Most Continuous Functions are Nowhere Differentiable

Spring 2004

The Space of Continuous Functions

Let K = [0, 1] and let $\mathcal{C}(K)$ be the set of all continuous functions $f : K \to \mathbb{R}$. **Definition 1** For $f \in \mathcal{C}(K)$ we define ||f||, the norm of f, by $||f|| = \sup\{|f(x)| : x \in K\}$.

Since K is compact and |f| is continuous, ||f|| is well-defined.

Exercise 2 Prove that $||f - g|| \le ||f - h|| + ||h - g||$ for all $f, g, h \in \mathcal{C}(K)$ **Definition 3** We say (f_n) is a *Cauchy sequence* in $\mathcal{C}(K)$ if for all $\epsilon > 0$ there is $N \in \mathbb{N}$ such that

$$||f_n - f_m|| < \epsilon$$

for all $n, m \geq N$.

Note that (f_n) converges to g uniformly if and only if for all $\epsilon > 0$ there is $N \in \mathbb{N}$ such that $||f_n - g|| < \epsilon$ for all $n \ge N$. Moreover, we know that any Cauchy sequence is uniformly convergent. Since the uniform limit of continuous functions is continuous, we have the following proposition.

Proposition 4 If (f_n) is a Cauchy sequence in C(K), then there is $f \in C(K)$ such that f_n converges to f.

Definition 5 We say that $F \subseteq \mathcal{C}(K)$ is closed if every Cauchy sequence in F converges to an element of F.

Definition 6 If $f \in \mathcal{C}(K)$ and $\epsilon > 0$, let

$$B_{\epsilon}(f) = \{g \in \mathcal{C}(K) : ||f - g|| < \epsilon\}.$$

We call $B_{\epsilon}(f)$ the open ball of radius ϵ around f.

Similarly, we define

$$\overline{B}_{\epsilon}(f) = \{g \in \mathcal{C}(K) : ||f - g|| \le \epsilon\}.$$

Lemma 7 Each $\overline{B}_{\epsilon}(f)$ is closed.

Proof Suppose (f_n) is a Cauchy sequence in $B_{\epsilon}(f)$. Suppose $f_n \to g$. If $x \in K$, then $|f_n(x) - f(x)| \leq \epsilon$ for all n. Hence $|g(x) - f(x)| \leq \epsilon$ for all x and $||g - f|| \leq \epsilon$.

Note that if $g \in B_{\epsilon}(f)$ and $0 < \delta \leq \epsilon - ||f - g||$, then $B_{\delta}(g) \subseteq B_{\epsilon}(f)$.

Definition 8 We say that $D \subseteq \mathcal{C}(K)$ is *dense* if $D \cap B_{\epsilon}(f)$ is nonempty for every open ball.

Intuitively, D is dense if every continuous function on K can be well-approximated by functions in D.

Definition 9 We say that $p: K \to \mathbb{R}$ is *piecewise-linear* if there is a partition $0 = a_0 < a_1 < \ldots < a_n = 1$ of [0, 1] such that p is linear on the interval $[a_i, a_{i+1}]$ for $i = 0, \ldots, n$.

Let $PL(K) \subseteq \mathcal{C}(K)$ be the set of piecewise linear continuous functions on K.

Theorem 10 PL(K) is dense in C(K).

Proof Suppose $f \in \mathcal{C}(K)$ and $\epsilon > 0$. Since K is compact, f is uniformly continuous on K. Thus there is $\delta > 0$ such that $|f(x) - f(y)| < \epsilon/2$ for all $x, y \in K$ with $|x - y| < \delta$.

Let $0 = a_0 < a_1 < \ldots < a_n = 1$ be a partition of [0, 1] such that $|a_{i+1} - a_i| < \delta$ for $i = 0, 1, \ldots$ Let $p : K \to \mathbb{R}$ be the piecewise linear function such that $p(a_i) = f(a_i)$ and p is linear on each $[a_i, a_{i+1}]$ for all i. If $x \in K$, there is an i such that $a_i \leq x \leq a_{i+1}$. Then

$$|p(x) - f(a_i)| = |p(x) - p(a_i)| \le |p(a_{i+1}) - p(a_i)| < \epsilon/2$$

and $|f(x) - f(a_i)| < \epsilon/2$. Thus $|p(x) - f(x)| < \epsilon$ and $p \in B_{\epsilon}(f)$.

Baire Category in $\mathcal{C}(K)$

We begin by generalizing some concepts from \mathbb{R} to $\mathcal{C}(K)$.

Definition 11 We say that $E \subseteq C(K)$ is nowhere dense if for all open balls $B_{\epsilon}(f)$, there is an open ball $B_{\delta}(g) \subseteq B_{\epsilon}(f)$ with $D \cap B_{\delta}(g) = \emptyset$.

We say that $E \subseteq \mathcal{C}(K)$ is meager if

$$E = \bigcup_{n=1}^{\infty} E_n$$

where each E_n is nowhere dense. Meager sets are sometimes called sets of *first-category*.

Meager sets share some of the properties of measure zero sets.

Exercise 12 a) If E is meager and $F \subseteq E$, then F is meager.

b) If E_1, E_2, \ldots are meager, then $E = \bigcup_{n=1}^{\infty} E_n$ is meager.

We think of meager sets as being "small". It is important to show that not every set is meager.

Theorem 13 (Baire Category Theorem for C(K)) C(K) is not meager.

Proof Suppose $E = \bigcup E_n$ where each $E_n \subseteq \mathcal{C}(K)$ is nowhere dense. We will find $f \in \mathcal{C}(K)$ with $f \notin E$ by constructing a sequence (f_n) converging uniformly to f as follows:

Let $f_0 \in \mathcal{C}(K)$. Let $\epsilon_0 = 1$. Given f_n and $\epsilon_n > 0$, since E_n is nowhere dense we can find $f_{n+1} \in B_{\epsilon_n}(f_n)$ and $\epsilon_{n+1} > 0$ such that:

i) $B_{\epsilon_{n+1}}(f_{n+1}) \subseteq B_{\epsilon_n}(f_n);$

ii) $B_{\epsilon_{n+1}}(f_{n+1}) \cap E_n = \emptyset.$

We claim that the sequence (f_n) is Cauchy. Let $\epsilon > 0$. Choose N such that $\epsilon_N < \epsilon$. If $n > m \ge N$, then $f_n \in \overline{B}_{\epsilon_m}(f_m)$. Hence $||f_n - f_m|| \le \epsilon_m < \epsilon$. Thus there is $f \in \mathcal{C}(K)$ such that $f_n \to f$. Since $f_n \in \overline{B}_{\epsilon_m}(f_m)$ for all n > m, and, by Lemma 7, $\overline{B}_{\epsilon_m}(f_m)$ is closed, we know that $f \in \overline{B}_{\epsilon_m}(f_m)$ for all m. Since $\overline{B}_{\epsilon_m}(f_m) \cap E_m = \emptyset$, $f \notin E_m$ for any m. Thus $f \in \mathcal{C}(K) \setminus E$.

Exercise 14 Prove that every open or closed ball is nonmeager.

We give a useful characterization of nowhere dense closed sets.

Lemma 15 Suppose $F \subseteq C(K)$ is closed. The following are equivalent:

i) F is nowhere dense;

ii) there is no open ball $B_{\epsilon}(f) \subseteq F$.

Proof i) \Rightarrow ii) Clear.

ii) \Rightarrow i) Suppose F is not nowhere dense. Then there is an open ball $B_{\epsilon}(f)$ such that every open ball $F \cap B_{\delta}(g) \neq \emptyset$ whenever $B_{\delta}(g) \subseteq B_{\epsilon}(f)$. We claim that $B_{\epsilon}(f) \subseteq F$. Let $g \in B_{\epsilon}(f)$. For each n we can find $f_n \in B_{1/n}(g) \cap E$. Then f_n converges uniformly to g. Hence $g \in E$. Thus $B_{\epsilon}(f) \subseteq E$.

Nowhere Differentiable Functions

Let $D = \{f \in \mathcal{C}(K) : f \text{ is differentiable at } x \text{ for some } x \in K\}$. We will prove that D is meager. By the Baire Category Theorem, this gives another proof that there are nowhere differentiable continuous functions. Indeed, it tells us that "most" continuous functions on K are nowhere differentiable!

Let $A_{n.m} =$

$$\left\{ f \in \mathcal{C}(K) : \text{ there is } x \in K \text{ such that } \left| \frac{f(t) - f(x)}{t - x} \right| \le n \text{ if } 0 < |x - t| < \frac{1}{m} \right\}$$

Lemma 16 If $f \in D$, then $f \in A_{n,m}$ for some n and m.

Proof Suppose f is differentiable at x. Choose n such that |f'(x)| < n. There is $\delta > 0$ such that

$$\left|\frac{f(t) - f(x)}{t - x}\right| < n$$

if $0 < |t - x| < \delta$. Choose m such that $1/m < \delta$. Then $f \in A_{n,m}$.

Lemma 17 Each $A_{n,m}$ is closed.

Proof Suppose (f_i) is a Cauchy sequence in $A_{n,m}$ and $f_i \to f$. For each i we can find $x_i \in K$ such that

$$\left|\frac{f_i(t) - f_i(x_i)}{t - x}\right| \le n \text{ for all } 0 < |x - t| < \frac{1}{m}.$$

By the Bolzono–Weierstrass Theorem (x_i) has a convergent subsequence. By replacing the sequence f_n by a subsequence, we may, without loss of generality, assume that (x_i) converges. Suppose x_i converges to x. Suppose $0 < |x - t| < \frac{1}{m}$. Then

$$\left|\frac{f(t) - f(x)}{t - x}\right| = \lim_{i \to \infty} \left|\frac{f_i(t) - f_i(x_i)}{t - x_i}\right| \le n$$

Hence $f \in A_{n,m}$.

Lemma 18 Each $A_{n,m}$ is nowhere dense.

Proof Since $A_{n,m}$ is closed, if suffices, by Lemma 15, to show that $A_{n,m}$ does not contain an open ball. Consider the open ball $B_{\epsilon}(f)$. We must find $g \in B_{\epsilon}(f)$ with $g \notin A_{n,m}$. By Theorem 10, we can find a piecewise linear p(x) such that $||f - p|| < \epsilon/2$.

Since the graph of p is a finite union of line segments, p is differentiable at all but finitely many points and we can find $M \in \mathbb{N}$ such that $|p'(x)| \leq M$ for all x where p is differentiable. Choose $k > \frac{2(M+n)}{\epsilon}$.

There is a continuous piecewise linear function $\phi(x)$ where $|\phi(x)| \leq 1$ for all $x \in K$ and $\phi'(x) = \pm k$ for all x where k is differentiable. [Consider the partition $a_i = i/k$ for i = 0, ..., k and let $\phi(a_i) = 0$ if i is even and 1 if i is odd.] Let

$$g(x) = p(x) + \frac{\epsilon}{2}\phi(x).$$

Since $||f - p|| < \epsilon/2$ and $||g - p|| < \epsilon/2$, $||f - g|| < \epsilon$.

We claim that $g \notin A_{n,m}$. Let $x \in [0, 1]$. If p and ϕ are differentiable at x, then

$$|g'(x)| = \left|p'(x) \pm \frac{\epsilon}{2}k\right|$$

Since $|p'(x)| \leq M$, |g'(x)| > n. In general, we can find l > m such that $g|[x, x + \frac{1}{l} \text{ and } g|[x - \frac{1}{l}, x]$ are linear and the absolute value of the slope is greater than n. In particular, if $0 < |x - t| < \frac{1}{l} < \frac{1}{m}$, then

$$\left|\frac{g(t) - g(x)}{t - x}\right| > n$$

and $g \notin A_{n,m}$. Thus $B_{\epsilon}(f) \not\subseteq A_{n,m}$.

Theorem 19 D is meager. In particular, there are continuous nowhere differentiable functions.

Proof Since each $A_{n,m}$ is nowhere dense,

$$A = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_{n,m}$$

is meager. Since $D \subseteq A$, D is meager.

By the Baire Category Theorem for $\mathcal{C}(K)$, we know that $\mathcal{C}(K)$ is not meager. Thus there is $f \in \mathcal{C}(K)$ with $f \notin D$. Indeed, if we think of meager sets as being "small", this tells us that "most" $f \in \mathcal{C}(K)$ are nowhere differentiable.