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Abstract

The hypergraph product G2H has vertex set V (G) × V (H), and edge set {e × f : e ∈
E(G), f ∈ E(H)}, where × denotes the usual cartesian product of sets. We construct a hy-
pergraph sequence {Gn} for with χ(Gn) → ∞ and χ(Gn2Gn) = 2 for all n. This disproves
a conjecture of Berge and Simonovits [2]. On the other hand, we show that if G and H are
hypergraphs with infinite chromatic number, then the chromatic number of G2H is also infinite.

We also provide a counterexample to a “dual” version of their conjecture, by constructing a
graph sequence {Gn} with α(Gn)/|V (Gn)| → 0 and α(Gn2Gn)/|V (Gn)|2 → 1/2. The constant
1/2 cannot be replaced by a larger number.

1 Introduction

The direct product of hypergraphs G and H is the hypergraph G2H, whose vertex set is V (G)×
V (H), and edge set is {e× f : e ∈ E(G), f ∈ E(H)}, where × denotes the usual cartesian product

of sets. The chromatic number χ(G) of a hypergraph G is the minimum number of colors into

which V (G) can be partitioned so that every edge contains two vertices with different colors. Berge

and Simonovits [2] conjectured that if both χ(G) and χ(H) go to infinity, then so does χ(G2H)

(see also Problem 15.14 in [5]). In this note we disprove their conjecture. Our only tool is the

following result whose k = 2 case is due to Erdős [3, 4]. The proof for general k is essentially the

same as for k = 2 and we repeat it here for completeness.
∗Department of Mathematics, Statistics, and Computer Science, University of Illinois, 851 S. Morgan Street,

Chicago, IL 60607-7045; research supported in part by the National Science Foundation under grant DMS-0400812
†Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA; research sup-

ported in part by the National Science Foundation under grant DMS-0300529

1991 Mathematics Subject Classification: 05C35, 05C65, 05D05

Keywords: chromatic number, hypergraph product

1



Theorem 1. Fix integers k ≥ 2 and n ≥ 8. Then the minimum number mk(n) of edges in an

n-uniform hypergraph that is not k-colorable satisfies

kn−1 ≤ mk(n) < n2kn+2.

Proof. For the lower bound, observe that in a random k-coloring of an n-uniform hypergraph with

m edges, the expected number of monochromatic edges is m/kn−1. When m < kn−1 this is less

than 1, and hence the hypergraph admits a k-coloring. For the upper bound, we must produce

an n-uniform hypergraph with at most m = n2kn+2 edges that is not k-colorable. We do this by

picking m edges randomly (possibly with repetition) on a vertex set of size v = (k − 1)n2 + n. Fix

a k-coloring χ. The probability that a randomly chosen edge is monochromatic under χ is at least

k
(
v/k
n

)(
v
n

) >
1

kn−1

(
v − kn

v − n

)n

=
1

kn−1

(
1− 1

n

)n

.

The probability that none of the m independently chosen random n-sets is monochromatic under

χ is at most (
1− 1

kn−1

(
1− 1

n

)n)m

.

Consequently, the probability that there exists a k-coloring under which none of the m edges is

monochromatic is at most

kv

(
1− 1

kn−1

(
1− 1

n

)n)m

.

Since n ≥ 8, (1− 1/n)n > 1/3. Therefore an upper bound for the expression above is

kv

(
1− 1

3kn−1

)m

< kve−m/(3kn−1).

When m > 3kn−1v log k, this is less than 1, and moreover, a short calculation shows that for our

choice of v, 3kn−1v log k < 3n2kn log k < n2kn+2 hence the result follows.

Theorem 2. For every integer s ≥ 2 and k = 2s, there exists a hypergraph Gk satisfying χ(Gk) > k

and χ(Gk2Gk) = 2.

Proof. Set n = 4 log2 k. By the upper bound of Theorem 1, there exists an n-uniform hypergraph

Gk with χ(Gk) > k, and at most n2kn+2 edges. Now Gn2Gn is an n2-uniform hypergraph with at

most n4k2n+4 edges. By the choice of n, this is at most 2n2−1. By the lower bound in Theorem 1

applied with k = 2, we conclude that χ(Gn2Gn) = 2.

In spite of Theorem 2, the intuition behind Berge and Simonovits’ conjecture is correct, since

their conjecture holds for infinitely chromatic hypergraphs. In what follows we assume that all

hypergraphs have countable vertex sets.
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Theorem 3. Let G and H be hypergraphs whose edges have finite size. Suppose that G and H

each have infinite chromatic number. Then the chromatic number of G2H is infinite.

Proof. Suppose that V (G) = {x1, x2, . . .} and V (H) = {y1, y2, . . .}. Imagine that xi represents the

point (i, 0) in the xy plane, and yj represents the point (0, j). Think of a typical vertex (xi, yj) of

V (G)× V (H) as representing the point (i, j) in the xy plane.

Let Yj = {(x1, yj), (x2, yj), . . .} be the set of vertices on the line with equation y = j. For

S ⊂ Yj , let S−1 = {xi ∈ V (G) : (xi, yj) ∈ S}. We will repeatedly use the easy fact that if the

vertices of a hypergraph with infinite chromatic number are colored with finitely many colors, then

some color class induces a hypergraph with infinite chromatic number.

Now suppose for contradiction, that f is a proper coloring of V (G2H) with k colors, where k

is some positive integer. Let f1 be the restriction of f to Y1. Then f1 induces a coloring on V (G)

with k colors, defined by f1(xi) = f((xi, y1)). Consequently, there exists a color c1 and S1 ⊂ Y1 so

that f((v, w)) = c1 for all (v, w) ∈ S1 and χ(G1) = ∞, where G1 = G[S−1
1 ] is the subhypergraph

of G induced by S−1
1 . From now we restrict each Yj to V (G1)× V (H). Let f2 be the restriction of

f to Y2 ∩ (V (G1)× V (H)). In a similar way we obtain a color c2 and S2 ⊂ Y2 ∩ (V (G1)× V (H))

so that f((v, w)) = c2 for all (v, w) ∈ S2 and χ(G2) = ∞, where G2 = G1[S−1
2 ]. Repeating this we

get a sequence S1, S2, . . . and G1 ⊃ G2 ⊃ . . . where Sj ⊂ Yj ∩ (V (Gi−1) × V (H)), f((v, w)) = cj

for all (v, w) ∈ Sj and Gj = Gj−1[S−1
j ]. Note also that the sets Sj are nested in the sense that

(xi, yj+1) ∈ Sj+1 implies that (xi, yj) ∈ Sj .

Consider the coloring f∗ of V (H) defined by f∗(yj) = cj . By the fact above, there is a color c

and a set T ⊂ V (H) so that f∗(yl) = c for all yl ∈ T and χ(H[T ]) = ∞. The latter implies that

there is an edge Y = {yj1 , . . . , yjm} ∈ E(H[T ]) with j1 < j2 < · · · < jm. Consider the hypergraph

I = Gjm2H[Y ] ⊂ G2H. By construction, f((v, w)) = c for every (v, w) ∈ I. Since Gjm contains

an edge of G and Y ∈ E(H[Y ]), we deduce that I contains an edge which is monochromatic in

color c. Because I ⊂ G2H, this is a monochromatic edge in G2H under f , a contradiction.

We remark that Theorem 3 also applies to the case when precisely one of the hypergraphs, say

G, has edges that are infinite. For the proof to work, we only need that Y = {yj1 , . . . , yjm} is finite,

which is guaranteed if all edges of H are finite.

On the other hand Theorem 3 does not hold when both hypergraphs have edges only of infinite

size. Indeed, if we let G be the hypergraph with V (G) = {1, 2, . . .} and E(G) comprising all infinite

subsets of V (G), then clearly χ(G) = ∞, since any coloring with finitely many colors results in

a monochromatic infinite set, which is a monochromatic edge. Now we can color vertex (i, j) in

V (G2G) red if i ≤ j and blue otherwise. It is easy to see (since all edges of G have infinite size)

that this is a proper 2-coloring of G2G. This implies, more generally, that whenever G and H have

only infinite size edges, and χ(G) and χ(H) are both ∞, then χ(G2H) = 2.
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More precisely, we can write H = HFIN ∪HINF and G = GFIN ∪GINF , where the subscripts

denote the subhypergraph induced by the edges that are finite (FIN) or infinite (INF ). Note

that χ(G) = ∞ if and only at least one of χ(GFIN ) or χ(GINF ) is ∞, since if χ(G) is finite, then

χ(G) ≤ χ(GFIN ) · χ(GINF ). Theorem 3 and the preceding discussion imply the following result.

Theorem 4. Suppose that χ(G) = ∞ and χ(H) = ∞. Then χ(G2H) = ∞ if and only if

χ(GFIN ) = ∞ or χ(HFIN ) = ∞.

As the chromatic number of almost all graphs on n vertices is n divided by the independence

number, one could ask whether the analogue of the Berge-Simonovits conjecture holds for inde-

pendence number, i.e., if α(Gn)/|V (Gn)| → 0, then does it follow that α(Gn2Gn)/|V (Gn)|2 → 0

as well? This question was posed by Kostochka [6]. Here we construct a sequence {Gn} with

α(Gn)/|V (Gn)| → 0 and α(Gn2Gn)/|V (Gn)|2 6→ 0 by relating it to the subject of Ramsey-Turán

theory (see [8] for a survey).

One of the seminal results in this field is due to Bollobás-Erdős [1]. They constructed an n

vertex graph (n sufficiently large) with at least (1/8 − o(1))n2 edges that contains no copy of K4

and has independence number at most o(n). In addition to this, we need the following lemma.

Lemma 5. Fix 0 < γ < 1/2 and n ≥ 2. Let G be a graph with vertex partition X ∪ Y , each of

size n. Suppose that α(G[X]) and α(G[Y ]) are both at most γn, and G contains no K4 with two

vertices in each of X, Y . Then the number of edges with one endpoint in X and the other in Y is

at most (1/2 + γ)n2.

Proof. Suppose, for contradiction, that the number of X, Y edges is greater than (1/2 + γ)n2. Let

X ′ be the set of vertices in X with at least (1/2 + γ/2)n neighbors in Y . Counting edges between

X and Y we obtain

(1/2 + γ)n2 < |X ′|n + (n− |X ′|)(1/2 + γ/2)n.

This yields |X ′| > γn/(1−γ) > γn. Hence there exist two adjacent vertices u, v ∈ X ′. Considering

their neighborhoods in Y , we obtain at least γn vertices in Y adjacent to both u and v. Two of

these, say y, z must be adjacent. Now {u, v, y, z} forms a copy of the forbidden K4.

Theorem 6. For every sufficiently large n, there exists a graph Gn on n vertices with α(Gn)/n → 0

and α(Gn2Gn)/n2 → 1/2. The constant 1/2 cannot be replaced by a larger number.

Proof. The Bollobás-Erdős graph BE on 2n vertices has a vertex partition into two sets X1, X2

each of size n, such that the number of edges within each part is at most o(n2). Let BEi be the

subgraph induced by Xi. Then the construction of Bollobás-Erdős yields BE1
∼= BE2. Let us call

each of these graphs Gn. Note that α(Gn) = o(n) since α(BE) = o(n). Now we construct a large

independent set in Gn2Gn. Consider the set of edges in BE between X1 and X2. We know there
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are (1/2 − o(1))n2 of them. Each of these edges corresponds to a vertex in Gn2Gn. An edge in

Gn2Gn containing four of these chosen vertices corresponds to a copy of K4 in BE. Since no such

copy of K4 exists in BE, we conclude that the set of vertices chosen in Gn2Gn is an independent

set. The first claim of the theorem follows.

For the second part, suppose that we have an n vertex graph Gn with α(Gn)/n = o(1). Pick an

independent set S in Gn2Gn. This results in a construction of a 2n vertex graph G, whose vertex

set is partitioned into two copies of Gn, and whose edge set contains in addition the elements of S.

The fact that S is independent is equivalent to the fact that G contains no copy of K4 with two

vertices in each part. By Lemma 5, the number of edges of G with endpoints in different copies of

Gn is at most (1/2 + o(1))n2. In other words, |S| ≤ (1/2 + o(1))n2 as required.

Our construction in Theorem 2 has the property that the sizes of the edges of Gk are not

bounded. Perhaps the following is true.

Conjecture 7. For every r ≥ 2 there exists c ≥ 2 so that for every positive integer k, there exist

r-graphs Gk and Hk for which χ(Gk) > k, χ(Hk) > k, and χ(Gk2Hk) ≤ c. Moreover, the above

also holds for c = r = 2.

A disproof of this conjecture would give a positive answer to a question of Poljak and Rödl [7]

which is a weaker version of the well-known Hedetniemi conjecture on the chromatic number of

graph products.
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