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The pants complex has only one end

Howard Masur1 and Saul Schleimer2

1. De£nitions and statement of the main theorem

The purpose of this note is to prove the following theorem:

Theorem 4.1. Let S be a closed, connected, orientable surface with genus g(S) ≥ 3.

Then the pants complex of S has only one end. In fact, there are constants K = K(S)

and M = M(S) so that: if R > M, and P and Q are pants decompositions at distance

greater than KR from a basepoint, then P and Q may be connected by a path which

remains at least distance R from the basepoint.

A pants decomposition of S consists of 3g(S)− 3 disjoint essential non-parallel
simple closed curves on S. Each component of the complement of the curves is a
three-holed sphere; a pants. Then the pants complex P(S) is the metric graph whose
vertices are pants decompositions of S, up to isotopy. Two vertices P,P′ are connected
by an edge of length one if P,P′ differ by an elementary move. In an elementary
move all curves of the pants are £xed except for one curve α . Remove α and let V

be the component of the complement of the remaining curves which is not a pants.
Then V contains α and is either a once-holed torus or a four-holed sphere. Now α
is replaced by any curve β contained in V that intersects α minimally; in the torus
case once, and in the sphere case twice. All edges of P(S) are assigned length 1. We
let d(·, ·) be the distance function in P(S). The pants complex P(S) is known to be
connected [HT80].

A path metric space (X ,d) has one end if for any basepoint O ∈ X and any radius
R the complement of BR = BR(O), the ball of radius R centered at O, has only one
unbounded component. It is easy to see that the de£nition does not depend on the
choice of the point O. Clearly having one end is a quasi-isometry invariant of path
metric spaces. So, following Brock [Br03] (see also [Br02]) and Wolpert [Wo87], our
theorem implies:

Corollary 1.1. Fix S a closed, connected, orientable surface with genus three or
higher. The Teichmüller space of S, equipped with the Weil-Peterson metric, has only
one end.
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Finally, recall that the curve complex C (S) is the complex whose k-simplices con-
sist of k + 1 distinct isotopy classes of essential simple closed curves on S that have
disjoint representatives on S. Or, in the case of a once-holed torus and four-holed
sphere, C (S) is the Farey graph. From the metric point of view we will only be inter-
ested in the 1-skeleton of C (S). Each edge is assigned length 1. We let dS(·, ·) denote
the distance function in C (S).

2. The set of handle curves is connected

In this section we prove two combinatorial facts. First, the set of handle curves in
the curve complex is connected and second, any pants decomposition is a bounded
distance (in the pants complex) from a decomposition containing a handle curve.

Again assume S is a closed, connected, orientable surface with genus three or
greater. We will call α a handle curve in S if α separates S into two surfaces: the
once-holed torus S(α) and the rest of the surface.

We will need the following result. It was £rst proved by Farb and Ivanov [FI03] by
different methods. Another proof has been given by McCarthy and Vautaw [MV03]
by methods similar to ours. We include a proof for completeness.

Proposition 2.1. If g(S)≥ 3, the subcomplex H (S)⊂ C (S) of handle curves is con-
nected.

Remark 2.2. Note that the hypothesis g(S)≥ 3 cannot be removed; it is easy to check
that H (S), when S has genus 2, is an in£nite collection of points.

Remark 2.3. Note that Proposition 2.1 immediately implies that the set of separating
curves in C (S) is also connected.

Remark 2.4. Our proof of Proposition 2.1 generalizes to the case ∂S 6= /0. An inter-
esting open question is the higher connectivity of H (S).

Before we begin the proof we will require a bit of terminology. Let i(·, ·) denote
the geometric intersection number of two essential simple closed curves in S. Also, if
δ is a separating curve in S we say that an arc β ′ is a wave for δ if β ′∩δ = ∂β ′ and
β ′ is essential as a properly embedded arc in Srδ . We say that two waves β ′ and β ′′

for δ link if β ′ ∩β ′′ = /0, both β ′ and β ′′ meet the same side of δ , and ∂β ′ separates
∂β ′′ inside δ . Figure 1 shows a pair of linking waves.

Finally we de£ne double surgery as follows. Suppose we are given a linking pair
of waves β ′ and β ′′ for an essential separating curve δ . Form the closed regular
neighborhood U = neigh(δ ∪β ′ ∪β ′′). Let δ ′ be the component of ∂U which is not
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Figure 1: The dotted lines are β ′ and β ′′.

homotopic to δ . We say that δ ′ is obtained from δ via double surgery along β ′ and
β ′′. Again, see Figure 1 for a picture of δ , δ ′, and U . Note that δ ′ is necessarily a
separating curve and is disjoint from δ . Furthermore, the curves δ and δ ′ cobound a
two-holed torus. We deduce that δ ′ is also essential as long as the component of Srδ
containing β ′∪β ′′ is not a handle.

We are now equipped to prove the proposition:

Proof of Proposition 2.1. Let α,β ∈H (S) be handle curves and S a closed orientable
surface of genus at least three. Suppose that α and β are tight: α has been isotoped to
make |α ∩β | = i(α,β ). If i(α ,β ) = 0 then there is nothing to prove. If i(α,β ) > 0
we will £nd a curve γ ∈H (S) with i(γ ,α) = 0 and i(γ ,β )< i(α ,β ). By induction, γ
will be connected to β in H (S), proving the proposition.

We £nd γ via the following inductive procedure. Recall that S(α) is the handle
which α bounds. To begin, we de£ne δ0 ⊂ SrS(α) to be a parallel copy of α , still
intersecting β tightly. At stage k by induction we will be given an essential separating
curve δk where

• i(α ,δk) = 0,

• δk is tight with respect to β , and

• i(δk,β )< i(δk−1,β ), if k > 0.

Let Tk be the component of Srδk which does not contain α . If Tk is a handle, then we
take γ = δk and we are done with the inductive procedure. If i(δk,β ) = 0 then we may
take γ to be any handle curve inside Tk. As this γ satis£es i(α,γ) = i(β ,γ) = 0 £nding
γ would £nish the proposition. From now on we assume that Tk is not a handle and
that i(δk,β )> 0.

We now attempt to do a double surgery of δk into Tk. Either we will £nd γ directly
or the curve resulting from double surgery, δk+1, will satisfy the induction hypothesis.
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As the geometric intersection with β is always decreasing, this procedure will stop
after £nitely many steps yielding the desired handle curve.

So all that remains is to do the double surgery. Suppose for the moment that
β ′,β ′′ ⊂ β ∩Tk are linking waves for δk. As described above we may form δk+1 via
a double surgery along β ′ and β ′′. Isotope δk+1, in the complement of δk, to be tight
with respect to β . As noted in the de£nition of double surgery, δk+1 is an essential
separating curve which is disjoint from α . Finally note that i(δk+1,β )≤ i(δk,β )−4.
Thus all of the induction hypotheses are satis£ed.

Suppose now that we cannot £nd linking waves among the arcs β ∩Tk. Choose
instead an outermost wave β ′ ⊂ β ∩Tk: that is, there exists an arc δ ′k ⊂ δk such that
δ ′k ∩β = ∂δ ′k = ∂β ′. See Figure 2.
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Figure 2: The arc β ′ is an outermost wave.

Here there are two remaining cases. If δ ′k ∪β ′ is a separating curve take δk+1 =
δ ′k∪β ′ and note that the induction hypotheses are easily veri£ed. The £nal possibility
is that δ ′k ∪β ′ is not separating. See Figure 3.
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Figure 3: The curve β ′∪δ ′k is nonseparating.

Since δ ′k∪β ′ is not separating there exists a properly embedded essential arc β ′′ ⊂
Tk such that β ′′∩β = /0 and |β ′′∩δ ′k|= 1. Then β ′ and β ′′ link. Do a double surgery
along these waves to obtain δk+1. Isotope δk+1, in the complement of δk, to be tight
with respect to β . Again, all of the induction hypotheses are easily veri£ed, as we
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have i(δk+1,β ) ≤ i(δk,β )− 2. This completes the second induction step and hence
completes the proof of Proposition 2.1.

We also require

Lemma 2.5. There is a constant M = M(S) such that the pants decompositions con-
taining a handle curve are M-dense in the space of all pants decompositions

Proof. The mapping class group acts co-compactly on the space of pants decomposi-
tions.

3. Subsurface projections and distances

Here we set forth three lemmas studying the pants complex. The £rst is a slight
re£nement of an idea of Masur and Minsky [MM00], the second gives a condition
for a pants decomposition to lie outside of a large ball about the origin in P(S), and
the third provides us with useful paths lying outside of such a ball.

Fix attention on a subsurface W ⊂ S which has ∂W essential in S and which is not
an annulus or a pants (a three-holed sphere). Suppose that γ is an essential simple
closed curve in S which is not isotopic to a boundary component of ∂W . Suppose
further that γ either lies in the interior of W or has non-zero geometric intersection
with ∂W . Isotope γ to be tight with respect to ∂W .

We brie¤y de£ne the subsurface projection πW (γ) (see [MM00] for a more through
discussion). If γ ⊂W then set πW (γ) = γ . If not, then for every arc α ⊂ γ ∩W take
every curve of ∂ (neigh(α ∪ ∂W ))) which is not isotopic into ∂W . Let πW (γ) be this
set of curves and note that πW (γ) ⊂ C (W ) has diameter at most 2 ([MM00] Lemma
2.3).

Similarly, given a pants decomposition P we may project each curve of P into W .
We denote the resulting image πW (P)⊂C (W ). This again has diameter at most 2. By
dW (P,P′) we mean the distance in the curve complex of W between the sets πW (P)

and πW (P′).

Let [x]C be the function on N giving zero if x < C and giving x if x ≥ C. We
will need the following result from [MM00] (see Theorem 6.12 and Section 8 of that
paper):

Lemma 3.1. There is a constant C0 = C0(S) ≥ 1 such that for any D ≥C0 there are
constants λ1 = λ1(D) ≥ D and ε1 = ε1(D) ≥ 0 with the following property: for any
pants decompositions P and P′ we have

1
λ1

∑
V

[dV (P,P′)]D− ε1 ≤ d(P,P′)≤ λ1 ∑
V

[dV (P,P′)]D + ε1, (3.1)
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where the sums range over subsurfaces V ⊂ S with essential boundary and where V is
neither an annulus nor a pants.

We have a £nal de£nition: Choose a basepoint O ∈P(S). Fix R > 0. A curve
α ′′ ⊂ S is R-distant from the basepoint O if, for any pants decomposition P containing
α ′′, we have d(P,O)> R.

Fix now C>max{2,C0}. Let λ1 = λ1(C)≥C and ε1 = ε1(C)≥ 0 as in Lemma 3.1.

Lemma 3.2. Fix R > 1. Fix a handle curve α and some curve α ′′ ⊂ S(α) satisfying
dS(α)(O,α ′′)> λ1(R + ε1) + 2. Then α ′′ is R-distant from O.

Proof. Since λ1 >C and R> 1 we have dS(α)(O,α ′′)≥C. Fix any pants decomposi-

tion P containing α ′′. As πS(α)(P) has diameter at most two we have

dS(α)(P,O)≥ dS(α)(α ′′,O)−2.

So, by the left inequality of Equation 3.1 we have

d(P,O)≥ 1
λ1

[dS(α)(P,O)]C−ε1 =
1
λ1

dS(α)(P,O)−ε1≥
1
λ1

(dS(α)(α ′′,O)−2)−ε1 >R.

As the Farey graph for S(α) has in£nite diameter, and as the diameter of πS(α)(O)

is bounded, such curves α ′′ exist in abundance. We now turn to the existence of paths
lying outside of the R-ball about the basepoint. As a bit of notation let BR = BR(O) be
the ball of radius R centered at the basepoint O.

Note that it follows from Equation 3.1 that projections of size exactly C or C + 1
cannot account for the entire pants distance between P and P′. Namely there are
constants λ2 = λ2(C)> 1 and ε2 = ε2(C)> 0 such that

∑
V

[dV (P,P′)]C+2 ≤∑
V

[dV (P,P′)]C ≤ λ2 ∑
V

[dV (P,P′)]C+2 + ε2. (3.2)

Choose K = K(C)> 0 so that for all R≥ 1,

1
2λ2λ1

(
(K−1)R− ε1−λ1ε2−2λ2λ1−λ2λ 2

1 (R + ε1)
)
> λ1(R + ε1) (3.3)

Lemma 3.3. Suppose P0 is a pants decomposition of S such that P0 /∈ B(K−1)R and P0

contains a curve α which bounds a handle S(α). Then there is a pants decomposition
P1 and a path {Pi/n}n

i=0 so that
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• P0/n = P0, Pn/n = P1,

• Pi/n differs from P(i+1)/n by a single elementary move,

• for all i, P0|(SrS(α)) = Pi/n|(SrS(α)),

• for all i, Pi/n /∈ BR

• The curve α ′′ = P1∩S(α) is R-distant from O.

Proof. Let α ′ ∈ P0/n = P0 be the curve contained in S(α). Consider a geodesic seg-

ment in the Farey graph connecting α ′ to β ∈ πS(α)(O), where β is chosen as close

as possible to α ′. Extend this segment through α ′ to a geodesic ray L in the direction
opposite β . The ray L meets the segment only at α ′. Move along L distance more
than λ1(R + ε1) + 2 from α ′ to a point α ′′. Let Pi/n be the path obtained by making

elementary moves along the curves in L and £xing the pants in SrS(α). This path
has all of the desired properties except perhaps the fourth. (The £fth follows from
Lemma 3.2). It remains to show that Pi/n /∈ B(R).

There are two cases. Suppose £rst that dS(α)(β ,α ′) > λ1(R + ε1) + 2. Then by

Lemma 3.2 for any i the curve Pi/n∩S(α) is R-distant. So Pi/n /∈ B(R) and Lemma 3.3
holds in this case.

Next suppose that dS(α)(β ,α ′) ≤ λ1(R + ε1) + 2. Then by Equation 3.1 and the
right hand side of Equation 3.2

(K−1)R≤ d(P0,O)≤ λ1 ∑
V

[dV (P0,O)]C + ε1 ≤

≤ λ2λ1 ∑
V

[dV (P0,0)]C+2 + λ1ε2 + ε1 ≤

≤ λ2λ1 ∑
V 6=S(α)

[dV (P0,O)]C+2 + 2λ2λ1 + λ2λ 2
1 (R + ε1) + λ1ε2 + ε1.

Let V be any subsurface disjoint from S(α). Since Pi/n is constant in V , the pro-

jection πV (Pi/n) is constant. Now let V be a subsurface that intersects S(α) or strictly

contains S(α). Since α ∈ Pi/n, it follows that πV (Pi/n) contains πV (α). Since each

πV (Pi/n) has diameter at most 2, dV (Pi/n,O)≥ dV (P0,O)−2. Thus for any subsurface

V not isotopic to S(α), as C > 2, we have [dV (Pi/n,O)]C ≥ 1
2 [dV (P0,O)]C+2. Thus for

all i,

∑
V 6=S(α)

[dV (Pi/n,O)]C ≥
1
2 ∑

V 6=S(α)

[dV (P0,0)]C+2 ≥
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≥ 1
2λ2λ1

(
(K−1)R− ε1−λ1ε2−2λ2λ1−λ2λ 2

1 (R + ε1)
)
> λ1(R + ε1),

the last inequality following from Equation 3.3. So, by the left-hand side of Equa-
tion 3.1, for all i we have d(Pi/n,O)> R.

4. Proof of the theorem

Recall the statement:

Theorem 4.1. Let S be a closed, connected, orientable surface with genus g(S) ≥ 3.
Then the pants complex of S has only one end. In fact, there are constants K = K(S)
and M = M(S) so that, if R > M, any pants decompositions P and Q, at distance
greater than KR from a basepoint, can be connected by a path which remains at least
distance R from the basepoint.

Proof. We take M as de£ned in Section 2 and K as de£ned in Section 3.

Using Lemma 2.5 move P and Q a distance at most M < R to obtain pants de-
compositions P0 and Q0. The lemma gives handle curves αP ∈ P0, αQ ∈ Q0. Also,
P0,Q0 /∈ B(K−1)R.

Apply Lemma 3.3 twice in order to connect P0 and Q0 to pants decompositions P1
and Q1 satisfying all of the conclusions of the lemma. Let α ′′P ∈ P1 and α ′′Q ∈ Q1 be
the R-distant curves lying in the handles S(αP) and S(αQ) respectively.

We must now construct a path from P1 to Q1. Consider £rst the case where αP 6=
αQ.

Applying Proposition 2.1 we connect αP to αQ by a path of handle curves in
H (S). Label these {αi}n

i=1 where α1 = αP, αn = αQ, and n> 1. Note that in this step
the hypothesis g(S)> 2 is used. Choose, for i ∈ {2,3, . . . ,n−1}, any R-distant curve
α ′′i ⊂ S(αi). This requires Lemma 3.2. Again, for i ∈ {2,3, . . . ,n−1}, extend the pair
αi,α ′′i to a pants decomposition Pi. Finally set Pn = Q1.

We connect Pi to Pi+1 by a path where every pants decomposition in the £rst part
of the path contains αi and α ′′i and every pants decomposition in the rest of the path
contains αi+1 and α ′′i+1. (This is possible because P(SrS(αi))

∼=P(SrS(αi+1)) are
connected and because S(αi) is disjoint from S(αi+1).) By Lemma 3.2, this path lies
outside of the ball of radius R and we are done.

In the case which remains αP = αQ. Here there is no need for Proposition 2.1.
Instead we choose any handle curve β which is disjoint from αP. Note that β exists as
g(S) > 2. Using Lemma 3.2 choose a R-distant β ′′ ⊂ S(β ) and extend this to a pants
decomposition P2. Set P3 = Q1. Connect P1 to P2 to P3 as in the previous paragraph.
This completes the proof.
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