xn(t, u, v) = nMHπ

X(t, u, v).
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In fact, in a similar way to that of Theorem 2.1, using multiplicativity and additivity
relations (2.9) and (2.10), we can show the following proposition. Let R>0 be the set of
positive real numbers.

Proposition 2.11. Let (s, a, b) ∈ (R>0)
3. Let X be a rationally elliptic quasi-projective

variety. Then there exists a positive integer n(s,a,b) such that for ∀n ≥ n(s,a,b) the following
strict inequality holds

MHπ
Xn(t, u, v) < MHXn(t, u, v)

for |t− s| ≪ 1, |u− a| ≪ 1, |v − b| ≪ 1.

Proof. For the sake of completeness and/or the sake of the reader, we give a proof, which
is similar to the proof of Lemma 2.1. We set

MHπ
X(t, u, v) =

∑

k≥2,p≥0,q≥0

ak,p,qt
kupvq, MHX(t, u, v) = 1 +

∑

k≥1,p≥0,q≥0

bk,p,qt
kupvq.

If all the coefficients bk,p,q = 0, then H∗(X;Q) = Q = H∗(pt;Q), which implies (as in
Remark 1.4) that X is rationally homotopy equivalent to the point, hence π∗(X) = 0. The
above strict inequality automatically holds. So we can assume that bk0,p0,q0 6= 0 for some
(k0, p0, q0). Then for (s, a, b) ∈ (R>0)

3 we have

MHX(s, a, b) = 1 +
∑

k≥1,p≥0,q≥0

bk,p,qs
kapbq ≥ 1 + bk0,p0,q0s

k0ap0bq0 > 1.

Therefore whatever the value of MHπ
X(s, a, b) is, by the same argument as in the proof of

Theorem 2.1,

lim
n→∞

n(MHπ
X(s, a, b))

(MHX(s, a, b))n
= MHπ

X(s, a, b) lim
n→∞

n

(MHX(s, a, b))n
= 0.

Hence there exists a positive integer N̂(s,a,b) such that for ∀n ≥ N̂(s,a,b)

(2.12)
n(MHπ

X(s, a, b))

(MHX(s, a, b))n
< 1.

Equivalently, we have for ∀n ≥ N̂(s,a,b)

nMHπ
X(s, a, b) < MHX(s, a, b)n.

Now the proof is concluded as the proof of Lemma 2.1 using openness of condition (2.12).
�

The following theorem follows from the above proposition and the compactness of the
cube Cε,r.

Theorem 2.13. Let ε and r be positive real numbers such that ε < r and let Cε,r :=
[ε, r] × [ε, r] × [ε, r] ⊂ (R≥0)

3 Let X be a rationally elliptic quasi-projective variety. Then
there exists a positive integer nε,r such that for all n ≥ nε,r the following strict inequality
holds:

MHπ
Xn(t, u, v) < MHXn(t, u, v)
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for ∀(t, u, v) ∈ Cε,r.

Remark 2.14. In a similar manner to the proof of (2.6) in Remark 2.5, we can see the
following inequality as to the threshold mhp:

mhp(X × Y ; a, b, c) ≤ max{mph(X; a, b, c),mhp(Y ; a, b, c)}

for positive real numbers a, b, c such that MHX(a, b, c) ≥ 2 and MHY (a, b, c) ≥ 2.

Remark 2.15. We defined in Introduction the stabilization threshold pp(X; ε) as the
smallest integer n0 such that for all n ≥ n0 the following inequality (1.3) holds: P π

Xn(t) <

PXn(t)(∀t ≥ ε). In particular, it takes place for the product space Xpp(X;ε). On the other
hand this inequality is equivalent to nP π

X(t) < (PX(t))n (∀t ≥ ε), study of which is a key
ingredient for our results. This inequality can be considered without assuming that n is
an integer, but for n being a positive real number. The same applies to the stabilization
threshold mph(X; a, b, c). Thus we can consider the real stabilization thresholds ppR(X; ε)
and mphR(X; a, b, c), which are more subtle invariants than the integral ones and are more
difficult to analyze. For details on properties and calculation of these invariants of pairs
of polynomials, rational elliptic homotopy types and quasi-projective varieties, we refer to
[23].

3. Bounds for Stabilization Thresholds

We will start with a conditional result, which yields unconditional bound in small di-
mensions.

Theorem 3.1. If a simply connected rationally elliptic space X satisfies the Hilali conjec-
ture, then we have pp(X; 1) ≤ 3.

Proof. Let X be a simply connected rationally elliptic space of formal dimension n. Let
the homotopical and cohomological Poincaré polynomials of X be

P π
X(t) = a2t

2 + · · · + ait
i + · · ·+ aℓt

ℓ,

PX(t) = 1 + b2t
2 + · · ·+ bkt

k + · · ·+ tn.

(Note that a2 = b2 by the Hurewicz theorem and recall that bn = 1 and bn−1 = b1 = 0.)
First we observe that in order to prove that for a positive integer m ≥ 2

pp(X; 1) ≤ m,

it suffices to show that

(3.2) mP π
X(t) < PX(t)m (∀t ≥ 1).

Which implies that

(3.3) (m+ 1)P π
X (t) < PX(t)m+1 (∀t ≥ 1)

and by induction we get mP π
X(t) < PX(t)m (∀t ≥ 1) for ∀m ≥ m. Indeed, the inequality

(3.2) implies

(3.4) (m+ 1)P π
X (t) < (m+ 1)

(
1

m
PX(t)m

)
.
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Now

PX(t)m+1 − (m+ 1)

(
1

m
PX(t)m

)
= PX(t)m

(
PX(t)−

m+ 1

m

)

= PX(t)m
(
1 + b2t

2 + · · · tn − 1−
1

m

)

≥ PX(t)m
(
tn −

1

m

)

≥ PX(t)m
(
1−

1

m

)

> 0 (since m ≥ 2)

Hence we obtain (3.3) by the inequality (3.4).
Now, we show that

3P π
X(t) < PX(t)3 ∀t ≥ 1.

First, we need to observe that it follows from [14, Theorem 32.15] that we have the following
bound for the degree ℓ of P π

X(t):

(3.5) ℓ ≤ 2n− 1.

(PX(t))3 − 3P π
X(t)

= (tn + bn−2t
n−2 + · · · + b2t

2 + 1)3 − 3(aℓt
ℓ + · · ·+ a2t

2)

≥ (tn + bn−2t
n−2 + · · · + b2t

2 + 1)3 − 3tℓ(aℓ + · · ·+ a2) (since tj ≥ t2(j ≥ 2) for ∀t ≥ 1)

≥ (tn + bn−2t
n−2 + · · · + b2t

2 + 1)3 − 3t2n−1(aℓ + · · ·+ a2) (by (3.5))

The Hilali conjecture is dim (π∗(X)⊗Q) ≤ dimH∗(X;Q), i.e. P π
X(1) ≤ PX(1), or

aℓ + · · ·+ a2 ≤ 1 + bn−2 + · · ·+ b2 + 1.

Before going furthermore, for the presentation below we point out the following about
1 + bn−2 + · · ·+ b2 + 1:

(1) If n = 2, PX(t) = 1+t2 (thus, P π
X(t) = t2+· · · ). Hence 1+bn−2+· · ·+b2+1 = 1+1,

thus, the part bn−2 + · · ·+ b2 = 0.
(2) If n = 3, then PX(t) = 1 + t3 (thus, P π

X(t) = t3 + · · · ), since it follows from the
Poincaré duality of Betti numbers (see (f) in Introduction) that b2 = b1 = 0. Hence
1 + bn−2 + · · ·+ b2 + 1 = 1 + 1, thus, the part bn−2 + · · ·+ b2 = 0.

(3) If n = 4, then PX(t) = 1+b2t
2+t4, since b3 = b1 = 0. Hence 1+bn−2+· · ·+b2+1 =

1 + b2 + 1, thus, the part bn−1 + · · ·+ b2 = b2.
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With the part bn−2 + · · ·+ b2 in the cases when n = 2, 3, 4 being understood as above, the
above sequence of inequalities continues as follows:

≥ (tn + bn−2t
n−2 + · · ·+ b2t

2 + 1)3 − 3t2n−1(1 + bn−2 + · · ·+ b2 + 1)

=
{
(tn + 1) + (bn−2t

n−2 + · · ·+ b2t
2)
}3

− 3t2n−1 {2 + (bn−2 + · · · + b2)}

≥ (tn + 1)3 + 3(tn + 1)2(bn−2t
n−2 + · · · + b2t

2)− 6t2n−1 − 3t2n−1(bn−2 + · · ·+ b2)

≥ (tn + 1)3 − 6t2n−1 + 3(tn + 1)2(bn−2 + · · · + b2)− 3t2n−1(bn−2 + · · ·+ b2)

≥ (tn + 1)3 − 6t2n−1 + 3t2n(bn−2 + · · ·+ b2)− 3t2n−1(bn−2 + · · · + b2)

(using (tn + 1)2 ≥ t2n)

= (tn + 1)3 − 6t2n−1 + 3(t2n − t2n−1)(bn−2 + · · ·+ b2)

≥ (tn + 1)3 − 6t2n−1 (since t2n − t2n−1 = t2n−1(t− 1) ≥ 0)

≥ (tn + 1)3 − 6t2n (again, since t2n ≥ t2n−1 for t ≥ 1)

= (tn)3 − 3(tn)2 + 3tn + 1

= (tn − 1)3 + 2

> 0.

Therefore, 3P π
X (t) < PX(t)3 ∀t ≥ 1. �

Combining Theorem 3.1 with the result of [7] we obtain:

Corollary 3.6. For a rationally elliptic space X of homological dimension not exceeding
20, the stabilization threshold pp(X; 1) is at most 3.

The next proposition gives unconditional bound on the stabilization threshold, depend-
ing, however, on the homological dimension.

Proposition 3.7. Let X be a simply connected rationally elliptic space of formal dimension
n ≥ 3. Then we have

pp(X; 1) ≤ n.

The argument below uses, in addition to (3.5), the following bound (cf. [14, Theorem
32.15]):

(3.8) P π
X(1) = a2 + a3 + · · ·+ aℓ ≤ n.

Proof. In order to prove the proposition, it suffices to show that

nP π
X(t) < PX(t)n ∀t ≥ 1.
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(PX(t))n − nP π
X(t)

≥ (tn + 1)n − n(aℓt
ℓ + · · ·+ a2t

2)

≥ (tn + 1)n − ntℓ(aℓ + · · ·+ a2)

≥ (tn + 1)n − n2t2n−1 (by (3.5) and (3.8)

≥ (tn + 1)n − n2t2n (since t2n ≥ t2n−1 for t ≥ 1)

=
n∑

k=0

(
n

k

)
tnk − n2t2n

>
n∑

k=2

(
n

k

)
tnk − n2t2n

≥ t2n
n∑

k=2

(
n

k

)
− n2t2n (since tnk ≥ t2n for k ≥ 2 and t ≥ 1)

= t2n

{
n∑

k=2

(
n

k

)
− n2

}

= t2n

{
n∑

k=0

(
n

k

)
−

(
n

1

)
−

(
n

0

)
− n2

}

= t2n
{
2n − (n2 + n+ 1)

}

> 0

assuming that n ≥ 5. For n = 3, 4 the claim follows from Corollary 3.6 above. �

Remark 3.9. For n = 2 the above proposition does not hold since the formal dimension
of CP 1 is 2, but pp(CP 1; 1) = 3.

We conclude this section with the question on “mixed Hodge polynomial” version of
Theorem 3.1 and Proposition 3.8. More precisely:

(1) Does there exist a fixed integer a(≥ 3) such that mhp(X; 1, 1, 1) ≤ a for any ratio-
nally elliptic quasi-projective variety X satisfying the Hilali conjecture?

(2) Does there exist an integer a(n)(≥ n) such that mhp(X; 1, 1, 1) ≤ a(n) for any
rationally elliptic quasi-projective variety X of formal dimension n?

4. Examples and concluding remarks

Here we present several explicit calculations of thresholds and introduce and discuss
some property of homotopical E-function which is an analog of classical cohomological
E-function.

4.1. Examples. The purpose of this section is to provide examples of calculations of exact
values of stabilization thresholds.
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4.1.1. Cn+1 \0. Here n > 0. This is a smooth quasi-projective variety, for which the mixed
Hodge structures on cohomology and homotopy can be constructed using log-forms (cf. [10]
and [25] resp.). Since this space can be retracted on S2n+1 and the Hurewicz isomorphism
preserves the Hodge structure (cf. [17]) and calculating the mixed Hodge structure on
Hn(C

n+1 \0) (for example using Gysin exact sequence for the homology of the complement
to smooth divisor on the blow up of Pn+1 at a point) we obtain:

MHCn+1\{0}(t, u, v) = 1 + t2n+1(uv)n+1,

MHπ
Cn+1\{0}(t, u, v) = t2n+1(uv)n+1.

Hence we have

MHCn+1\{0}(t, u, v) = 1 +MHπ
Cn+1\{0}(t, u, v).

4.1.2. Projective spaces.

Example 4.1. We start with X = CPn. We have

PCPn(t) = 1 + t2 + · · ·+ t2n and P π
CPn(t) = t2 + t2n+1.

One easily verifies that

pp(CPn; 1) =

{
3 if n = 1,

2 if n ≥ 2.

The mixed Hodge polynomials are as follows:

MHCPn(t, u, v) = 1 + t2uv + t4(uv)2 + · · · + t2i(uv)i + · · ·+ t2n(uv)n.

MHπ
CPn(t, u, v) = t2uv + t2n+1(uv)n+1.

The cohomological case is trivial and the claim in the homotopical case follows using the
Hurewicz isomorphism for π2 and for higher homotopy groups the locally trivial fibration
C× →֒ Cn+1 \ {0} → CPn, the calculation in §4.1.1 and the corresponding exact sequence

· · · → π2n+1(C
×) → π2n+1(C

n+1 \ {0}) → π2n+1(CP
n) → π2n(C

×) → · · · .

which is an exact sequence of mixed Hodge structures [17, Theorem 4.3.4].
One easily verifies that:

(1) mhp(CP 1; 1, 1, 1) = 3.
(2) If n ≥ 2, then mhp(CPn; 1, 1, 1) = 2. In fact, this can be made to the following a

bit sharper statement: for ∀m ≥ 2

MHπ
(CPn)m(t, u, v) < MH(CPn)m(t, u, v) for ∀t ≥ 1,∀(u, v) such that uv ≥ 1.
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4.1.3. Compact toric manifolds. In [3, Theorem 3.3] I. Biswas, V. Muñoz and A. Murillo
show that the homological Poincaré polynomial of a rationally elliptic toric manifold co-
incides with that of a product of complex projective spaces. Below, using a recent result
due to M. Wiemeler [29] we show that the same thing holds for the homotopical Poincaré
polynomial, in fact, for the homotopical mixed Hodge polynomial, and furthermore we also
show that the homological mixed Hodge polynomial of a rationally elliptic toric manifold
coincides with that of a product of complex projective spaces, which is a stronger version
of the above result of Biswas–Muñoz–Murillo:

Theorem 4.2. The homotopical and cohomological mixed Hodge polynomials of a ratio-
nally elliptic toric manifold of complex dimension n coincides with those of a product of
complex projective spaces. To be more precise, if X is the quotient of

k∏

i=1

(Cni+1 \ {0})

by a free action of commutative algebraic groups, i.e., (C×)k. Here n =
∑k

i=1 ni. Then we
have

(1) MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v) =

∑k
i=1 MHπ

CPni (t, u, v), i.e.,

MHπ
X(t, u, v) =

k∑

i=1

(
t2uv + t2ni+1(uv)ni+1

)
= kt2uv +

k∑

i=1

t2ni+1(uv)ni+1.

(2) MHX(t, u, v) = MH∏k
i CPni

(t, u, v) =
∏k

i=1 MHCPni (t, u, v), i.e.,

MHX(t, u, v) =
k∏

i=1

(
1 + t2uv + · · · + t2j(uv)j + · · ·+ t2ni(uv)ni

)
.

Proof. In [29] M. Wiemeler shows that there is an algebraic isomorphism X ∼= X ′ where
X ′ is the quotient described above:

(4.3) X ′ =
( k∏

i=1

(Cni+1 \ {0})
)
/(C×)k.

(1) First we observe that

πj

( k∏

i=1

(Cni+1 \ {0})
)
⊗Q =





Q⊕ · · · ⊕Q︸ ︷︷ ︸
a

j = 2ni + 1,

0 j 6= 2ni + 1.

Here a is the number of the same integer ni.

πj

(
(C×)k

)
⊗Q =





Q⊕ · · · ⊕Q︸ ︷︷ ︸
k

j = 1,

0 j 6= 1.
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Hence, since each 2ni+1 ≥ 3, it follows from the long exact sequences of homotopy groups
that there is an isomorphism of mixed Hodge structures:

πj(X)⊗Q ∼=





πj

(∏k
i=1(C

ni+1 \ {0})
)
⊗Q j = 2ni + 1,

π1

(
(C×)k

)
⊗Q = Q⊕ · · · ⊕Q︸ ︷︷ ︸

k

, j = 2,

0 j 6= 2, j = 2ni + 1.

Then it follows from the proof in the above Example 4.1 that we have the isomorphism of
mixed Hodge structures

πj(X)⊗Q ∼=

{
πj

(∏k
i=1CP

ni

)
⊗Q j = 2, 2ni + 1,

0 j 6= 2, j = 2ni + 1.

Therefore we have

MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v) =

k∑

i=1

MHπ
CPni (t, u, v).

(2) It follows from [29] that X ′ is a so-called Bott manifold, i.e., there is a sequence of
fiber bundles over complex projective spaces with a complex projective space as a fiber:

X ′ = Bk
pk−→ Bk−1 → · · · → Bi

pi
−→ Bi−1 → · · ·B2

p1
−→ B1 → B0 = {pt}

where p1 : B1 = Cn1+1 → B0 = {pt} and each pi : P(C
ni+1×Bi−1) → Bi−1 is the projection

map of the projectivization P(Cni+1×Bi−1) of the product C
ni+1×Bi−1 or a Whitney sum

of trivial complex line bundles over Bi−1. This sequence is sometimes called a Bott tower.
Note that the fiber space of pi is nothing but the complex projective space CPni . Then
it follows from Deligne’s degeneration of Leray spectral sequence (see [28]) that for each
projection map pi : Bi → Bi−1 the cohomology of Bi with mixed Hodge structure is the
tensor product of the cohomology of the base Bi−1 and the fiber CPni with mixed Hodge
structures. Therefore the mixed Hodge polynomial MHX(t, u, v) coincides with that of the
product of these complex projective spaces:

MHX(t, u, v) = MH∏k
i CPni

(t, u, v) =

k∏

i=1

MHCPni (t, u, v).

�

It follows from the above Theorem 4.2 that the cohomological and homotopical Poincaré
polynomials of a rationally elliptic toric manifold are the same as those of a product of
complex projective spaces, thus as explained in the introduction we get the following:

Corollary 4.4. The Hilali conjecture holds for rationally elliptic toric manifolds.

Proof. Since a rationally elliptic toric manifold is formal, thus it follows that the Hilali
conjecture holds (see [3]). Here we give another simple direct proof, using the above
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calculation. Let X be a rationally elliptic toric manifold described as (4.3). Then it follows
from the above Theorem 4.2 that we have

P π
X(1) = MHπ

X(1, 1, 1) =

k∑

i=1

(1 + 1) = 2k, PX(1) = MHX(1, 1, 1) =

k∏

i=1

(1 + ni).

Since each ni ≥ 1, we have
k∏

i=1

(1 + ni) ≥ 2k.

(1) If k = 1, then 2k = 2 = 21 ≤ 1 + n1, thus P
π
X(1) ≤ PX(1).

(2) If k = 2, then 2k = 4 = 22 ≤
∏2

i=1(1 + ni), thus P
π
X(1) ≤ PX(1).

(3) If k ≥ 3, then 2k < 2k ≤
∏k

i=1(1 + ni), thus P
π
X(1) < PX(1).

Therefore, in any case we do have P π
X(1) ≤ PX(1). �

Corollary 4.5. Let X be a rationally elliptic toric manifold and let

MHX(t, u, v) = MH∏k
i CPni

(t, u, v), MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v).

If each ni ≥ 2, then mhp(X; 1, 1, 1) = 2, and if ni = 1 for some i, then mhp(X; 1, 1, 1) = 3.

Proof.

MHX(t, u, v) = MH∏k
i CPni

(t, u, v) =

k∏

i=1

MHCPni (t, u, v),

MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v) =

k∑

i=1

MHπ
CPni (t, u, v).

(1) If each ni ≥ 2, then it follows from Example 4.1 that

2MHπ
CPni (t, u, v) <

(
MHCPni (t, u, v)

)2
,

hence we have

2
( k∑

i=1

MHπ
CPni (t, u, v)

)
=

k∑

i=1

2MHπ
CPni (t, u, v) <

k∑

i=1

(
MHCPni (t, u, v)

)2
.

Now, for ∀t ≥ 1,∀u ≥ 1 and ∀v ≥ 1 we have

k∑

i=1

(
MHCPni (t, u, v)

)2
<

k∏

i=1

(
MHCPni (t, u, v)

)2
.

To show this, first we note that each MHCPni (t, u, v) ≥ 2 for ∀t ≥ 1,∀u ≥ 1 and ∀v ≥ 1.
Then it suffices to show that if each di ≥ 4(1 ≤ i ≤ k), then

d1 + d2 + · · ·+ dk < d1d2 · · · dk.

Indeed, this follows by induction. Clearly a1 + a2 < a1a2 since

a1a2 − (a1 + a2) = (a1 − 1)(a2 − 1)− 1 ≥ 3× 3− 1 > 0.
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Suppose that d1 + d2 + · · · + dk−1 < d1d2 · · · dk−1. Then

d1 + d2 + · · ·+ dk−1 + dk = (d1 + d2 + · · · + dk−1) + dk

< d1d2 · · · dk−1 + dk

< d1d2 · · · dk−1dk .

Therefore we have

2
( k∑

i=1

MHπ
CPni (t, u, v)

)
<
( k∏

i=1

MHCPni (t, u, v)
)2

.

(2) If ni = 1 for some i, then it follows from Example 4.1 that mhp(CP 1; 1, 1, 1) = 3, i.e.,

3MHπ
CP 1(t, u, v) <

(
MHCP 1(t, u, v)

)3
. Surely for the other ones we have 3MHπ

CP
nj (t, u, v) <(

MHCP
nj (t, u, v)

)3
. Hence by the same argument as above we have

3
( k∑

i=1

MHπ
CPni (t, u, v)

)
<
( k∏

i=1

MHCPni (t, u, v)
)3

.

Hence mhp(X; 1, 1, 1) = 3. �

Remark 4.6. Even if we fix u = 1 and v = 1 in the above proof of Corollary 4.5, we have
the same proof, therefore we have that if each ni ≥ 2, then pp(X; 1) = 2, and if ni = 1 for
some i, then pp(X; 1) = 3.

4.1.4. Arrangements of linear subspaces. G. Debongnie (cf. [9]) described the structure
of arrangements of subspaces in Cn which complements are rationally elliptic. If follows
that such complements are products of

∏
i

(
Cni+1 \ 0

)
. Combining this with calculation in

§4.1.1, we obtain:

Theorem 4.7. The homotopical and cohomological mixed Hodge polynomials of a simply
connected rationally elliptic complement X of an arrangement of linear subspaces are as
follows:

(1) MHπ
X(t, u, v) = MHπ∏k

i (Cni+1\0)
(t, u, v) =

∑k
i=1 MHπ

Cni+1\0
(t, u, v), i.e.,

MHπ
X(t, u, v) =

k∑

i=1

t2ni+1(uv)ni+1.

(2) MHX(t, u, v) = MH∏k
i (Cni+1\0)(t, u, v) =

∏k
i=1 MHCni+1\0(t, u, v), i.e.,

MHX(t, u, v) =

k∏

i=1

(
1 + t2ni+1(uv)ni+1

)
.

In particular, we obtain:

Corollary 4.8. In notations of Theorem 4.7, we have

pp(X; 1) = 1 and mhp(X; 1, 1, 1) = 1.
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4.2. Homotopical E-function. Specialization t = −1 of the homotopical Poincare poly-
nomial MHπ

X(t, u, v) is a homotopical analog of E-functions (cf. [2]) and is well behaved
in several constructions described below.

Definition 4.9. The homotopical E-polynomial Eπ(X,u, v) of a complex algebraic variety
X which is rational elliptic is defined as follows:

Eπ(X,u, v) := MHπ
X(−1, u, v).

Recall that the homological E-function is defined as E(X,u, v) := MHc
X(−1, u, v), where

one uses in (1.9) the compactly supported cohomology. E(X,u, v) satisfies the additivity
relation: for an algebraic subvariety Y ⊂ X one has (cf. [2])

(4.10) E(X,u, v) = E(Y, u, v) + E(X \ Y, u, v).

This follows from the long exact sequence of compactly supported cohomology groups:

· · · → Hk
c (X \ Y ) → Hk

c (X) → Hk
c (Y ) → Hk+1

c (X \ Y ) → · · · .

Additivity relation for the homotopical E-polynomials comes in the context of locally trivial
fibrations

(4.11) F →֒ E → B

of pointed complex algebraic varieties of rationally elliptic E,F,B, which induces a long
exact sequence of homotopy groups with mixed Hodge structures (see [17, Theorem 4.3.4]):

(4.12) · · · → πk(F ) → πk(E) → πk(B) → πk−1(F ) → · · · .

The sequence (4.12) yields the following:

Proposition 4.13. Let E,F,B be simply connected pointed complex algebraic varieties
forming a locally trivial fibration (4.11) such that any two of them are rationally elliptic.
Then we have

Eπ(E, u, v) = Eπ(F, u, v) + Eπ(B,u, v).

In the case of homological E-polynomials one has multiplicativity in the case of locally
trivial fibrations (4.11)3

Theorem 4.14. (see [4, 5, 6, 24]) Let F →֒ E → B be a smooth complex algebraic
fiber bundles. If the fundamental group π1(B) of the base space B acts trivially on the
cohomology H∗(F ;Q) of the fiber space F , then,

E(E, u, v) = E(F, u, v) ·E(B,u, v).

This is a reformulation of the relation between the Euler characteristics of bigraded
components:

ep,q(X) =
∑

k

(−1)k dim
(
GrpF •GrW•

p+qH
k(X;C)

)

discussed on p.935 of [6] (the multiplicativity relation is stated in this paper for χy-genus
which is a specialization of E(X,u, v).

3for which one does not need to assume that spaces are rationally elliptic
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Finally we note that a homotopy theoretical analog of additivity relation (4.10) holds.
To state it, recall (cf. [17], [18]) that if (X,Y ) is a pair of pointed complex algebraic
varieties, the homotopy groups support a mixed Hodge structure such that the homotopy
exact sequence of the pair (X,Y ) is an exact sequence of the mixed Hodge structures. This
sequence implies that for rationally elliptic spaces X and Y such that πi(X,Y ) = 0 for
large i

Eπ(X,Y, u, v) := MHπ
(X,Y )(−1, u, v) =

∑

k

(−1)k dim
(
Grp

F̃ •
GrW̃•

p+q((πk(X,Y )⊗ C)∨)
)
upvq

is well-defined and the following additivity relation holds:

(4.15) Eπ(X,u, v) = Eπ(Y, u, v) +Eπ(X,Y, u, v).

Let X be a compact complex algebraic variety and Y be a closed subvariety of X such
that X \ Y is smooth, then for homological E-functions one has:

E(X \ Y, u, v) = E(X,Y, u, v),

which shows that additivity (4.15) corresponds to (4.10).

Acknowledgements: We would like to thank the referee and Prof. J. Rosenberg for
useful suggestions and comments. S.Y. is supported by JSPS KAKENHI Grant Number
JP19K03468.

References

[1] J. Amoros, I. Biswas, Compact Kähler manifolds with elliptic homotopy type, Adv. Math., 224 (2010),
1167–1182.

[2] V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math.
Soc. (JEMS), 1 (1999), no. 1, 5–33.
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