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SELF-PRODUCTS OF RATIONALLY ELLIPTIC SPACES

AND INEQUALITIES BETWEEN THE RANKS OF

HOMOTOPY AND HOMOLOGY GROUPS

ANATOLY LIBGOBER AND SHOJI YOKURA

Dedicated to the memory of Stefan Papadima

Abstract. We give a survey on recent results on inequalities between the ranks of homo-
topy and cohomology groups (resp., graded components of mixed Hodge structures on these
groups) of rationally elliptic spaces (resp., quasi-projective varieties which are rationally el-
liptic). We also discuss a refinement of these results describing a new invariant of rationally
elliptic spaces allowing to compare the ranks of homotopy and homology groups. This invari-
ant is a specialization of an invariant r (P (t),Q(t); ε) of a pair (P (t), Q(t)) of polynomials with
non-negative integer coefficients, describing the range of variable r such that rP (t) < Q(t)r

for all t ≥ ε. This range is related to the classical Lambert W-function W (z).

1. Introduction

A rationally elliptic space is a simply connected topological space X such that
dim (π∗(X)⊗Q) < ∞ and dimH∗(X;Q) < ∞, where we set

π∗(X)⊗Q :=
⊕

i≥2

πi(X)⊗Q, H∗(X;Q) :=
⊕

i≥0

Hi(X;Q).

This interesting class of spaces has received considerable attention, but a complete picture of
structure, geometry or invariants of spaces in this class appears to be far from clear. Very
strong restrictions on the ranks of homotopy group were found a long time ago by J. B.
Friedlander and S. Halperin (cf. [10] and also [8] or [9]).

From now on we use the following notation:

• πeven(X)⊗Q :=
⊕

k≥1

π2k(X) ⊗Q, πodd(X) ⊗Q :=
⊕

k≥0

π2k+1(X) ⊗Q,

• Heven(X;Q) :=
⊕

k≥0

H2k(X;Q), Hodd(X;Q) :=
⊕

k≥0

H2k+1(X;Q),

• Heven(X;Q) :=
⊕

k≥0

H2k(X;Q), Hodd(X;Q) :=
⊕

k≥0

H2k+1(X;Q).

To recall Friedlander–Halperin’s results, let xi (resp. yj) denote a basis of πodd(X)⊗Q (resp.
πeven(X) ⊗ Q) and let n be the formal dimension of the space X, i.e., the maximal degree n

such that Hn(X;Q) 6= 0. Then we have the following:

(a)
∑

i

deg xi ≤ 2n− 1,
∑

j

deg yj ≤ n.

(b) n =
∑

i

degxi −
∑

j

(deg yj − 1).

(c) χπ(X) := dim (πeven(X) ⊗Q)− dim (πodd(X) ⊗Q) ≤ 0.
(d) 0 ≤ χ(X) = dimHeven(X;Q) − dimHodd(X;Q).
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(e) χ(X) > 0 ⇐⇒ χπ(X) = 0.

As for the Betti number, the following are known:

(1) Betti numbers bi = dimHi(X;Q) of X satisfy Poincaré duality [8, §38 Poincaré Du-
ality]. In particular bn = 1 and bn−1 = b1 = 0.

(2) Betti numbers satisfy inequalities: bm ≤
1

2

(
n

m

)
,m 6= 0, n (cf. [23, Corollary to

Theorem 1]). This inequality implies dimH∗(X;Q) ≤ 2n−1+1, which is sharper than
dimH∗(X;Q) ≤ 2n ([9, Theorem 2.75]).

Regarding the dimensions of the rational homotopy groups and the rational homology
groups (which are the same as the rational cohomology groups by the universal coefficient
theorem), in [14] (cf. [15, 16]) M. R. Hilali made the following conjecture, which is well-
known as “Hilali conjecture”, which is still open although it is known that the conjecture
holds for many spaces such as elliptic spaces of pure type, H-spaces, nilmanifolds, symplectic
and cosymplectic manifolds, coformal spaces with only odd-degree generators, formal spaces
and hyperelliptic spaces under certain conditions (e.g., [14, 2, 3]):

Conjecture 1.1 (Hilali conjecture).

dim (π∗(X) ⊗Q) ≤ dimH∗(X;Q).

For a simply connected rationally elliptic space X we put

PX(t) :=
∑

k≥0

dimHk(X;Q)tk =
∑

k≥0

dimHk(X;Q)tk,

which is the well-known Poincaré polynomial of X. Similarly we can define the following
polynomial

P π
X(t) :=

∑

k≥2

dim(πk(X) ⊗Q)tk.

So, we call

• PX(t) the (co)homological Poincaré polynomial of X,
• P π

X(t) the homotopical Poincaré polynomial of X.

Then the above Hilali conjecture claims the following inequality of these two polynomials at
the special value t = 1:

(1.2) P π
X(1) ≤ PX(1).

Remark 1.3. Here we note the following strict inequalities at the other two special values
t = 0,−1:

• 0 = P π
X(0) < PX(0) = 1.

• When t = −1, we have P π
X(−1) = χπ(X) and PX(−1) = χ(X). Hence we have

(1.4) P π
X(−1) < PX(−1),

which follows from (c), (d) and (e) above. Of course (e) is much sharper than (1.4).

Let X be a quasi-projective algebraic variety. Both the homotopy and the cohomology
groups carry mixed Hodge structures (cf. [6], [7], [21], [11],[12], [22]), which are functorial for
regular maps, and an invariant of which is given by the generating functions for the dimensions
of graded pieces of Hodge and weight filtrations as follows:

MHX(t, u, v) :=
∑

k,p,q

dim
(
Gr

p
F •GrW•

p+qH
k(X;C)

)
tkupvq,
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where (W•, F
•) is the mixed Hodge structure of the cohomology groups.

MHπ
X(t, u, v) :=

∑

k,p,q

dim
(
Gr

p

F̃ •
GrW̃•

p+q((πk(X) ⊗ C)∨)
)
tkupvq,

where (W̃•, F̃
•) is the mixed Hodge structure of the dual of homotopy groups. They will

be called respectively the cohomological mixed Hodge polynomial and the homotopical mixed
Hodge polynomial of X.

If for a simply connected complex algebraic variety X we consider MHX(t, u, v) and
MHπ

X(t, u, v) for (u, v) = (1, 1), then we have

PX(t) = MHX(t, 1, 1), P π
X(t) = MHπ

X(t, 1, 1).

Thus the above Hilali conjecture claims

(1.5) MHπ
X(1, 1, 1) ≤ MHX(1, 1, 1).

Motivated by inequalities (1.2) and (1.5), in [29, 30, 19] one considered the problem of
comparison of values of homotopical and homological Poincaré polynomials and correspond-
ing mixed Hodge polynomials for values other than t = 1 of the variables. Since the Hilali
conjecture clearly becomes true for self-products of any rationally elliptic space taken suf-
ficiently many times, we considered “integral stabilization threshold” pp(X; 1), and, more
generally, the integral stabilization threshold pp(X; ε) defined for ε > 0 by

pp(X; ε) := min{n(ε) | nP π
X(t) < PX(t)n,∀n ≥ n(ε),∀t ≥ ε}.

Here pp stands for “Poincaré polynomial”. In this paper we give a survey on the properties of
this invariant obtained in [19]. We also introduce and study the properties of a new invariant,
“the real stabilization threshold” ppR(X; 1), which can be viewed as a refinement of pp(X; ε).
For ε > 0, we let

ppR(X; ε) := inf{r(ε) ∈ R | qP π
X(t) < PX(t)q,∀q ≥ r(ε),∀t ≥ ε}.

Here we emphasize that pp(X; ε) = ⌈ppR(X; ε)⌉ where ⌈x⌉ is the ceiling function, i.e., ⌈x⌉ =
min{n ∈ Z |x ≤ n}. Note that the usual Gauss symbol [x] is the floor function ⌊x⌋ :=
max{n ∈ Z |n ≤ x}. It turns out that the invariant ppR(X; ε) can be understood as the
“maximum” value of a real analytic function (for more details see §5, where the case of
ppR(X; 1) is discussed, so for the general case ppR(X; 1) can be treated with no substantial
changes ). More precisely, we consider the implicit function r(t) defined by the equation

r(t)P π
X(t) = (PX(t))r(t) (t ≥ ε).

A Bezout theorem for real analytic curves (cf. [17]) yields that the implicit function r(t) has
only finitely many local maxima-minima. This implicit function can be expressed in terms
of the classical Lambert W -function W (z), which goes back to Euler and Lambert (e.g., see
[4] for the history and some applications) and is defined as the inverse function given of the

transcendental function z = wew, i.e., z = W (z)eW (z). More specifically:

r(t) = −
1

logPX(t)
W

(
−
logPX(t)

P π
X(t)

)
.

We would like to thank Wadim Zudilin for suggesting a possible relation with Lambert
W -function and Robert Tijdeman for comments.

We note that the above stabilization thresholds can be defined for any two polynomials P (t)
and Q(t) with non-negative integers, denoted by sth(P (t), Q(t); ε) and sthR(P (t), Q(t); ε), as
follows:

sth(P (t), Q(t); ε) := min{n(ε) | nP (t) < Q(t)n,∀n ≥ n(ε),∀t ≥ ε},
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sthR(P (t), Q(t); ε) := inf{r(ε) ∈ R | qP (t) < Q(t)q,∀q ≥ r(ε),∀t ≥ ε}.

Here sth stands for “stabilization threshold”.
We refer to [4] for an account of a large range of problems in which the Lambert W -function

appears. This account does not include the appearance of W (z) in the context of comparison
of linear and exponential growth described in this paper. Such a comparison is certainly an
18th century question and it is natural that it is related to the function in the focus of 18th
century mathematics.

Expression of stabilization threshold in terms of values of transcendental functions and re-
sults of Baker and Gelfond–Schneider suggest the conjecture of transcendence of our thresholds
descried in §5. Our results suggest that the collection of thresholds of elliptic rational ho-
motopy types has a natural partition into groups of the types having the same threshold. It
would be interesting to understand this distribution better:

• What can one say about the collection of thresholds of elliptic rational homotopy
types? Assuming the Hilali conjecture, this is a subset of the closed interval (0, 3].

• What can one say about the set of elliptic rational homotopy types having a fixed
threshold ε? Note that one has

ppR(X; ε)

(
∑

i

rankπi(X)εi

)
≤

(
∑

i

rankHi(X)εi

)ppR(X;ε)

.

This inequality is independent of the inequality in the Hilali conjecture even for ε = 1 in
the sense that Hilali inequality does not provide any information about the thresholds.
In the case when the threshold is equal to 1, one has inequality for all t ≥ 1 which does
not follows from the inequality for t = 1. Rather, the above provides an additional
inequality relation between the sums of ranks of homotopy and homology groups.

The organization of the paper is as follows. In §2, §3 and §4 we recall the results of
[19]; in §2 we recall the Hilali conjecture and an inequality like the Hilali conjecture for
Cartesian self-products of spaces for the homotopical and homological Poincaré polynomials
and also the homotopical and homological mixed Hodge polynomials; in §3 we recall the
integral stabilization threshold and compute the thresholds of the spheres S2n, S2n+1 and the
complex projective spaces CPn; in §4 we compute the homotopical and homological mixed
Hodge polynomials of toric manifolds and their stabilization thresholds. In §5 we introduce the
real stabilization threshold and discuss its properties. In §6 we compute the real stabilization
thresholds of S2n, S2n+1 and CPn.

2. Hilali conjecture on products

First we point out that the inequality ≤ in the Hilali conjecture cannot be replaced by
the strict inequality <. Indeed, the following are well-known results, which follow from Serre
Finiteness Theorem [27]:

πi(S
2k)⊗Q =

{
Q i = 2k, 4k − 1,

0 i 6= 2k, 4k − 1,
πi(S

2k+1)⊗Q =

{
Q i = 2k + 1,

0 i 6= 2k + 1.

Hence we have P π
S2k+1(t) = t2k+1 andPS2k+1(t) = t2k+1 + 1, so P π

S2k+1(t) < PS2k+1(t) for ∀t.

For S2k we have P π
S2k(t) = t4k−1 + t2k andPS2k(t) = t2k + 1, thus P π

S2k(1) = PS2k(1) = 2.
Therefore the inequality ≤ cannot be replaced by the strict inequality <.

Remark 2.1. We note that only S2 is a complex manifold and is the 1-dimensional com-
plex projective space CP 1. For the n-dimensional projective space CPn, it follows from the
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fibration S1 →֒ S2n+1 → CPn that the homotopy groups of CPn are

πk(CP
n)⊗Q =

{
0 k 6= 2, 2n + 1,

Q k = 2, 2n + 1.

Hence we have

PCPn(t) = 1 + t2 + t4 + · · ·+ t2n, P π
CPn(t) = t2 + t2n+1.

The isomorphisms πi(X × Y ) = πi(X)⊕ πi(Y ) and the Künneth formula Hn(X × Y,Q) =∑
i+j=nHi(X;Q)⊗Hj(Y ;Q) imply that the homotopical Poincaré polynomial P π

X(t) and the

cohomological Poincaré polynomial PX(t) are respectively additive and multiplicative, i.e.,

P π
X×Y (t) = P π

X(t) + P π
Y (t) and PX×Y (t) = PX(t)× PY (t).

Using these additivity and multiplicativity and some elementary calculus, in [29] we show
that there exists a positive integer n0 such that for all n > n0 one has

P π
Xn(1) < PXn(1)

where Xn = X × · · · ×X︸ ︷︷ ︸
n

is the Cartesian product of n copies of X. Since PX(t) and P π
X(t)

have non-negative coefficients, by the same argument we can show that for any non-negative
real number r there exists a positive integer n0(r) such that for all n > n0(r) one has P

π
Xn(r) <

PXn(r). Clearly the integer n0(r) does depend on the choice of the real number. However in
[19] we show the following result (announced in [30]):

Theorem 2.2. Let X be a simply connected rationally elliptic space. For any positive real
number ε there exists a positive integer n(ε) such that for ∀n ≥ n(ε) and ∀t ≥ ε

(2.3) P π
Xn(t) < PXn(t).

Theorem 2.2 is an immediate consequence of the following [19]:

Lemma 2.4. Let ε be a positive real number. Let P (t) and Q(t) be two polynomials of the
following types:

P (t) =

p∑

k=2

akt
k, ak ≥ 0, Q(t) = 1 +

q∑

k=2

bkt
k, bk ≥ 0, bq 6= 0.

(For our purpose it is sufficient to consider bq = 1, but we do not assume it.) Then there
exists a positive integer n(ε) such that for ∀n ≥ n(ε)

(2.5) nP (t) < Q(t)n (∀t ≥ ε).

Remark 2.6. (1) Note that, since X is simply connected, PX(t) = 1 implies that X is
rationally homotopy equivalent to a point (cf. [8, Theorem 8.6]), and hence P π

X = 0.
In particular, the inequality (2.3) is satisfied with n(ε) = 1,∀ε > 0. Therefore, in
Theorem 2.2 we assume that PX(t) > 1. From now on we assume this condition.

(2) In the above theorem we cannot let ε = 0, in which case there does not exist such an
integer n(ε), because one may have limε→0 n(ε) = ∞.

In fact the cohomological mixed Hodge polynomial is also multiplicative just like the (co-
homological) Poincaré polynomial PX(t):

MHX×Y (t, u, v) = MHX(t, u, v) ×MHY (t, u, v),

which follows from the fact that the mixed Hodge structure is compatible with the tensor
product (e.g., see [24].) On the other hand the homotopical mixed Hodge polynomial is
additive just like the homotopical Poincaré polynomial P π

X(t)
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MHπ
X×Y (t, u, v) = MHπ

X(t, u, v) +MHπ
Y (t, u, v)

since π∗(X ×Y ) = π∗(X)⊕π∗(Y ) and the category of mixed Hodge structures is abelian and
the direct sum of a mixed Hodge structure is also a mixed Hodge structure. In this paper the
following special multiplicativity and additivity are sufficient:

MHXn(t, u, v) = {MHX(t, u, v)}n,

MHπ
Xn(t, u, v) = nMHπ

X(t, u, v).

A “mixed Hodge polynomial” version of Theorem 2.2 for algebraic varieties is the following
[19, 30]):

Theorem 2.7. Let 0 < ε ≪ 1 and r > 0 be positive real numbers and let Cε,r := [ε, r] ×
[ε, r] × [ε, r] ⊂ (R≥0)

3 be the cube of size r − ε. Then there exists a positive integer nr such
that for ∀n ≥ nr the following strict inequality holds

MHπ
Xn(t, u, v) < MHXn(t, u, v)

for ∀(t, u, v) ∈ Cε,r.

3. Integral stabilization threshold pp(X; ε)

Theorem 2.2 suggests the following invariant of a rationally elliptic homotopy type:

Definition 3.1. (1) The integral stabilization threshold or simply the integral threshold,
denoted by pp(X; ε), is the smallest integer n(ε) such that inequality (2.3) takes place
for ∀n ≥ n(ε).

(2) The smallest integer n(ε) such that inequality (2.5) takes place for ∀n ≥ n(ε) is
denoted by sth(P (t), Q(t); ε).

With the Hilali conjecture in mind, we consider ε = 1, thus we consider pp(X; 1).

Example 3.2. pp(S2n+1; 1) = 1. Because P π
S2k+1(t) = t2k+1, PS2k+1(t) = t2k+1 + 1 and we

have n(t2k+1) < (t2k+1 + 1)n for ∀n ≥ 1 and for ∀t ≥ 0.

Example 3.3. pp(S2n; 1) = 3. Recall that PS2n(t) = 1 + t2n and P π
S2n(t) = t2n + t4n−1. It is

easy to see that if t ≥ 1, 2(t2n + t4n−1) < (1 + t2n)2 has the only exception for t = 1. But we
see that 3(t2n + t4n−1) < (1 + t2n)3 for ∀t ≥ 1, then by induction on the power m, we have
m(t2n + t4n−1) < (1 + t2n)m for ∀m ≥ 3. Therefore we have pp(S2n; 1) = 3.

Example 3.4.

pp(CPn; 1) =

{
3, n = 1,

2, n ≥ 2.

As in Remark 2.1, we have PCPn(t) = 1 + t2 + · · ·+ t2n, P π
CPn(t) = t2 + t2n+1.

(1) pp(CP 1; 1) = 3: This follows from Example 3.3 since CP 1 = S2.
(2) pp(CPn; 1) = 2 for n ≥ 2: Clearly, if t ≥ 1, t2 + t2n+1 6< 1 + t2 + · · · + t2n, but we do

have 2(t2 + t2n+1) < (1 + t2 + · · · + t2n)2. Indeed,

(1 + t2 + · · ·+ t2n)2 − 2(t2 + t2n+1) ≥
{
(1 + t2) + t2n

}2
− 2(t2 + t2n+1)

> 2t2n(1 + t2)− 2(t2 + t2n+1)

= 2t2n+1(t− 1) + 2t2(t2n−2 − 1)

≥ 0 (since t ≥ 1 and 2n− 2 ≥ 2)

Then, as in Example 3.3, by induction on the power m, for ∀m ≧ 2 we have
m(t2 + t2n+1) < (1 + t2 + · · ·+ t2n)m. Therefore we have pp(CPn; 1) = 2.
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Thus, for X = S2n+1, S2n, CPn, we have pp(X; 1) ≤ 3. It turns out that this inequality
always holds provided the Hilali conjecture holds, i.e., P π

X(1) ≤ PX(1) holds:

Theorem 3.5 ([19]). If the Hilali conjecture is correct, then for any simply connected ratio-
nally elliptic space X we have pp(X; 1) ≤ 3.

If we do not use the Hilali conjecture, we can show the following:

Theorem 3.6 ([19]). Let X be a simply connected rationally elliptic space of formal dimension
n ≥ 3. Then pp(X; 1) ≤ n.

Remark 3.7. We have the following inequality if PX(ε) ≥ 2 and PY (ε) ≥ 2:

(3.8) pp(X × Y ; ε) ≤ max{pp(X; ε), pp(Y ; ε)}

In particular, since PX(1) ≥ 2 and PY (1) ≥ 2 (see Remark 2.6 (1)), we have

pp(X × Y ; 1) ≤ max{pp(X; 1), pp(Y ; 1)}.

Similarly to pp(X; ε), we define the following:

Definition 3.9. The smallest integer n0 such that for ∀n ≥ n0 the following holds

MHπ
Xn(t, u, v) < MHXn(t, u, v) ∀t ≥ a,∀u ≥ b,∀v ≥ c.

is denoted by mhp(X; a, b, c). Here mhp stands for “mixed Hodge polynomial”.

Remark 3.10. In a similar manner to the proof of (3.8) in Remark 3.7, we can see the
following inequality as to the threshold mhp:

mhp(X × Y ; a, b, c) ≤ max{mph(X; a, b, c),mhp(Y ; a, b, c)}

for positive real numbers a, b, c such that MHX(a, b, c) ≥ 2 and MHY (a, b, c) ≥ 2.

Remark 3.11. It follows from Theorem 2.7 that for any ε > 0 and r > ε there exists the
smallest integer nε,r such that for ∀n ≥ nε,r

MHπ
Xn(t, u, v) < MHXn(t, u, v) ∀(t, u, v) ∈ Cε,r = [ε, r]× [ε, r]× [ε, r].

This smallest integer nε,r is denoted by mhp(X; [ε, r], [ε, r], [ε, r]).

4. Toric manifolds and mhp(X; 1, 1, 1)

4.1. Cn+1\0. This is a smooth quasi-projective variety, for which the mixed Hodge structures
on cohomology and homotopy can be constructed using log-forms (cf. [6] and [21] resp.). Since
this space can be retracted on S2n+1 and the Hurewicz isomorphism preserves the Hodge
structure (cf. [11]) and calculating the mixed Hodge structure on Hn(Cn+1 \ 0) (for example
using Gysin exact sequence for the homology of the complement to smooth divisor on the
blow up of Pn+1 at a point) we obtain:

MHCn+1\{0}(t, u, v) = 1 + t2n+1(uv)n+1,

MHπ
Cn+1\{0}(t, u, v) = t2n+1(uv)n+1.

Hence we have

MHCn+1\{0}(t, u, v) = 1 +MHπ
Cn+1\{0}(t, u, v).
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4.2. Projective spaces. The mixed Hodge polynomials of the projective space CPn are as
follows:

(4.1) MHCPn(t, u, v) = 1 + t2uv + t4(uv)2 + · · · + t2i(uv)i + · · ·+ t2n(uv)n.

(4.2) MHπ
CPn(t, u, v) = t2uv + t2n+1(uv)n+1.

The cohomological case is trivial and the claim in the homotopical case follows using the
Hurewicz isomorphism for π2 and for higher homotopy groups the locally trivial fibration
C× →֒ Cn+1 \ {0} → CPn, the calculation in §4.1 and the corresponding exact sequence

· · · → π2n+1(C×) → π2n+1(Cn+1 \ {0}) → π2n+1(CPn) → π2n(C×) → · · ·

which is an exact sequence of mixed Hodge structures [11, Theorem 4.3.4]. Then as in Example
3.4 one easily verifies that

mhp(CPn; 1, 1, 1) =

{
3, n = 1,

2, n ≥ 2.

In fact, mhp(CPn; 1, 1, 1) = 2 can be made to the following a bit sharper statement: for
∀m ≥ 2

MHπ
(CPn)m(t, u, v) < MH(CPn)m(t, u, v) for ∀t ≥ 1,∀(u, v) such that uv ≥ 1.

4.3. Compact toric manifolds. In [1, Theorem 3.3] I. Biswas, V. Muñoz and A. Murillo
show that the homological Poincaré polynomial of a rationally elliptic toric manifold coincides
with that of a product of complex projective spaces. Below, using a recent result due to M.
Wiemeler [28] we show that the same thing holds for the homotopical Poincaré polynomial,
in fact, for the homotopical mixed Hodge polynomial, and furthermore we also show that
the homological mixed Hodge polynomial of a rationally elliptic toric manifold coincides with
that of a product of complex projective spaces, which is a stronger version of the above result
of Biswas–Muñoz–Murillo:

Theorem 4.3 ([19]). The homotopical and cohomological mixed Hodge polynomials of a ra-
tionally elliptic toric manifold of complex dimension n coincides with those of a product of
complex projective spaces. To be more precise, if X is the quotient of

k∏

i=1

(Cni+1 \ {0})

by a free action of commutative algebraic groups, i.e., (C×)k. Here n =
∑k

i=1 ni. Then we
have

(1) MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v) =

∑k
i=1MHπ

CPni (t, u, v), i.e.,

MHπ
X(t, u, v) =

k∑

i=1

(
t2uv + t2ni+1(uv)ni+1

)
= kt2uv +

k∑

i=1

t2ni+1(uv)ni+1.

(2) MHX(t, u, v) = MH∏k
i CPni

(t, u, v) =
∏k

i=1MHCPni (t, u, v), i.e.,

MHX(t, u, v) =
k∏

i=1

(
1 + t2uv + · · · + t2j(uv)j + · · ·+ t2ni(uv)ni

)
.
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It follows from the above Theorem 4.3 that the cohomological and homotopical Poincaré
polynomials of a rationally elliptic toric manifold are the same as those of a product of
complex projective spaces. In particular, the Hilali conjecture, which for toric varieties follows
immediately as a consequence of formality (cf. [15]), can be checked by a direct calculation.

Corollary 4.4. Let X be a rationally elliptic toric manifold and let

MHX(t, u, v) = MH∏k
i CPni

(t, u, v), MHπ
X(t, u, v) = MHπ∏k

i CPni
(t, u, v).

If each ni ≥ 2, then mhp(X; 1, 1, 1) = 2, and if ni = 1 for some i, then mhp(X; 1, 1, 1) = 3.

Remark 4.5. Even if we fix u = 1 and v = 1 in the above proof of Corollary 4.4, we have
the same proof, therefore we have that if each ni ≥ 2, then pp(X; 1) = 2, and if ni = 1 for
some i, then pp(X; 1) = 3.

4.4. Arrangements of linear subspaces. G. Debongnie (cf. [5]) described the structure
of arrangements of subspaces in Cn whose complements are rationally elliptic. If follows that
such complements are products of

∏
i

(
Cni+1 \ 0

)
. Combining this with calculation in §4.1,

we obtain:

Theorem 4.6 ([19]). The homotopical and cohomological mixed Hodge polynomials of a sim-
ply connected rationally elliptic complement X of an arrangement of linear subspaces are as
follows:

(1) MHπ
X(t, u, v) = MHπ∏k

i (Cni+1\0)
(t, u, v) =

∑k
i=1MHπ

Cni+1\0
(t, u, v), i.e.,

MHπ
X(t, u, v) =

k∑

i=1

t2ni+1(uv)ni+1.

(2) MHX(t, u, v) = MH∏k
i (Cni+1\0)(t, u, v) =

∏k
i=1MHCni+1\0(t, u, v), i.e.,

MHX(t, u, v) =

k∏

i=1

(
1 + t2ni+1(uv)ni+1

)
.

In particular, we obtain

Corollary 4.7. pp(X; 1) = 1 and mhp(X; 1, 1, 1) = 1.

5. Real stabilization threshold ppR(X; 1) and Hovanskĭı’s theorem

The integral stabilization threshold pp(X; 1) is the smallest integer n0 such that for ∀n ≥ n0

the following inequality holds

P π
Xn(t) < PXn(t) ∀t ≥ 1.

In other words this inequality holds for the product space Xpp(X;1). On the other hand this
inequality is the same as

nP π
X(t) < (PX(t))n ∀t ≥ 1,

which is a key ingredient for the results obtained so far. When it comes to this expression, n
does not have to be an integer, but can be a positive real number. Thus we can define the
following:

Definition 5.1. Let ε > 0.

(1) The real stabilization threshold ppR(X; ε) of a simply connected elliptic space X is
defined by

ppR(X; ε) := inf{r ∈ R | qP π
X(t) < PX(t)q,∀q ≥ r,∀t ≥ ε}.
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(2) For two polynomials P (t) and Q(t) with non-negative integral coefficients, the real
stabilization threshold sthR(P (t), Q(t); ε) of P (t) and Q(t) is defined by

sthR(P (t), Q(t); ε) := inf{r ∈ R | qP (t) < Q(t)q,∀q ≥ r,∀t ≥ ε}.

Remark 5.2. As we remark in the Introduction, pp(X; ε) = ⌈ppR(X; ε)⌉ where ⌈x⌉ is the
ceiling function, i.e., ⌈x⌉ = min{n ∈ Z |x ≤ n}. Similarly, we have sth(P (t), Q(t); ε) =
⌈sthR(P (t), Q(t); ε)⌉.

In this paper we consider the case when ε = 1, i.e., ppR(X; 1). Unlike the integral stabiliza-
tion threshold pp(X; 1), the real stabilization threshold ppR(X; 1) is much harder to analyze
and even in the cases of X = S2n+1, S2n,CPn it is quite difficult, as we see below.

In order to understand the real stabilization threshold better, we use a theorem due to A.
G. Hovanskĭı [17]. First we recall the definitions of a Pfaffian chain (P-chain) and a P-system
from [17].

Definition 5.3. (a Pfaffian chain) We say that analytic functions f1, f2, · · · , fk on Rn form
a Pfaffian chain (P-chain) of length k if all partial derivatives of each fj in the chain
{f1, f2, · · · , fk} are expressible as polynomials of the first j functions of the chain and the
coordinate functions Rn . In other words, for all i such that 1 ≤ i ≤ n and all j such that
1 ≤ j ≤ k there exist polynomials Pij(x1, · · · , xn, u1, · · · , uj) such that

∂fj

∂xi
(x1, · · · , xn) = Pij(x1, · · · , xn, f1, · · · , fj).

Definition 5.4. (a P -system) A P -system in Rn is any system Q1 = · · · = Qm of equations
in which each Qp are polynomials of coordinate functions in Rn and functions of a P -chain.
The complexity of a P -system is the following collection of numbers:

n, the length k of the P -chain, and the degrees of the polynomials Qp and Pij .

Here is a theorem due to Hovanskĭı [17, Theorem 1]:

Theorem 5.5 (Hovanskĭı’s theorem). The number of nondegenerate roots of a P -system
consisting of n equations in Rn is finite and bounded from above by an explicitly given function
of the complexity of the P -system.

Lemma 5.6. Let Q(s) be a polynomial. Then the following functions on R2 with coordinates
s and r form a Pfaffian chain.

f1(s, r) :=
1

Q(s)
, f2(s, r) := logQ(s), f3(s, r) := Q(s)r.

Proof. It is straightforward, but for the sake of convenience of the reader, we check it. Indeed
the derivatives become as follows:

(1) (a) ∂f1
∂s

= −Q(s)−2Q′(s) = −f2
1Q

′(s). Hence, by letting P11(s, r, u1) := −u21Q
′(s),

we have ∂f1
∂s

= P11(s, r, f1).

(b) ∂f1
∂r

= 0. Hence, by letting P12(s, r, u1) = 0, we have ∂f1
∂r

= P12(s, r, f1) = 0

(2) (a) ∂f2
∂s

= Q′(s)
Q(s) = f1Q

′(s). Hence, by letting P(s, r, u1, u2) := u1Q
′(s), we have

∂f2
∂s

= P11(s, r, f1, f2).

(b) ∂f2
∂r

= 0. Hence, by letting P22(s, r, u1, u2) = 0, we have ∂f2
∂r

= P12(s, r, f1, f2) = 0.

(3) (a) ∂f3
∂s

= rQ(s)r−1Q′(s) = rf3f1Q
′(s). Hence, by letting P31(s, r, u1, u2, u3) :=

ru1u3Q
′(s),we have ∂f3

∂s
= P31(s, r, f1, f2, f3).

(b) ∂f3
∂r

= Q(s)r logQ(s) = f3f2. Hence, by letting P32(s, r, u1, u2, u3) = u2u3, we

have ∂f3
∂r

= P32(s, r, f1, f2, f3) = 0.
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�

Lemma 5.7. Let P (s) and Q(s) be polynomials and let R(s, r) := rP (s)−Q(s)r. Let f1, f2, f3
be the above Pfaffian chain. Then the following system is a P-system:

(5.8) R(s, r) =
∂R

∂s
= 0.

Proof.
R(s, r) = rP (s)− f3,

∂R

∂s
= rP ′(s)− rQ(s)r−1Q′(s) = rP ′(s)− rf3f1Q

′(s).

Hence, by letting Q1(s, r, u1, u2, u3) := rP (s)− u3, Q2(s, r, u1, u2, u3) := rP ′(s)− ru1u3Q
′(s),

we have R(s, r) = Q1(s, r, f1, f2, f3) and ∂R
∂s

= Q2(s, r, f1, f2, f3). Therefore (5.8) is a P -
system. �

Hence, from the above Hovanskĭı’s theorem we get the following corollary:

Corollary 5.9. The above P -system R(s, r) =
∂R

∂s
= 0 has only finitely many solutions.

The solutions (s, r) of R(s, r) = 0 are of the following types: For a fixed s, the solutions r
of R(s, r) = 0 are the intersection of the straight line y = P (s)x and the exponential function
y = Q(s)x, hence we have three cases

(1) there are exactly two different solutions r1(s) and r2(s) in the case when they intersect
at two different points (s, r1(s)), (s, r2(s)),

(2) there is just one solution r0(s) in the case when the line is tangent to the exponential
curve at the point (s, r0(s)),

(3) there is no solution in the case when they do not intersect.

So we define the implicit function r(s) of the equation R(s, r(s)) = 0 by

r(s) =





max{r1(s), r2(s)}, if they intersect at two different points (s, r1(s)), (s, r2(s)),

r0(s), if the line is tangent to the exponential curve

at one point (s, r0(s)),

not defined, if they do not intersect.

From the above Corollary 5.9 we get the following corollary:

Corollary 5.10. Let the situation be as above. The implicit function r(s) defined by R(s, r(s)) =
0 has finitely many local maxima-minima.

Proof. If we consider the derivative dr
ds
(s0) of the implicit function r = r(s) at s0 with r0 =

r(s0) such that R(s0, r0) = 0, we do have

∂R

∂s
(s0, r0) +

∂R

∂r
(s0, r0)

dr

ds
(s0) = 0.

So, if r(s) has a local maximum or minimum at s0, then
dr
ds
(s0) = 0, thus ∂R

∂s
(s0, r0) = 0.

Namely, (s0, r0) has to be a solution of the above P -system. Therefore, the implicit function
r(s) defined by R(s, r(s)) = 0 has only finitely many local maxima-minima. �

Before going further on, we point out that the above implicit function r(s) can be described
in terms of the Lambert W -function. The inverse function of z = wew is called the Lambert
W -function (cf. [4] for the history and some applications) and denoted by W (z), thus it
satisfies

z = W (z)eW (z).
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Let W̃ (z) be the inverse function of z = ew

w
, which satisfies

z =
eW̃ (z)

W̃ (z)
.

This function W̃ (z) is a specialization of the generalized Lambert W -function proposed in [25]
and studied further in [18, §3]. The implicit function r(s) of our equation

r(s)P (s) = Q(s)r(s)

is explicitly expressed by using the above function W̃ (z). Specifically, one has

P (s) =
Q(s)r(s)

r(s)

=
e(logQ(s))r(s)

r(s)
.

From which we have
P (s)

logQ(s)
=

e(logQ(s))r(s)

(logQ(s))r(s)
.

Hence we have

W̃

(
P (s)

logQ(s)

)
= (logQ(s))r(s).

Therefore the implicit function r(s) is obtained as

r(s) =
1

logQ(s)
W̃

(
P (s)

logQ(s)

)
.

Finally we notice that z = W (z)eW (z) implies that

−
1

z
= W

(
−
1

z

)
eW(− 1

z ), i.e., z =
e−W(− 1

z )

−W
(
−1

z

) .

Hence we have

W̃ (z) = −W

(
−
1

z

)
.

Therefore we have that

r(s) = −
1

logQ(s)
W

(
−
logQ(s)

P (s)

)
.

So far there is no assumption on the coefficients of the polynomials P (s) and Q(s). From
here on, we assume that they are respectively the homotopical Poincaré polynomial and
homological Poincaré polynomial of a simply connected elliptic space, in particular we have
that Q(s) = 1 + · · · .

Proposition 5.11. Let P (s) and Q(s) be as above. The above implicit function r = r(s) of
the equation rP (s) = Q(s)r is a bounded function.

Proof. First we point out that the domain of the implicit function r = r(s) is not necessarily
the whole half interval [1,∞), thus there are some intervals of [1,∞), where the implicit
function is not defined, in other words, if we denote the domain of the implicit function by
D(r(s)), then it is possible that D(r(s)) $ [1,∞). However, even if there are some interval
where the implicit function is not defined, we still consider the function is bounded where it
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is not defined. It follows from the proof of [19, Lemma 2.1] that there exists s0 ≥ 1 and an
integer N0 such that

rP (s) < Q(s)r for ∀s ≥ s0,∀r ≥ N0.

Thus the graph of the implicit function r = r(s) does not intersect the translated quadrant
{(s, r) | s ≥ s0, r ≥ N0}, in other words, the implicit function r = r(s) is bounded above by
N0 on the half interval [s0,∞). Now we want to show that it is also bounded on the closed
interval [1, s0] as well. Now let us consider the implicit function r̃(x, y) of two variables x, y,
given by the largest solution to rx = yr. Here we note that

(5.12) r(s) = r̃(P (s), Q(s)).

We let

mP := min
1≤s≤s0

P (s),MP := max
1≤s≤s0

P (s), mQ := min
1≤s≤s0

Q(s),MQ := max
1≤s≤s0

Q(s).

Then we consider a compact rectangle

Rm,M := {(x, y)| mP ≤ x ≤ MP ,mQ ≤ y ≤ MQ}.

The claim is that r̃(x, y) is defined on a compact subset of this rectangle Rm,M , which implies
that r̃(x, y) is bounded, since it is a continuous function. Therefore it follows from (5.12) that
the implicit function r = r(s) is also bounded on [1, s0]. Since the domain D of r̃(x, y) is a
subset of the compact bounded set Rm,M , it is enough to show that domain D is closed. Let
φ(y) be the slope of the line in (u, v)-plane containing the origin and tangent to the curve
given by u = yv. φ(y) is of course computed as follows: The tangent line of the curve u = yv

at a point (v0, u0 = yv0) is given by u − yv0 = yv0 log y(v − v0). If this line goes through the
origin, then it follows from −yv0 = yv0 log y (−v0) that v0 log y = 1, hence v0 = 1

log y . Hence

the slope φ(y) is

φ(y) = y
1

log y log y = e log y.

Thus φ(y) is a continuous function for y > 1. We assume that Q(s) = 1 + · · · and is not
a constant polynomial, hence min

1≤s≤s0
Q(s) = mQ > 1. The domain of the function r̃(x, y)

considered on the rectangle Rm,M is the subset given by x ≥ φ(y), i.e., D := {(x, y) | (x, y) ∈
Rm,M , x ≥ φ(y)}. Continuity of φ implies that the domain D is closed.

�

Proposition 5.13. Let the situation be as above. The finite critical points s of the implicit
function r = r(s) satisfy the following equation

(5.14)
P ′(s)Q(s)

Q′(s)
= Q(s)

P ′(s)Q(s)

P (s)Q′(s) .

Proof. Let r = r(s) be the implicit function of the equation rP (s) = Q(s)r. Differentiating
rP (s) = Q(s)r with respect to s, we have

dr

ds
P (s) + rP ′(s) = Q(s)r

(
dr

ds
logQ(s) + r

Q′(s)

Q(s)

)
.

Hence, letting dr
ds

= 0, we have

rP ′(s) = rQ(s)r
Q′(s)

Q(s)
.

Since r 6= 0, we have

P ′(s) = Q(s)r
Q′(s)

Q(s)
.
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Therefore, the local maxima r(s) satisfies the following two equations:
{
rP (s) = Q(s)r,

P ′(s) = Q(s)r Q′(s)
Q(s) .

From this, we get

P ′(s) = rP (s)
Q′(s)

Q(s)
,

namely we get

r(s) =
P ′(s)Q(s)

P (s)Q′(s)
.

Plugging it in the equation rP (s) = Q(s)r, we get (5.14) above. �

The domain D(r(s)) = {s ∈ [1,∞) |P (s) ≥ e logQ(s)} of the implicit function r = r(s) is

(5.15) D(r(s)) = [s1, s2] ⊔ [s3, s4] · · · ⊔ [sk−2, sk−1] ⊔ [sk,∞),

where s2, · · · , sk are the zeros of the equation P (s) = e logQ(s) such that s2 < s3 < · · · < sk
and s1 = 1 or s1 is another zero of P (s) = e logQ(s), depending on the polynomials P (s) and
Q(s).

Corollary 5.16. Let P (s) and Q(s) be as above. Let r = r(s) be the implicit function defined
by the equation rP (s) = Q(s)r, let s1, · · · , sk be the end points of the closed intervals of the
domain D(r(s)) of the implicit function r = r(s) as in (5.15), and let c1, · · · , cm be the finite
critical points 1 of the implicit function r = r(s). Then we have

sth (P (s), Q(s); 1) = max{r(s1), · · · , r(sk), r(c1), · · · , r(cm), lim
s→∞

r(s)}.

In particular, for a a simply connected elliptic space X, we have

(5.17) ppR(X; 1) = max{r(s1), · · · , r(sk), r(c1), · · · , r(cm), lim
s→∞

r(s)}.

Remark 5.18. We do not know if ppR(X; 1) is attained at an end point sj of these closed
intervals, at a critical point ck, or as the limit lims→∞ r(s). In the case of X = S2n, it is not
obtained as lims→∞ r(s), as shown in the following section.

As computed in the following section, we have that ppR(S
2n+1; 1) = 1. Except the case of

S2n+1, we make the following conjecture:

Conjecture 5.19. Let X be a simply connected elliptic space. If X is not homotopic to S2n+1,
then the real stabilization threshold ppR(X; 1) is a transcendental number. In particular, if
ppR(X; 1) is attained at a critical point s of the implicit function r(s), then the following
number is a transcendental number:

P ′(s)Q(s)

P (s)Q′(s)

where P (s) = P π
X(s) and Q(s) = PX(s).

Similarly to Definition 3.9 and Definition 5.1, one can define the following real stabilization
threshold:

Definition 5.20.

mhpR(X; [ε, r], [ε, r], [ε, r]) := inf{r ∈ R|qMHπ
X(t, u, v) < MHX(t, u, v)q ,∀q ≥ r,∀(t, u, v) ∈ Cε,r}.

1It is enough to consider only the critical points whose values are local maxima, but the formula (5.17) is,
of course, not affected by considering all the critical points.
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A natural question is if the real stabilization threshold mhpR(X; [ε, r], [ε, r], [ε, r]) stabilizes
for r → ∞, namely if the following real stabilization threshold

mhpR(X; ε, ε, ε) := inf{r ∈ R|qMHπ
X(t, u, v) < MHX(t, u, v)q ,∀q ≥ r,∀(t, u, v) ∈ Cε,∞}

is well-defined. We have the following proposition, showing that this is the case under certain
condition.

Proposition 5.21. Let P (t, u, v) and Q(t, u, v) be two polynomials with positive integer co-

efficients such that there exist polynomials φ(t, u, v), P̃ (s) and Q̃(s) such that

• P (t, u, v) ≤ P̃ (φ(t, u, v)),

• Q̃ (φ(t, u, v)) ≤ Q(t, u, v),
• ∃ η such that φ(t, u, v) ≥ η > 0,∀(t, u, v) ∈ Cε,∞ = [ε,∞)3.

Then there exist r0 ∈ R such that for ∀(t, u, v) ∈ [ε,∞)3 and ∀r ≥ r0 one has

rP (t, u, v) < Q(t, u, v)r .

In particular, if there exist such polynomials for the homotopical and homological mixed Hodge
polynomials P (t, u, v) := MHπ

X(t, u, v) and Q(t, u, v) := MHX(t, u, v), then the real stabiliza-
tion threshold mhpR(X; ε, ε, ε) is well defined.

Proof. Indeed, let r0 = sthR

(
P̃ (s), Q̃(s); η

)
be the real stabilization threshold for the polyno-

mials P̃ (s) and Q̃(s), i.e., sthR

(
P̃ (s), Q̃(s); η

)
= inf{r| qP̃ (s) < Q̃(s)q,∀q ≥ r,∀s ≥ η}. Then

for r ≥ r0 one has rP̃ (s) < Q̃(s)r for ∀s ≥ η and hence for ∀(t, u, v) ∈ [ǫ,∞)3 one has

rP (t, u, v) ≤ rP̃ (φ(t, u, v)) < Q̃(φ(t, u, v))r ≤ Q(t, u, v)r .

Here we note that

sthR (P (t, u, v), Q(t, u, v);Cε,∞) ≤ sthR

(
P̃ (s), Q̃(s); η

)
,

where we define

sthR (P (t, u, v), Q(t, u, v);Cε,∞) := inf{r| qP (t, u, v) < Q(t, u, v)q ,∀q ≥ r,∀(t, u, v) ∈ Cε,∞}.

�

Example 5.22. Let us set (see (4.1) and (4.2)):

P (t, u, v) := MHπ
CPn(t, u, v) = t2uv + t2n+1(uv)n+1,

Q(t, u, v) := MHCPn(t, u, v) = 1 + t2uv + t4(uv)2 + · · ·+ t2n(uv)n.

We let

φ(t, u, v) = t2(uv), P̃ (s) = s+ sn+1, Q̃(s) = 1 + s+ s2 + ...+ sn.

Then one has

• MHπ
CPn(t, u, v) < P̃ (φ(t, u, v)) for ∀t ≥ 1,

• Q̃(φ(t, u, v)) = MHCPn(t, u, v) for ∀t ≥ 1,
• Moreover φ(t, u, v) = t2(uv) ≥ 1 for (t, u, v) ∈ C1,∞ = [1,∞)3.

Hence it follows from Proposition 5.21 that the real stabilization threshold mhpR(X; 1, 1, 1) is
well-defined.

The following example shows that sthR (P (t, u, v), Q(t, u, v);Cε,∞) does not necessarily ex-
ist.
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Example 5.23. We consider the following modification of P (t, u, v) of the above example:

P1(t, u, v) = t2uv + t2n+3(uv)n+1, P̃1(s, t) = s+ tsn+1.

Then we have that P1(t, u, v) = P̃1(φ(t, u, v), t) and Q(t, u, v) be as in Example 5.22. We
want to show that sthR (P (t, u, v), Q(t, u, v);Cε,∞) does not exist. A key observation is that
the two-variable analog r = r(x, y) of the one-variable implicit function r = r(s) above, i.e.,
r = r(x, y) is the largest one of the solutions r of the equation rx = yr, is an unbounded
function in the open region x > 0, y > 1. More precisely, for any y0 > 1 and any r0 > 0, let

us consider any x0 >
(
y
r0
0
r0

)
and the line v = x0r in the plane of coordinates (r, v). Then the

largest r-coordinate of the two distinct intersections of this line v = x0r and the exponential
curve v = yr0, i.e., r(x0, y0) is bigger than r0, namely, we have that ∃ r > r0 such that rx0 = yr0.
Therefore we have {r > 0 | qx < yq,∀q > r,∀x > 0,∀y > 1} = ∅. In the above situation, for
any s0 > 0 and any r0 > 0, let us consider t0 > 0 such that

s0 + t0s
n+1
0 >

(1 + s0 + · · · + sn0 )
r0

r0
, i.e., t0 >

(1 + s0 + · · ·+ sn0 )
r0 − r0s0

r0s
n+1
0

.

Then for ∀t > t0, the largest solution r of the equation r(s0 + tsn+1
0 ) = (1 + s0 + ... + sn0 )

r

is bigger than r0, namely, ∃ r > r0 such that r(s0 + tsn+1
0 ) = (1 + s0 + ... + sn0 )

r. Thus we
have {r > 0 | q(s + tsn+1) < (1 + s + · · · + sn)q,∀q > r,∀s > 0,∀t > 0} = ∅. Therefore
sthR (P1(t, u, v), Q(t, u, v);C1,∞) does not exist.

6. ppR(S
2n+1; 1), ppR(S

2n; 1) and ppR(CP
n; 1)

In this section, we try to compute the real stabilization thresholds of S2n+1, S2n and CPn.
By the same argument as in Example 3.3 we can show the following

Lemma 6.1. Let P (t) and Q(t) be polynomials with non-zero integral coefficients and suppose
that P (t) = a2t

2+ · · · and Q(t) = 1+b2t
2+ · · ·+bqt

q with bq 6= 0 (hence, Q(t) ≥ 2 for ∀t ≥ 1).
If there exists a positive integer n0 such that n0P (t) < Q(t)n0 for ∀t ≥ 1, then for all integer
n ≥ n0 we have

nP (t) < Q(t)n (∀t ≥ 1).

In fact, the part “for all integer n ≥ n0” can be replaced by “for all real number r ≥ n0”,
i.e., we can show the following theorem.

Theorem 6.2. Let P (t) and Q(t) be as in Lemma 6.1. If there exists a positive integer n0

such that n0P (t) < Q(t)n0 for ∀t ≥ 1, then for all real number r ≥ n0 we have

rP (t) < Q(t)r (∀t ≥ 1).

To prove this theorem, first we show the following lemma:

Lemma 6.3. Suppose that for a positive real number r0

r0P (t) < Q(t)r0 ∀t ≥ 1.

If r0 ≥ 1
log 2 (> 1), where log is the natural logarithm, then for any real number r ≥ r0 the

following holds:
rP (t) < Q(t)r ∀t ≥ 1.

Proof. r0P (t) < Q(t)r0(∀t ≥ 1) implies P (t) < 1
r0
Q(t)r0(∀t ≥ 1). So, for r ≥ r0, we have

rP (t) < r
r0
Q(t)r0(∀t ≥ 1). So, if we can show r

r0
Q(t)r0 ≤ Q(t)r(∀t ≥ 1), then we are done. In

other words, we show that
1

r0
Q(t)r0 ≤

1

r
Q(t)r ∀t ≥ 1.
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To show this, let us consider the function F (z) := 1
z
Q(t)z. For a fixed t(≥ 1), we have

F ′(z) = −
1

z2
Q(t)z +

1

z
(logQ(t))Q(t)z =

1

z

(
logQ(t)−

1

z

)
Q(t)z.

Since Q(t) ≥ 2 (for all t ≥ 1), logQ(t) ≥ log 2. If z ≥ 1
log 2 , then

1
z
≤ log 2 ≤ logQ(t). Hence

we have

logQ(t)−
1

z
≥ 0.

Therefore, for z ≥ 1
log 2 , we have F ′(z) ≥ 0(∀t ≥ 1). Hence z ≥ 1

log 2 , F (z) is non-decreasing,

thus for ∀r ≥ r0, we have F (r0) ≥ F (r), i.e.,

1

r0
Q(t)r0 ≤

1

r
Q(t)r ∀x ≥ 1.

�

The following corollary follows from the above lemma:

Corollary 6.4. Let P (t) and Q(t) be as in Lemma 6.1. If there exists a positive integer
n0 ≥ 2 such that n0P (t) < Q(t)n0 for ∀t ≥ 1, then for all real number r ≥ n0 we have

rP (t) < Q(t)r (∀t ≥ 1).

Hence in order to finish the proof of Theorem 6.2, we need to consider the case when the
integer n0 is equal to 1, i.e., prove the following lemma:

Lemma 6.5. Let P (t) and Q(t) be as in Lemma 6.1. If P (t) < Q(t) for ∀t ≥ 1, then for all
real number r ≥ 1 we have

rP (t) < Q(t)r (∀t ≥ 1).

Proof. First, by the assumption, we note that Q(t) = 1 + b2t
2 + · · ·+ bqt

q with bq 6= 0. Then
we have the following two cases:

(1) Q(1) ≥ 3, thus Q(t) ≥ 3 for ∀t ≥ 1, and
(2) Q(1) = 2, thus Q(t) ≥ 2 for ∀t ≥ 1.

(1) In this case, by elementary calculation we see that for any real number r ≥ 1

rQ(t) ≤ Q(t)r ∀t ≥ 1

Thus rP (t) < rQ(t) < Q(t)r.
(2) In this case we have to have Q(t) = 1 + tq. Since P (t) < Q(t) = 1 + tq for ∀t ≥ 1, we

have to have P (1) < Q(1) = 2, hence P (1) = 1 is the only possibility, thus P (t) = tp

and p ≤ q since tp = P (t) < Q(t) = 1 + tq for ∀t ≥ 1. Then, we see that for any real
number r ≥ 1 we have rtp < (1 + tq)r, i.e., rP (t) < Q(t)r.

�

Remark 6.6. Here we point out that the following modified versions of the above Theorem 6.2
does not hold: “If there exists a positive real number r0 such that r0P (t) < Q(t)r0 for ∀t ≥ 1,
then for all real number r ≥ r0 we have rP (t) < Q(t)r (∀t ≥ 1).” Here is a simple example.
Let P (t) = 2t,Q(t) = 1 + t2. Then we have 1.6t = 0.8P (t) < Q(t)0.8 = (1 + t2)0.8(∀t ≥ 1) (in
fact for ∀t). However P (t) 6< Q(t)(∀t ≥ 1), simply because P (1) = Q(1) = 2.

Proposition 6.7. ppR(S
2n+1; 1) = 1.
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Proof. We have PS2n+1(t) = 1 + t2n+1 and P π
S2n+1(t) = t2n+1. Thus P π

S2n+1(t) < PS2n+1(t).
Hence it follows from Theorem 6.2 that for any real number r ≥ 1 we have

rP π
S2n+1(t) < PS2n+1(t)r.

Therefore ppR(S
2n+1; 1) ≤ 1. Now we claim that ppR(S

2n+1; 1) = 1, i.e.,

(6.8) if r < 1, then rtN < (1 + tN )r (∀t ≥ 1) does not hold.

Since rtN(1−r) > 1 for a sufficient large number t and 2r < 1 for r < 1, we have that for a
sufficiently large number t

rtN(1−r) > 2r >

(
1 +

1

tN

)r

=
(1 + tN )r

tNr
.

Which implies that for a sufficient large number t we have

rtN = rtN(1−r) · tNr > (1 + tN )r.

Therefore we get the above claim (6.8). �

Lemma 6.9.

ppR(S
2n; 1) ≤ 2 +

1

2
.

Proof. We show

(1 + t2n)2+
1
2 >

(
2 +

1

2

)
(t2n + t4n−1) (∀t ≥ 1).

If we can show the following, we are done since t2n + t4n ≥ t2n + t4n−1.

(1 + t2n)2+
1
2 >

(
2 +

1

2

)
(t2n + t4n) (∀t ≥ 1).

Let X := t2n and consider the following function

F (X) = (1 +X)2+
1
2 −

(
2 +

1

2

)
(X +X2) (∀X ≥ 1).

By elementary calculus we can see that F (X) > 0 (in fact, for X ≥ 0). �

As in Example 3.3, pp(S2n; 1) = 3, clearly ppR(S
2n; 1) > 2, thus we have

2 < ppR(S
2n; 1) < 2 +

1

2
.

Question 6.10. Does there exist a simple estimate of ppR(S
2n; 1)?

Remark 6.11. Let us consider the implicit function r = r(s) of r(s2n + s4n−1) = (1 + s2n)r.
If s > 2, we do have (1 + s2n)2 > 2(s2n + s4n−1), hence it follows from Corollary 6.4 that
(1 + s2n)r > r(s2n + s4n−1) for any real number r ≥ 2 (for ∀s > 2). Therefore the implicit
function r = r(s) satisfies that r(s) < 2 for ∀s > 2. Hence lims→∞ r(s) ≤ 2. Therefore the
threshold ppR(S

2n; 1) is not attained as the limit lims→∞ r(s).

In Lemma 6.3 we use the condition that r0 ≥
1

log 2 . However, we can relax the condition in

the following lemma.

Lemma 6.12. Let P (t) and Q(t) be as in Lemma 6.1 and we suppose that Q(1) ≥ 3, thus
Q(t) ≥ 3 for ∀t ≥ 1. If there exists a positive real number r0 > 1 such that r0P (t) <

Q(t)r0(∀t ≥ 1), then for any real number r ≥ r0 we have

rP (t) < Q(t)r ∀t ≥ 1.
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Proof. Since r0P (t) < Q(t)r0(∀t ≥ 1), we have P (t) < 1
r0
Q(t)r0(∀t ≥ 1), thus for any r ≥ r0

we have rP (t) < r
r0
Q(t)r0(∀t ≥ 1). So, it suffices to show

r

r0
Q(t)r0 ≤ Q(t)r(∀t ≥ 1), i.e.,

1

r0
Q(t)r0 ≤

1

r
Q(t)r(∀t ≥ 1).

In other words it suffices to show that F (r) := 1
r
Q(t)r is an increasing function for r > 1 for

∀t ≥ 1, which is easy to see. �

Proposition 6.13. For ∀n ≥ 3 we have

1 +
1

3n
≤ ppR(CP

n; 1) ≤ 1 +
3

2n
.

Proof. Let n ≥ 3. First we show

(6.14) (1 + t2 + t4 + · · ·+ t2n)1+
3
2n >

(
1 +

3

2n

)
(t2 + t2n+1) (∀t ≥ 1).

Indeed, we have

(1 + t2 + · · ·+ t2n−2 + t2n)1+
3
2n −

(
1 +

3

2n

)
(t2 + t2n+1)

≥ (1 + t2 + t2n−2 + t2n)(1 + t2 + t2n−2 + t2n)
3
2n − 2(t2 + t2n+1)

> (1 + t2 + t2n−2 + t2n)(t2n)
3
2n − 2(t2 + t2n+1)

= (1 + t2)t3 − 2t2 + (1 + t2)t2n+1 − 2t2n+1

≥ 2t3 − 2t2 (∀t ≥ 1)

≥ 0.

Hence it follows from Lemma 6.12 that ppR(CP
n; 1) ≤ 1+ 3

2n . Next we show that there exists
some s ≥ 1 such that

(6.15)

(
1 +

1

3n

)
(s2 + s2n+1) > (1 + s2 + · · ·+ s2n)1+

1
3n .

This implies that 1 + 1
3n ≤ ppR(CP

n; 1). Let t > 2. Then we first observe that

1 + t2 + t4 + · · ·+ t2n < 2t2n,

which follows from

1 + t2 + t4 + · · ·+ t2n =
t2n+2 − 1

t2 − 1
<

t2n+2

t2 − 1
=

(
t2

t2 − 1

)
t2n < 2t2n (since t > 2).

Now we have (
1 +

1

3n

)
(t2 + t2n+1)− (1 + t2 + · · ·+ t2n)1+

1
3n

>

(
1 +

1

3n

)
(t2 + t2n+1)− (2t2n)1+

1
3n

> t2n+1 − 21+
1
3n t2n+

2
3

= t2n+
2
3

(
t
1
3 − 21+

1
3n

)

> 0 for ∀t >
(
21+

1
3n

)3
.

Hence if s >
(
21+

1
3n

)3
, then we have the above inequality (6.15). �
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