Schanuel's Conjecture is Π_{2}^{0}
Outline-Not for circulation

In his preprint Turing meets Schanuel (to appear in the proceeding of Logic Colloquium 2012) Angus Macintyre proves, among other things, that if there is a counterexample to Schanuel's conjecture then we can find a counterexample using recursive complex numbers, i.e. complex numbers of the form $a+b i$ where a and b are recursive real numbers.

Asserting that the transcendence degree of $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ is a less than m is a Σ_{2}^{0} condition. We need to say that, after perhaps permuting the variables, we can find a nonzero $p_{i} \in \mathbb{Q}\left[X_{1}, \ldots, X_{m-1}, X_{i}\right]$ for $i \leq m \leq n$ such that

$$
p_{m}(\bar{x})=p_{m+1}(\bar{x})=\ldots=p_{n}(\bar{x})=0
$$

The simplest way to assert x_{1}, \ldots, x_{n} are \mathbb{Q}-linearly dependent is also Σ_{2}^{0}. Thus Macintyre's result gives the equivalent Π_{3}^{0} statement
$\forall m \forall e_{1} \ldots \forall e_{m}$ [if all e_{i} code total recursive functions and complex numbers x_{i} and the x_{i} are \mathbb{Q}-linearly indepedent, then the transcendence degree of $\mathbb{Q}\left(x_{1}, \ldots, x_{m}, \exp \left(x_{1}\right), \ldots, \exp \left(x_{m}\right)\right)$ is at least $\left.m\right]$.

Suppose $x_{1}, \ldots x_{n}$ are complex numbers linearly independent over \mathbb{Q}. By a witness to the independence of x_{1}, \ldots, x_{n} we mean a function $f: \mathbb{Q}^{n} \backslash\{0\}$ such that $f(\bar{q}) \sum_{i=1}^{n} q_{i} x_{i}=1$ for all $\bar{q} \neq 0$. There is a unique witness and it is recursive in x_{1}, \ldots, x_{n}.

Suppose $S \subseteq \mathcal{P}(\mathbb{N})$ is a Turing ideal, i.e., if $x, y \in S$ and $z \leq_{T} x \oplus y$, then $z \in S$ where $x \oplus y$ is the Turing-join of x and y. For S countable an enumeration of S is $E \subset \mathbb{N}^{2}$ such that if $E_{n}=\{m:(m, n) \in E\}$ then $S=\left\{E_{0}, E_{1}, \ldots\right\}$. From an enumeration E of S we can find E-computable list $a_{0}, a_{1} \ldots$ of all complex numbers $x+i y$ where x and y are real number recursive in elements of S and E-computable lists $f_{0}^{m}, f_{1}^{m}, \ldots$ of all functions $f: \mathbb{Q}^{m} \backslash\{0\} \rightarrow \mathbb{C}$ computable in an element of S.

Lemma 0.1 We can find a Turing ideal S and an enumeration E of S such that E is low (i.e. $E^{\prime}=0^{\prime}$).

For example we can do this recursively in any completion of Peano Arithmetic and there are low completions of Peano arithmetic.

Fix such an E and S and the enumerations $a_{0}, a_{1}, \ldots, f_{0}^{m}, f_{1}^{m}, \ldots$ for $m \geq 1$ as above. Note that if $a_{1}, \ldots, a_{m} \in S$ are \mathbb{Q}-linealrly independent then we can find a witness in S.

There is a counterexample to Schanuel's conjecture if and only there is a counterexample coded in S and a witness function coded in S.

Thus Schanuel's conjecture holds if $\forall m \forall i_{1} \ldots \forall i_{m} \forall j\left[f_{j}^{m}\right.$ is not a witness to the independence of $a_{i_{1}}, \ldots, a_{i_{m}}$ or the transcendence degree of

$$
\mathbb{Q}\left(a_{i_{1}}, \ldots, a_{i_{m}}, \exp \left(a_{i_{1}}\right), \ldots, \exp \left(a_{i_{m}}\right)\right.
$$

is at least m].
Saying that f_{j}^{m} is not a witness is

$$
\bigvee_{\bar{q} \neq 0} f_{j}^{m}(\bar{q}) \sum_{k=1}^{n} q_{k} a_{i_{k}} \neq 0
$$

and hence $\Sigma_{1}^{0}(E)$. While saying the transcendence degree is at least m is $\Pi_{2}^{0}(E)$. Thus the whole statement is $\Pi_{2}^{0}(E)$.

But, if x is low, then $\Pi_{2}^{0}(x)$ is the same as Π_{2}^{0}. Indeed,

$$
y \text { is } \Delta_{2}^{0}(x) \Leftrightarrow y \leq_{T} x^{\prime} \Leftrightarrow y \leq_{T} 0^{\prime} \Leftrightarrow y \text { is } \Delta_{2}^{0} .
$$

