A group where the squares do not form a subgroup Math 330: Abstract Algebra

We proved in class that if G is an Abelian group and $H=\left\{g^{2}: g \in G\right\}$, then H is a subgroup. We also noticed that if G is the dihedral group D_{n}, then the squares form a subgroup (indeed they are a subgroup of the group of rotations).

We want to give an example of a nonAbelian group where the squares do not form a subgroup.

Let $G=S L\left(2, \mathbb{Z}_{3}\right)$, the group of 2×2 matricies with entries from \mathbb{Z}_{3} and determinant $1 \bmod 3$. The number of 2×2 matrices with entries from \mathbb{Z}_{3} is $3^{4}=81$. Of those 33 have determinant 0,24 have determinant 1 , and 24 have determinant 2 .

Calcuating we find that the following 10 matricies are squares in $S L\left(2, \mathbb{Z}_{3}\right)$, $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}2 & 2 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}2 & 1 \\ 2 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$, $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 1 & 2\end{array}\right)$, and $\left(\begin{array}{ll}0 & 1 \\ 2 & 2\end{array}\right)$.

Note that

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{2}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{2}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right)(\bmod 3)
$$

is not a square.
A second example is the group A_{4}. The group A_{4} has 12 elements. See the group table on page 104. Note that $\alpha_{6}^{2}=\alpha_{11}, \alpha_{9}^{2}=\alpha_{5}$ and $\alpha_{11} \alpha_{5}=\alpha_{3}$, but α_{3} is not a square.

