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IDENTIFYING LOCALLY OPTIMAL DESIGNS FOR NONLINEAR
MODELS: A SIMPLE EXTENSION WITH PROFOUND

CONSEQUENCES

BY MIN YANG1 AND JOHN STUFKEN2

University of Illinois at Chicago and University of Georgia

We extend the approach in [Ann. Statist. 38 (2010) 2499–2524] for iden-
tifying locally optimal designs for nonlinear models. Conceptually the exten-
sion is relatively simple, but the consequences in terms of applications are
profound. As we will demonstrate, we can obtain results for locally optimal
designs under many optimality criteria and for a larger class of models than
has been done hitherto. In many cases the results lead to optimal designs with
the minimal number of support points.

1. Introduction. During the last decades nonlinear models have become a
workhorse for data analysis in many applications. While there is now an extensive
literature on data analysis for such models, research on design selection has not
kept pace, even though there has seen a spike in activity in recent years. Identify-
ing optimal designs for nonlinear models is indeed much more difficult than the
much better studied corresponding problem for linear models. For nonlinear mod-
els results can typically only be obtained on a case-by-case basis, meaning that
each combination of model, optimality criterion and objective of the experiment
requires its own proof.

Another challenge is that for a nonlinear model an optimal design typically de-
pends on the unknown parameters. This leads to the concept of locally optimal de-
signs, which are optimal for a priori chosen values of the parameters. The designs
may be poor if the choice of values is far from the true values. Where feasible,
a multistage approach could help with this. A small initial design is then used to
obtain some information about the parameters, and this information is used at the
next stage to estimate the true parameter values and to extend the initial design in a
locally optimal way to a larger design. The design at this second stage could be the
final design, or there could be additional stages at which more design points are
selected. The solution presented in this paper is applicable for a one-shot approach
for finding a locally optimal design as well as for a multistage approach. The ar-
gument that our method can immediately be applied for the multistage approach is
exactly as in Yang and Stufken (2009).
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For a broader discussion on the challenges to identify optimal designs for gen-
eralized linear models, many of which apply also for other nonlinear models, we
refer the reader to Khuri et al. (2006).

The work presented here is an extension of Yang and Stufken (2009), Yang
(2010) and Dette and Melas (2011). The analytic approach in those papers unified
and extended many of the results on locally optimal designs that were available
through the so-called geometric approach. The extension in the current paper has
major consequences for two reasons. First, it enables the application of the basic
approach in the three earlier papers to many models for which it could until now
not be used. As a result, this paper opens the door to finding locally optimal designs
for models where no feasible approach was known so far. Second, for a number
of models for which answers could be obtained by earlier work, the current exten-
sion enables the identification of locally optimal designs with a smaller support.
This is important because it simplifies the search for optimal designs, whether by
computational or analytical methods. Section 4 will illustrate the impact of our
results.

The basic approach in Yang and Stufken (2009), Yang (2010) and Dette and
Melas (2011), which is also adopted here, is to identify a subclass of designs with
a simple format, so that for any given design ξ , there exists a design ξ∗ in that
subclass with Iξ∗ ≥ Iξ under the Loewner ordering. We will refer to this subclass
as a complete class for this problem. Here, Iξ∗ and Iξ are information matrices
for a parameter vector θ under ξ∗ and ξ , respectively. Others, such as Pukelsheim
(1989) have called such a class essentially complete, which is admittedly indeed
more accurate, but also more cumbersome. When searching for a locally optimal
design, for the common information-based optimality criteria, including A-, D-,
E- and �p-criteria, one can thus restrict consideration to this complete class, both
for a one-shot or multistage approach. Also, as shown in Yang and Stufken (2009),
this conclusion holds for arbitrary functions of the parameters. Ideally, the same
complete class results would apply for all a priori values of the parameter vector θ .
However, it turns out, as we will see in Section 4, that there are instances where
complete class results hold only for certain a priori values of θ .

Yang and Stufken (2009), Yang (2010) and Dette and Melas (2011) identify
small complete classes for certain models. They do so by showing that for any
design ξ that is not in their complete class, there is a design ξ∗ that is in the com-
plete class such that all elements of Iξ∗ are the same as the corresponding elements
in Iξ , except that one diagonal element in Iξ∗ is at least as large as that in Iξ . This
guarantees of course that Iξ∗ ≥ Iξ . The contribution of this paper is that we fo-
cus on increasing a principal submatrix rather than just a single diagonal element.
This allows us to obtain results for more models than could be addressed by Yang
and Stufken (2009), Yang (2010) and Dette and Melas (2011), and also facilitates
the identification of smaller complete classes for some models considered in these
earlier papers.
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In Section 2 we will present the necessary background, while the main results
are featured in Section 3. The power of the proposed extension is seen through
applications in Section 4. We conclude with a short discussion in Section 5.

2. Information matrix and approximate designs. Consider a nonlinear re-
gression model for which a response variable y depends on a single regression
variable x. We assume that the y’s are independent and follow some exponen-
tial distribution G with mean η(x, θ), where θ is the p × 1 parameter vector,
and the values of x can be chosen by the experimenter. Typically, approximate
designs are used to study optimality in this context. An approximate design ξ

can be written as ξ = {(xi,ωi), i = 1, . . . ,N}, where ωi > 0 is the weight for
design point xi and

∑N
i=1 ωi = 1. It is often more convenient to present ξ as

ξ = {(ci,ωi), i = 1, . . . ,N}, ci ∈ [A,B], with the ci ’s obtained from the xi ’s
through a bijection that may depend on θ . Typically, the information matrix for
θ under design ξ can be written as

Iξ (θ) = P(θ)

(
N∑

i=1

ωiC(θ, ci)

)
(P (θ))T ,(2.1)

where

C(θ, c) =

⎛⎜⎜⎜⎝
�11(c)

�21(c) �22(c)
...

...
. . .

�p1(c) �p2(c) · · · �pp(c)

⎞⎟⎟⎟⎠ .(2.2)

The functions � are allowed to depend on θ not just through c, but in an attempt
to simplify notation we write, for example, �11(c) rather than �11(θ, c). In (2.2),
C(θ, c) is a symmetric matrix, and P(θ) is a p×p nonsingular matrix that depends
only on θ . Some examples of (2.1) and (2.2) will be seen in Section 4.

For some p1, 1 ≤ p1 < p, we partition C(θ, c) as

C(θ, c) =
(

C11(c) CT
21(c)

C21(c) C22(c)

)
.(2.3)

Here, C22(c) is the lower p1 × p1 principal submatrix of C(θ, c), that is,

C22(c) =
⎛⎜⎝�p−p1+1,p−p1+1(c) · · · �p−p1+1,p(c)

...
. . .

...

�p,p−p1+1(c) · · · �pp(c)

⎞⎟⎠ .(2.4)

In the context of local optimality, if designs ξ = {(ci,ωi), i = 1, . . . ,N} and

ξ̃ = {(c̃j , ω̃j ), j = 1, . . . , Ñ} satisfy
∑N

i=1 ωiC(θ, ci) ≤ ∑Ñ
i=1 ω̃iC(θ, c̃i), then it

follows from (2.1) that Iξ (θ) ≤ Iξ̃ (θ). Hence, Iξ (θ) ≤ Iξ̃ (θ) follows if it holds that

N∑
i=1

ωiC11(ci) =
Ñ∑

i=1

ω̃iC11(c̃i),
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N∑
i=1

ωiC12(ci) =
Ñ∑

i=1

ω̃iC12(c̃i) and(2.5)

N∑
i=1

ωiC22(ci) ≤
Ñ∑

i=1

ω̃iC22(c̃i).

This is what we explore in this paper. Note that this is more general than Yang
and Stufken (2009), Yang (2010) and Dette and Melas (2011), where p1 = 1. We
develop a theoretical framework for general values of p1.

3. Main results. Following Karlin and Studden (1966) and Dette and Melas
(2011), a set of k + 1 real-valued continuous functions u0, . . . , uk defined on an
interval [A,B] is called a Chebyshev system on [A,B] if∣∣∣∣∣∣∣∣∣

u0(z0) u0(z1) · · · u0(zk)

u1(z0) u1(z1) · · · u1(zk)
...

...
. . .

...

uk(z0) uk(z1) · · · uk(zk)

∣∣∣∣∣∣∣∣∣(3.1)

is strictly positive whenever A ≤ z0 < z1 < · · · < zk ≤ B .
Along the lines of Yang (2010), we select a maximal set of linearly indepen-

dent nonconstant functions from the � functions that appear in the first p − p1

columns of the matrix C(θ, c) defined in (2.2), and rename the selected functions
as �1, . . . ,�k−1. For a given nonzero p1 × 1 vector Q, let

�
Q
k = QT C22(c)Q,(3.2)

where C22(c) is as defined in (2.4).
For �0 = 1, �1, . . . ,�k−1 and C22(c), we will say that a set of n1 pairs (ci,ωi)

is dominated by a set of n2 pairs (c̃i , ω̃i) if∑
i

ωi�l(ci) = ∑
i

ω̃i�l(c̃i), l = 0,1, . . . , k − 1;(3.3)

∑
i

ωi�
Q
k (ci) <

∑
i

ω̃i�
Q
k (c̃i) for every nonzero vector Q,(3.4)

where the summations on the left-hand sides are over the n1 subscripts for the
pairs (ci,ωi) and those on the right-hand sides over the n2 subscripts for the pairs
(c̃i , ω̃i).

The following two lemmas provide the basic tools for the main results. We point
out that the pairs (ci,ωi) in these lemmas need not form a design; in particular, the
ωi’s need not add to 1.
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LEMMA 1. For the functions �0 = 1,�1, . . . ,�k−1,�
Q
k defined on an inter-

val [A,B], suppose that either

{�0,�1, . . . ,�k−1} and {�0,�1, . . . ,�k−1,�
Q
k }

(3.5)
form Chebyshev systems for every nonzero vector Q

or

{�0,�1, . . . ,�k−1} and {�0,�1, . . . ,�k−1,−�
Q
k }

(3.6)
form Chebyshev systems for every nonzero vector Q.

Then the following conclusions hold:

(a) For k = 2n − 1, if (3.5) holds, then for any set S1 = {(ci,ωi) :ωi > 0, i =
1, . . . , n} with A ≤ c1 < · · · < cn < B , there exists a set S2 = {(c̃i , ω̃i) : ω̃i > 0, i =
1, . . . , n} with c1 < c̃1 < c2 < · · · < c̃n−1 < cn < c̃n = B , such that S1 is dominated
by S2.

(b) For k = 2n − 1, if (3.6) holds, then for any set S1 = {(ci,ωi) :ωi > 0, i =
1, . . . , n} with A < c1 < · · · < cn ≤ B , there exists a set S2 = {(c̃i , ω̃i) : ω̃i > 0, i =
0, . . . , n − 1} with A = c̃0 < c1 < c̃1 < c2 < · · · < c̃n−1 < cn, such that S1 is dom-
inated by S2.

(c) For k = 2n, if (3.5) holds, then for any set S1 = {(ci,ωi) :ωi > 0, i =
1, . . . , n} with A < c1 < · · · < cn < B , there exists a set S2 = {(c̃i , ω̃i) : ω̃i > 0, i =
0, . . . , n} with A = c̃0 < c1 < c̃1 < · · · < cn < c̃n = B , such that S1 is dominated
by S2.

(d) For k = 2n, if (3.6) holds, then for any set S1 = {(ci,ωi),ωi > 0, i =
1, . . . , n + 1 with A ≤ c1 < · · · < cn+1 ≤ B , there exists a set S2 = {(c̃i , ω̃i) : ω̃i >

0, i = 1, . . . , n} with c1 < c̃1 < · · · < cn < c̃n < cn+1, such that S1 is dominated
by S2.

PROOF. Since the proof is similar for all parts, we only provide a proof for
part (a).

Let S1 be as in part (a). First consider the special case that Q = (1,0, . . . ,0)T .
By (1a) of Therorem 3.1 in Dette and Melas (2011), there exists a set of at most
n pairs (c̃i , ω̃i) with one of the points equal to B so that (3.3) and (3.4) hold for
this Q. By part (a) of Proposition 1 in the Appendix, the number of distinct points
with ω̃i > 0 must then be exactly n. Thus we have c̃1 < · · · < c̃n = B , and the ci ’s
and c̃i’s must alternate by part (b) of Proposition 1. The result follows now for an
arbitrary nonzero Q by applying Proposition 2 in the Appendix and using (3.5)
and (3.4). �

Lemma 2 partially extends Lemma 1 by observing that larger sets S1 than in
Lemma 1 are also dominated by sets S2 as in that lemma.
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LEMMA 2. With the same notation and assumptions as in Lemma 1, let S1 =
{(ci,ωi) :ωi > 0,A ≤ ci ≤ B, i = 1, . . . ,N}, where N ≥ n for cases (a), (b), and
(c) of Lemma 1, and N ≥ n+ 1 for case (d). Then the following conclusions hold:

(a) For k = 2n− 1, if (3.5) holds, then S1 is dominated by a set S2 of size n that
includes B as one of the points.

(b) For k = 2n− 1, if (3.6) holds, then S1 is dominated by a set S2 of size n that
includes A as one of the points.

(c) For k = 2n, if (3.5) holds, then S1 is dominated by a set S2 of size n+ 1 that
includes both A and B as points.

(d) For k = 2n, if (3.6) holds, then S1 is dominated by a set S2 of size n.

PROOF. The results follow by application of Lemma 1. For example, for
case (a), if N = n, the result follows directly from Lemma 1. If N > n, we
start with the points c1 < c2 < · · · < cN in S1. Using Lemma 1, we obtain points
c1, . . . , cN−n, c̃N−n+1, . . . , c̃N = B in a set S̃1 that dominates S1. Using Lemma 1
again on the n largest points other than c̃N in S̃1, we move one more point to B ,
obtaining a new set with N − 1 points that dominates S̃1. Continue until the size
of the set is reduced to n; this is the desired set S2. �

The first main result is an immediate consequence of Lemma 2.

THEOREM 1. For a regression model with a single regression variable x, sup-
pose that the information matrix C(θ, c) can be written as in (2.1) for c ∈ [A,B].
Partitioning the information matrix as in (2.3), let �1, . . . ,�k−1 be a maximum
set of linearly independent nonconstant � functions in the first p − p1 columns
of C(θ, c). Define �

Q
k as in (3.2). Suppose that either (3.5) or (3.6) in Lemma 1

holds. Then the following complete class results hold:

(a) For k = 2n − 1, if (3.5) holds, the designs with at most n support points,
including B , form a complete class.

(b) For k = 2n − 1, if (3.6) holds, the designs with at most n support points,
including A, form a complete class.

(c) For k = 2n, if (3.5) holds, the designs with at most n + 1 support points,
including both A and B , form a complete class.

(d) For k = 2n, if (3.6) holds, the designs with at most n support points form a
complete class.

Note that if (3.3) holds for �l(c), l = 1, . . . , k − 1, then the same is true if we
replace one or more of the �l’s by −�l . Therefore, if (3.5) or (3.6) do not hold for
the original �l’s, conclusions in Theorem 1 would still be valid if (3.5) and (3.6)
hold after multiplying one or more of the �l’s, l = 1, . . . , k − 1, by −1.

While Theorem 1 is very powerful, applying it directly may not be easy. The
next result, which utilizes a generalization of a tool in Yang (2010), will lead to a
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condition that is easier to verify. Using the notation of Theorem 1, define functions
fl,t , 1 ≤ t ≤ k; t ≤ l ≤ k as follows:

fl,t (c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
� ′

l (c), if t = 1, l = 1, . . . , k − 1,
C′

22(c), if t = 1, l = k,(
fl,t−1(c)

ft−1,t−1(c)

)′
, if 2 ≤ t ≤ k, t ≤ l ≤ k.

(3.7)

The following lower triangular matrix contains all of these functions, and suggest
an order in which to compute them:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1,1 = � ′
1

f2,1 = � ′
2 f2,2 = (f2,1

f1,1

)′
f3,1 = � ′

3 f3,2 = (f3,1
f1,1

)′
f3,3 = (f3,2

f2,2

)′
...

...
...

. . .

fk,1 = C′
22 fk,2 = (fk,1

f1,1

)′
fk,3 = (fk,2

f2,2

)′ ... fk,k = ( fk,k−1
fk−1,k−1

)′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(3.8)

Note that, for p1 ≥ 2, the functions in the last row are matrix functions, which is a
key difference with Yang (2010). The derivatives of matrices in (3.7) are element-
wise derivatives. For the next result, we will make the following assumptions:

(i) All functions � in the information matrix C(θ, c) are at least kth order
differentiable on (A,B).

(ii) For 1 ≤ l ≤ k − 1, the functions fl,l(c) have no roots in [A,B].
For ease of notation, in the remainder we will write fl,l instead of fl,l(c), and

fl,l > 0 means that fl,l(c) > 0 for all c ∈ [A,B]. This also applies for l = k, in
which case it means that the matrix fk,k is positive definite for all c ∈ [A,B].

THEOREM 2. For a regression model with a single regression variable x, let
c ∈ [A,B], C(θ, c), �1, . . . ,�k−1 and �

Q
k be as in Theorem 1. For the func-

tions fl,l in (3.7), define F(c) = ∏k
l=1 fl,l , c ∈ [A,B]. Suppose that either F(c)

or −F(c) is positive definite for all c ∈ [A,B]. Then the following complete class
results hold:

(a) For k = 2n − 1, if F(c) > 0, the designs with at most n support points,
including B , form a complete class.

(b) For k = 2n − 1, if −F(c) > 0, the designs with at most n support points,
including A, form a complete class.

(c) For k = 2n, if F(c) > 0, the designs with at most n + 1 support points,
including both A and B , form a complete class.

(d) For k = 2n, if −F(c) > 0, the designs with at most n support points form a
complete class.
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PROOF. We only present the proof for case (a) since the other cases are similar.
For any nonzero vector Q, QT F(c)Q > 0 for all c ∈ [A,B]. Among all fl,l , l =
1, . . . , k−1, and QT fk,kQ, suppose that a of them are negative. Let 1 ≤ l1 < · · · <
la ≤ k denote the subscripts for these negative terms, and note that a must be even.
Note also that the labels l1 < · · · < la do not depend on the choice of the vector
Q since f1,1, . . . , fk−1,k−1 do not depend on Q. Finally, note that for any l with
1 ≤ l ≤ k − 1, if we replace �l(c) by −�l(c), then the signs of fl,l and fl+1,l+1
are switched while all others remain unchanged.

We now change some of the �l’s to −�l . This is done for those l that satisfy
l2b−1 ≤ l < l2b for some value of b ∈ {1, . . . , a/2}. Denote the new �-functions
by {1, �̂1, . . . , �̂

Q
k }. Notice that �̂

Q
k = �

Q
k . From the last observation in the pre-

vious paragraph, it is easy to check that fl,l > 0, l = 1, . . . , k, for the functions
fl,l that correspond to this new set of �̂-functions. By Proposition 4 in the Ap-
pendix, {1, �̂1, . . . , �̂k−1} and {1, �̂1, . . . , �̂k−1, �̂

Q
k } are Chebyshev systems on

[A,B], regardless of the choice for Q �= 0. The result follows now from case (a)
of Theorem 1 and the observation immediately after Theorem 1. �

For case (a) in Theorem 2, the value of A in the interval [A,B] is allowed to
be −∞. In this situation, for any given design ξ , we can choose A = mini ci , and
the conclusion of the theorem holds. Similarly, B can be ∞ in case (b), and the
interval can be unbounded at either side for case (d).

As noted at the end of Section 2, the results in Yang and Stufken (2009), Yang
(2010), and Dette and Melas (2011) correspond to p1 = 1. The extension in this
paper allows the choice of larger values of p1 where feasible. Larger values of
p1 lead to designs with smaller support sizes. The reason for this is that the value
of k in Theorems 1 and 2 corresponds to the number of equations in (3.3). For a
particular model, this number is smaller for larger p1. Since the support size of the
designs is roughly half the value of k, the support size is smaller for larger values
of p1.

We will provide some examples of the application of Theorems 1 and 2 in the
next section, and will offer some further thoughts on the ease of their application
in Section 5.

4. Applications. Whether the model is for continuous or discrete data, with
homogeneous or heterogeneous errors, Theorems 1 and 2 can be applied as long as
the information matrix can be written as in (2.1). As the examples in this section
will show, in many cases the result of the theorem facilitates the determination of
complete classes with the minimal number of support points.

4.1. Exponential regression models. Dette, Melas and Wong (2006) studied
exponential regression models, which can be written as

Yi =
L∑

l=1

ale
−λlxi + εi,(4.1)
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where the εi ’s are i.i.d. with mean 0 and variance σ 2, and xi ∈ [U,V ] is the
value of the regression variable to be selected by the experimenter. Here θ =
(a1, . . . , aL,λ1, . . . , λL)T , with al �= 0, l = 1, . . . ,L, and 0 < λ1 < · · · < λL. For
L = 2, they showed that there is a D-optimal design for θ = (a1, a2, λ1, λ2)

T

based on four points, including the lower limit U . Further, for L = 3 and λ2 =
(λ1 + λ3)/2, they showed that there is a D-optimal design for θ based on six
points, again including the lower limit U . By using Theorem 2, we will show that
similar conclusions are possible for other optimality criteria, including A- and E-
optimality, and other functions of interest for many a priori values of θ .

For L = 2, the results in Yang (2010) can be used to obtain a complete class of
designs with at most five points. We can do better with Theorem 2. The informa-
tion matrix for θ = (a1, a2, λ1, λ2)

T under design {(xi,ωi), i = 1, . . . ,N} can be
written in the form of (2.1) with P(θ) = diag(1,1, a1

λ2−λ1
, a2

λ2−λ1
) and

C(θ, c) =

⎛⎜⎜⎝
cλ

cλ+1 cλ+2

log(c)cλ log(c)cλ+1 log2(c)cλ

log(c)cλ+1 log(c)cλ+2 log2(c)cλ+1 log2(c)cλ+2

⎞⎟⎟⎠ ,(4.2)

where c = e−(λ2−λ1)x and λ = 2λ1
λ2−λ1

. Let �1(c) = cλ, �2(c) = log(c)cλ, �3(c) =
cλ+1, �4(c) = log(c)cλ+1, �5(c) = cλ+2, �6(c) = log(c)cλ+2 and

C22(c) =
(

log2(c)cλ log2(c)cλ+1

log2(c)cλ+1 log2(c)cλ+2

)
.

Then f1,1 = λcλ−1, f2,2 = 1
c
, f3,3 = λ+1

λ
, f4,4 = 1

c
, f5,5 = 4(λ+2)

λ+1 , f6,6 = 1
c

and

f7,7(c) =

⎛⎜⎜⎝
2λ

(λ + 2)c3

λ + 1

2(λ + 2)c2

λ + 1

2(λ + 2)c2

2

c

⎞⎟⎟⎠ .

Note that c > 0 and λ > 0, so that F(c) is positive definite if |f7,7(c)| > 0. This is

equivalent to 15λ2 + 30λ− 1 > 0, which is satisfied when λ2
λ1

<
√

960+30√
960−30

. Thus, by
(a) of Theorem 2, we have the following result.

THEOREM 3. For Model (4.1) with L = 2, if

λ2

λ1
<

√
960 + 30√
960 − 30

≈ 61.98,

then the designs with at most four points, including the lower limit U , form a
complete class.

For L = 3 and 2λ2 = λ1 +λ3, the information matrix for θ = (a1, a2, a3, λ1, λ2,

λ3)
T under design {(xi,ωi), i = 1, . . . ,N} can be written in the form of (2.1) with
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P(θ) = diag(1,1,1, a1
λ2−λ1

, a2
λ2−λ1

,
a3

λ2−λ1
) and

C(θ, c) =

⎛⎜⎜⎜⎜⎝
cλ

cλ+1 cλ+2

cλ+2 cλ+3 cλ+4

log(c)cλ log(c)cλ+1 log(c)cλ+2 log2(c)cλ

log(c)cλ+1 log(c)cλ+2 log(c)cλ+3 log2(c)cλ+1 log2(c)cλ+2

log(c)cλ+2 log(c)cλ+3 log(c)cλ+4 log2(c)cλ+2 log2(c)cλ+3 log2(c)cλ+4

⎞⎟⎟⎟⎟⎠,(4.3)

where c = e−(λ2−λ1)x and λ = 2λ1
λ2−λ1

. Let �2l−1(c) = cλ+l−1 and �2l(c) =
log(c)cλ+l−1, l = 1, . . . ,5, and let

C22(c) =
⎛⎝ log2(c)cλ log2(c)cλ+1 log2(c)cλ+2

log2(c)cλ+1 log2(c)cλ+2 log2(c)cλ+3

log2(c)cλ+2 log2(c)cλ+3 log2(c)cλ+4

⎞⎠ .

Then f1,1 = λcλ−1, f2l,2l = 1
c
, l = 1,2,3,4,5, f2l+1,2l+1 = l2(λ+l)

λ+l−1 , l = 1,2,3,4,
and

f11,11(c) =

⎛⎜⎜⎜⎜⎜⎜⎝

2λ

(λ + 4)c5

λ + 1

8(λ + 4)c4

λ + 2

18(λ + 4)c3

λ + 1

8(λ + 4)c4

λ + 2

18(λ + 4)c3

λ + 3

8(λ + 4)c2

λ + 2

18(λ + 4)c3

λ + 3

8(λ + 4)c2

2

c

⎞⎟⎟⎟⎟⎟⎟⎠ .

Again, c > 0 and λ > 0, so that F(c) is positive definite if |(f11,11(c))| and its
leading principal minors are positive. This is equivalent to

1505λ3 + 9030λ2 + 11499λ − 1082 > 0,

55λ2 + 110λ − 9 > 0,
(4.4)

1295λ2 + 5180λ − 4 > 0

and 55λ2 + 330λ + 431 > 0.

Simple computation shows that this holds for λ2
λ1

< 23.72 (or, equivalently, λ3
λ1

<

46.45). By Theorem 2, we have the following result.

THEOREM 4. For model (4.1) with L = 3 and 2λ2 = λ1 + λ3, if λ2
λ1

< 23.72,
then the designs with at most six points, including the lower limit U , form a com-
plete class.

4.2. LINEXP model. Demidenko (2006) proposed a model referred to as the
LINEXP model to describe tumor growth delay and regrowth. The natural loga-
rithm of the tumor volume is modeled as

Yi = α + γ xi + β(e−δxi − 1) + εi,(4.5)
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with independent εi ∼ N(0, σ 2) and xi ∈ [U,V ] as the value of the single regres-
sion variable, which in this case refers to time. Here θ = (α, γ,β, δ)T is the param-
eter vector, where α is the baseline logarithm of the tumor volume, γ is the final
growth rate and δ is the rate at which killed cells get washed out. The size of the
parameter β relative to γ /δ determines whether regrowth is monotonic (β < γ/δ)
or not. Li and Balakrishnan (2011) recently studied this model and showed that a
D-optimal design for θ can be based on four points, including U and V . We will
now show that Theorem 2 extends this conclusion to other optimality criteria and
functions of interest.

The information matrix for θ under design {(xi,ωi), i = 1, . . . ,N} can be writ-
ten in the form of (2.1) with

P(θ) =

⎛⎜⎜⎝
1 0 0 0
1 0 1 0
0 −δ 0 0
0 0 0 δ/β

⎞⎟⎟⎠
−1

and

(4.6)

C(θ, c) =

⎛⎜⎜⎝
1
ec e2c

c cec c2

cec ce2c c2ec c2e2c

⎞⎟⎟⎠ ,

where c = −δx. With a proper choice of � functions, it can be shown that the
result in Yang (2010) yields a complete class of designs with at most five points,
including U and V . We can again do better with Theorem 2.

Define �1(c) = c, �2(c) = ec, �3(c) = cec, �4(c) = e2c, �5(c) = ce2c and

C22(c) =
(

c2 c2ec

c2ec c2e2c

)
.

This yields f1,1 = 1, f2,2 = ec, f3,3 = 1, f4,4 = 4ec, f5,5 = 1 and

f6,6(c) =
(

2e−2c e−c/2
e−c/2 2

)
.

Clearly F(c) is a positive definite matrix. Therefore, by part (c) of Theorem 2, we
reach the following conclusion.

THEOREM 5. For the LINEXP model (4.5), the designs with at most four
points, including U and V , form a complete class.

4.3. Double-exponential regrowth model. Demidenko (2004), using a two-
compartment model, developed a double-exponential regrowth model to describe
the dynamics of post-irradiated tumors. The model can be written as

Yi = α + ln[βeνxi + (1 − β)e−φxi ] + εij ,(4.7)
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with independent εi ∼ N(0, σ 2) and xi ∈ [U,V ] again as the value for the variable
time. Here θ = (α,β, ν,φ)T is the parameter vector, where α is the logarithm of
the initial tumor volume, 0 < β < 1 is the proportional contribution of the first
compartment and ν and φ are cell proliferation and death rates.

Using Chebyshev systems and an equivalence theorem, Li and Balakrishnan
(2011) showed that a D-optimal design for θ can be based on four points including
U and V . Theorem 1 allows us to extend this result to a complete class result,
thereby covering many other optimality criteria and any functions of interest.

The information matrix for θ under design {(xi,ωi), i = 1, . . . ,N} is of the
form (2.1) with

P(θ) =

⎛⎜⎜⎝
1 0 0 0
1 1 − β 0 0
0 0 1/β 0
0 0 0 −1/(1 − β)

⎞⎟⎟⎠
−1

and with C(θ, x) a 4 × 4 matrix as in (2.2), where �11 = 1, �21 = eνx/g(x),
�22 = e2νx/g2(x), �31 = xeνx/g(x), �32 = xe2νx/g2(x), �33 = x2e2νx/g2(x),
�41 = xe−φx/g(x), �42 = xe(ν−φ)x/g2(x), �43 = x2e(ν−φ)x/g2(x) and �44 =
x2e−2φx/g2(x). Here, g(x) = βeνx + (1 − β)e−φx . Note that �42 can be writ-
ten as a linear combination of �31 and �32. We can apply Theorem 1 if
we can show that both {1,�21,�22,�41,−�31,�32} and {1,�21,�22,�41,
−�31,�32,Q

T C22(x)Q} are Chebyshev systems for any nonzero vector Q, where
C22(x) =

(
�33
�43

�43
�44

)
.

Rather than do this directly, we first simplify the problem. We multiply each of
the �’s by the positive function e2φxg(x)2, which preserves the Chebyshev sys-
tem property. After further simplifications by replacing some of the resulting func-
tions by independent linear combinations of these functions, which also preserves
the Chebyshev system property, we arrive at the systems {1, e(ν+φ)x , e2(ν+φ)x ,
x, −xe(ν+φ)x , xe2(ν+φ)x} and {1, e(ν+φ)x , e2(ν+φ)x , x, −xe(ν+φ)x , xe2(ν+φ)x ,
g2(x)e2φxQT C22(x)Q}. It suffices to show that these are Chebyshev systems for
any nonzero vector Q, which follows from Proposition 4 if we show that fl,l > 0,
l = 1, . . . ,6, for the latter system. It can be shown that f1,1 = f2,2/2 = 2f4,4 =
f5,5/4 = aeax , f3,3 = e−2ax and f6,6 =

(
2

e−ax/2
e−ax/2
2e−2ax

)
, where a = ν + φ. Thus

both systems are Chebyshev systems, and by part (c) of Theorem 1, we reach the
following conclusion.

THEOREM 6. For the double-exponential regrowth model (4.7), the designs
with at most four points, including U and V , form a complete class.

5. Discussion. We have given a powerful extension of the result in Yang
(2010) that has potential for providing a small complete class of designs whenever
the information matrix can be written as in (2.1). Irrespective of the optimality cri-
terion (provided that it does not violate the Loewner ordering) and of the function
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of θ that is of interest, the search for an optimal design can be restricted to the
small complete class. As the examples in Section 4 show, the results lead us to
conclusions that were not possible using the results in Yang (2010) and Dette and
Melas (2011).

As already pointed out, direct application of Theorem 1 may not be easy. Sec-
tion 4.3 shows some tricks that can be useful when using Theorem 1. Direct ap-
plication of Theorem 2 is easier because the condition for the function F(c) can
be verified with the help of software for symbolic computations. Sometimes it is
more convenient to do this after multiplying each of the � functions by the same
positive function (see Section 4.3).

There remain, however, some basic questions related the application of either
Theorem 1 or Theorem 2 that do not have simple general answers. For example,
what is a good choice for p1 in forming the matrix C22(c) in (2.4)? In Section 4,
the choice p1 = p/2 worked well, and selecting p1 approximately equal to p/2
may be a good general starting point. Moreover, there is the question of how to
order the rows and columns of the information matrix. By reordering the elements
in the parameter vector θ , we could wind up with different matrices C22(c), even
after fixing p1. So what ordering is best? In all of the examples in Section 4, we
have used an ordering that makes “higher-order terms” appear in C22(c), and this
may offer the best general strategy. There is still another issue related to ordering:
In renaming the independent �-functions in the first p − p1 columns of C(θ, c),
different orders will result in different fl,l-functions. In some cases, but not for
all, these functions will result in a function F(c) that satisfies the condition in
Theorem 2. In the examples, we have tended to associate “lower-order terms” with
the earlier �-functions, but what order is best may require some trial and error.

Whereas we have demonstrated that the main results of the paper are powerful,
regrettably we cannot offer any guarantees that they will always give results as
desired, even when the information matrix can be written in the form (2.1).

APPENDIX

PROPOSITION 1. Assume that {�0,�1, . . . ,�k−1} is a Chebyshev system de-
fined on an interval [A,B]. Let A ≤ z1 < z2 < · · · < zt ≤ B , and let r1, . . . , rt be
coefficients that satisfy the following k equations:

t∑
i=1

ri�l(zi) = 0, l = 0,1, . . . , k − 1.(A.1)

Then we have:

(a) If t ≤ k, then ri = 0, i = 1, . . . , t .
(b) If t = k +1 and one ri is not zero, then all are nonzero; moreover all ri’s for

odd i must then have the same sign, which is opposite to that of the ri ’s for even i.
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PROOF. For part (a), if t < k, we can expand z1, . . . , zt to a set of k distinct
points, taking ri = 0 for the added points. Thus without loss of generality, take
t = k. Consider the matrix

�(z1, z2, . . . , zk) =

⎛⎜⎜⎜⎝
�0(z1) �0(z2) · · · �0(zk)

�1(z1) �1(z2) · · · �1(zk)
...

...
. . .

...

�k−1(z1) �k−1(z2) · · · �k−1(zk)

⎞⎟⎟⎟⎠ .(A.2)

Then (A.1) can be written as

�(z1, z2, . . . , zk)R = 0,

where R = (r1, . . . , rk)
T . Since {�0,�1, . . . ,�k−1} is a Chebyshev system,

�(z1, z2, . . . , zk) is nonsingular, so that R = 0.
For part (b), if one ri is 0, then it follows from part (a) that all ri ’s are 0. There-

fore, if at least one ri is nonzero, then all of them must be nonzero. With the
notation from the previous paragraph, we can write (A.1) as

�(z1, z2, . . . , zk)R = −rk+1ψ(zk+1),

where ψ(zk+1) = (�0(zk+1),�1(zk+1), . . . ,�k−1(zk+1))
T . It follows that

ri = −rk+1
|�(z1, . . . , zi−1, zk+1, zi+1, . . . , zk)|

|�(z1, z2, . . . , zk)| , i = 1, . . . , k.(A.3)

By the Chebyshev system assumption, the denominator |�(z1, z2, . . . , zk)| in
(A.3) is positive, while the numerator |�(z1, . . . , zi−1, zk+1, zi+1, . . . , zk)| is pos-
itive for i = k, k − 2, . . . and negative otherwise. The result in (b) follows. �

PROPOSITION 2. Let {�0 = 1,�1, . . . ,�k−1} be a Chebyshev system on
an interval [A,B], and suppose that k = 2n − 1. Consider n pairs (ci,ωi),
i = 1, . . . , n, and n pairs (c̃i , ω̃i), i = 1, . . . , n, with ωi > 0, ω̃i > 0 and A ≤ c1 <

c̃1 < · · · < cn < c̃n = B . Suppose further that the following k equations hold:∑
i

ωi�l(ci) = ∑
i

ω̃i�l(c̃i), l = 0,1, . . . , k − 1.(A.4)

Then, for any function �k on [A,B], we can conclude that∑
i

ωi�k(ci) <
∑
i

ω̃i�k(c̃i)(A.5)

if {�0 = 1,�1, . . . ,�k−1,�k} is also a Chebyshev system.

PROOF. With

R = (ω1,−ω̃1,ω2,−ω̃2, . . . ,ωn)
T ,

the k equations in (A.4) can be written as

�(c1, c̃1, . . . , cn)R = ω̃nψ(c̃n),(A.6)
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where � and ψ are as defined in the proof of Proposition 1. Further, (A.5) is
equivalent to

(�k(c1),�k(c̃1), . . . ,�k(cn))R < ω̃n�k(c̃n).(A.7)

Using (A.6) to solve for R, and using that ω̃n > 0, we see that (A.7) is equivalent
to

(�k(c1),�k(c̃1), . . . ,�k(cn))�
−1(c1, c̃1, . . . , cn)ψ(c̃n) − �k(c̃n) < 0.(A.8)

From an elementary matrix result [see, e.g., Theorem 13.3.8 of Harville (1997)],
the left-hand side of (A.8) can be written as

−|�∗(c1, c̃1, . . . , cn, c̃n)|
|�(c1, c̃1, . . . , cn)| ,(A.9)

where

�∗(c1, c̃1, . . . , cn, c̃n)
(A.10)

=

⎛⎜⎜⎜⎜⎜⎝
�0(c1) �0(c̃1) · · · �0(cn) �0(c̃n)

�1(c1) �1(c̃1) · · · �1(cn) �1(c̃n)
...

...
. . .

...
...

�k−1(c1) �k−1(c̃1) · · · �k−1(cn) �k−1(c̃n)

�k(c1) �k(c̃1) · · · �k(cn) �k(c̃n)

⎞⎟⎟⎟⎟⎟⎠ .

Since both {�0,�1, . . . ,�k−1} and {�0,�1, . . . ,�k−1,�k} are Chebyshev sys-
tems and c1 < c̃1 < · · · < cn < c̃n, it follows that (A.9) is negative, which is what
had to be shown. �

A similar argument as for Proposition 2 can be used for the next result.

PROPOSITION 3. Let {�0 = 1,�1, . . . ,�k−1} be a Chebyshev system on an
interval [A,B] and suppose that k = 2n. Consider n pairs (ci,ωi), i = 1, . . . , n,
and n + 1 pairs (c̃i , ω̃i), i = 0,1, . . . , n, with ωi > 0, ω̃i > 0 and A = c̃0 < c1 <

c̃1 < · · · < cn < c̃n = B . Suppose further that the following k equations hold:∑
i

ωi�l(ci) = ∑
i

ω̃i�l(c̃i), l = 0,1, . . . , k − 1.(A.11)

Then, for any function �k on [A,B], we can conclude that∑
i

ωi�k(ci) <
∑
i

ω̃i�k(c̃i)(A.12)

if {�0 = 1,�1, . . . ,�k−1,�k} is also a Chebyshev system.

PROPOSITION 4. Consider functions �0 = 1,�1, . . . ,�k on an interval
[A,B]. Compute the corresponding functions fl,l as in (3.7), but with C22(c) re-
placed by �k , and suppose that fl,l > 0, l = 1, . . . , k − 1. Then {1,�1, . . . ,�k} is
a Chebyshev system if fk,k > 0, while {1,�1, . . . ,−�k} is a Chebyshev system if
fk,k < 0.
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PROOF. The conclusion for the case fk,k < 0 follows immediately from that
for fk,k > 0, so that we will only focus on the latter. We need to show that∣∣∣∣∣∣∣∣∣

1 1 · · · 1
�1(z0) �1(z1) · · · �1(zk)

...
...

. . .
...

�k(z0) �k(z1) · · · �k(zk)

∣∣∣∣∣∣∣∣∣ > 0(A.13)

for any given A ≤ z0 < z1 < · · · < zk ≤ B . Consider (A.13) as a function of zk .
The determinant is 0 if zk = zk−1, so that it suffices to show that the derivative of
(A.13) with respect to zk is positive on (zk−1,B), that is,∣∣∣∣∣∣∣∣∣

1 1 · · · 1 0
�1(z0) �1(z1) · · · �1(zk−1) f1,1(zk)

...
...

. . .
...

...

�k(z0) �k(z1) · · · �k(zk−1) fk,1(zk)

∣∣∣∣∣∣∣∣∣ > 0(A.14)

for any zk ∈ (zk−1,B). Now consider (A.14) as a function of zk−1, and use a sim-
ilar argument. It suffices to show that for zk−1 ∈ (zk−2, zk),∣∣∣∣∣∣∣∣∣

1 1 · · · 0 0
�1(z0) �1(z1) · · · f1,1(zk−1) f1,1(zk)

...
...

. . .
...

...

�k(z0) �k(z1) · · · fk,1(zk−1) fk,1(zk)

∣∣∣∣∣∣∣∣∣ > 0.(A.15)

Continuing like this, it suffices to show that∣∣∣∣∣∣∣
f1,1(z1) f1,1(z2) · · · f1,1(zk)

...
...

. . .
...

fk,1(z1) fk,1(z2) · · · fk,1(zk)

∣∣∣∣∣∣∣ > 0(A.16)

for any A ≤ z1 < z2 < · · · < zk ≤ B . Since f1,1(c) > 0 for c ∈ [A,B], (A.16) is
equivalent to ∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f2,1(z1)

f1,1(z1)

f2,1(z2)

f1,1(z2)
· · · f2,1(zk)

f1,1(zk)
...

...
. . .

...
fk,1(z1)

f1,1(z1)

fk,1(z2)

f1,1(z2)
· · · fk,1(zk)

f1,1(zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.(A.17)

Recall that the entries in the last k − 1 rows of this matrix are by definition simply
values of fl,2, l = 2, . . . , k. Hence, applying the same arguments used for (A.13)
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to (A.17) and using that f2,2(c) > 0 for c ∈ [A,B], it is sufficient to show that∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f3,2(z2)

f2,2(z2)

f3,2(z3)

f2,2(z3)
· · · f3,2(zk)

f2,2(zk)
...

...
. . .

...
fk,2(z2)

f2,2(z2)

fk,2(z3)

f2,2(z3)
· · · fk,2(zk)

f2,2(zk)

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.(A.18)

Continuing like this, the ultimate sufficient condition is that fk,k(c) > 0 for c ∈
[A,B], which is precisely our assumption. Thus the conclusion follows. �
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