Schanuel's Conjecture is Π_2^0

Outline–Not for circulation

In his preprint *Turing meets Schanuel* (to appear in the proceeding of Logic Colloquium 2012) Angus Macintyre proves, among other things, that if there is a counterexample to Schanuel's conjecture then we can find a counterexample using recursive complex numbers, i.e. complex numbers of the form a + bi where a and b are recursive real numbers.

Asserting that the transcendence degree of $\mathbb{Q}(x_1, \ldots, x_n)$ is a less than m is a Σ_2^0 condition. We need to say that, after perhaps permuting the variables, we can find a nonzero $p_i \in \mathbb{Q}[X_1, \ldots, X_{m-1}, X_i]$ for $i \leq m \leq n$ such that

$$p_m(\overline{x}) = p_{m+1}(\overline{x}) = \ldots = p_n(\overline{x}) = 0.$$

The simplest way to assert x_1, \ldots, x_n are \mathbb{Q} -linearly dependent is also Σ_2^0 . Thus Macintyre's result gives the equivalent Π_3^0 statement

 $\forall m \forall e_1 \dots \forall e_m$ [if all e_i code total recursive functions and complex numbers x_i and the x_i are \mathbb{Q} -linearly independent, then the transcendence degree of $\mathbb{Q}(x_1, \dots, x_m, \exp(x_1), \dots, \exp(x_m))$ is at least m].

Suppose x_1, \ldots, x_n are complex numbers linearly independent over \mathbb{Q} . By a *witness* to the independence of x_1, \ldots, x_n we mean a function $f : \mathbb{Q}^n \setminus \{0\}$ such that $f(\overline{q}) \sum_{i=1}^n q_i x_i = 1$ for all $\overline{q} \neq 0$. There is a unique witness and it is recursive in x_1, \ldots, x_n .

Suppose $S \subseteq \mathcal{P}(\mathbb{N})$ is a Turing ideal, i.e., if $x, y \in S$ and $z \leq_T x \oplus y$, then $z \in S$ where $x \oplus y$ is the Turing-join of x and y. For S countable an *enumeration* of S is $E \subset \mathbb{N}^2$ such that if $E_n = \{m : (m, n) \in E\}$ then $S = \{E_0, E_1, \ldots\}$. From an enumeration E of S we can find E-computable list $a_0, a_1 \ldots$ of all complex numbers x + iy where x and y are real number recursive in elements of S and E-computable lists f_0^m, f_1^m, \ldots of all functions $f : \mathbb{Q}^m \setminus \{0\} \to \mathbb{C}$ computable in an element of S.

Lemma 0.1 We can find a Turing ideal S and an enumeration E of S such that E is low (i.e. E' = 0').

For example we can do this recursively in any completion of Peano Arithmetic and there are low completions of Peano arithmetic. Fix such an E and S and the enumerations $a_0, a_1, \ldots, f_0^m, f_1^m, \ldots$ for $m \ge 1$ as above. Note that if $a_1, \ldots, a_m \in S$ are \mathbb{Q} -lineally independent then we can find a witness in S.

There is a counterexample to Schanuel's conjecture if and only there is a counterexample coded in S and a witness function coded in S.

Thus Schanuel's conjecture holds if $\forall m \forall i_1 \dots \forall i_m \forall j \ [f_j^m \text{ is not a witness}$ to the independence of a_{i_1}, \dots, a_{i_m} or the transcendence degree of

$$\mathbb{Q}(a_{i_1},\ldots,a_{i_m},\exp(a_{i_1}),\ldots,\exp(a_{i_m}))$$

is at least m].

Saying that f_j^m is not a witness is

$$\bigvee_{\overline{q}\neq 0} f_j^m(\overline{q}) \sum_{k=1}^n q_k a_{i_k} \neq 0$$

and hence $\Sigma_1^0(E)$. While saying the transcendence degree is at least m is $\Pi_2^0(E)$. Thus the whole statement is $\Pi_2^0(E)$.

But, if x is low, then $\Pi_2^0(x)$ is the same as Π_2^0 . Indeed,

$$y \text{ is } \Delta_2^0(x) \Leftrightarrow y \leq_T x' \Leftrightarrow y \leq_T 0' \Leftrightarrow y \text{ is } \Delta_2^0.$$