6 Dec 2001

- 1. $v\left(t\right)=\langle 6\sin t, 6\cos t, 8\rangle,\ a\left(t\right)=\langle 6\cos t, -6\sin t, 0\rangle,\ \mathrm{and}\ \kappa\left(t\right)=\frac{3}{50}.$
- 2. $\mathbb{D}_{\langle 3,4\rangle}f=\frac{4}{5}$ and f increases fasted in the direction $\langle 1,0\rangle.$
- 3. Max at $(2, \frac{3}{2}, -2)$ and min at $(-2, -\frac{3}{2}, 2)$.
- 4. $\int_{2}^{4} \int_{-2}^{0} \frac{uv}{2} \ du \ dv = -6.$
- 5. (a) This follows from (b), but nonetheless, you should argue that

$$\frac{\partial P}{\partial y} = 2e^{2x} = \frac{\partial Q}{\partial x}$$

and that \mathbb{R}^2 is open and simply-connected.

- (b) $f(x,y) = x + ye^{2x} + y^2$.
- (c) $e + e^2 1$.
- 6. 18π .
- 7. 4π .
- 8. Answers will vary wildly. I got -x 9y + 5z = -16.
- 9. $\int_{0}^{4} \int_{\frac{y}{2}}^{\sqrt{x}} f(x, y) dx dy$.