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Abstract

Fix integers k ≥ 3 and n ≥ 3k/2. Let F be a family of k-sets of an n-element set so that
whenever A,B, C ∈ F satisfy |A ∪ B ∪ C| ≤ 2k, we have A ∩ B ∩ C 6= ∅. We prove that
|F| ≤ (

n−1
k−1

)
with equality only when

⋂
F∈F F 6= ∅. This settles a conjecture of Frankl and

Füredi [2], who proved the result for n ≥ k2 + 3k.

1 Introduction

We write [n] for {1, . . . , n} and Xk for the family of all k-element subsets of a finite set X. A family
of sets is a star if there is a fixed element contained in all members of the family. Our starting point
is the fundamental result of Erdős-Ko-Rado (EKR) which states that for n ≥ 2k, the maximum
size of an intersecting family of k-sets of [n] is

(
n−1
k−1

)
, and if n > 2k then equality holds only for a

star. Rephrasing, if F ⊂ [n]k and for every A,B ∈ F (for which naturally |A ∪ B| ≤ 2k) we have
A ∩ B 6= ∅, then |F| ≤ (

n−1
k−1

)
. Frankl [1] generalized this to more than two sets by proving the

following result.

Theorem 1. (Frankl) Let F ⊂ [n]k and let d ≥ 2 and n ≥ dk/(d− 1). Suppose that every d sets
of F have nonempty intersection. Then |F| ≤ (

n−1
k−1

)
.

Katona asked whether the conclusion of Theorem 1 holds for an appropriately defined larger
class of families F . Specifically, he made the following definition.

Definition. Let k ≤ s ≤ 3k. Then f(n, k, s) denotes the maximum size of a family F ⊂ [n]k so
that whenever A,B, C ∈ F satisfy |A ∪B ∪ C| ≤ s, we have A ∩B ∩ C 6= ∅.

Frankl and Füredi [2] proved that for every 2k ≤ s ≤ 3k, f(n, k, s) =
(
n−1
k−1

)
as long as n ≥ k2+3k,

and observed that f(n, k, 2k−1) = Ω(nk) for fixed k. Note that the lower bound f(n, k, s) ≥ (
n−1
k−1

)
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is valid for all s ∈ {2k, . . . , 3k} by simply letting F be a maximum sized star. Moreover, by
definition f(n, k, s + 1) ≤ f(n, k, s), hence Frankl and Füredi’s first result follows by proving the
upper bound just for s = 2k. They conjectured that f(n, k, 2k) =

(
n−1
k−1

)
for all k ≥ 3 and n ≥ 3k/2,

with equality only for a star. The threshold 3k/2 follows from the fact that for smaller n, three sets
A,B, C ∈ F whose intersection is empty cannot exist (so in particular, we can have |F| = (

n
k

)
).

Frankl and Füredi [2] proved their conjecture for k = 3, and commented (without proof) that
their approach also works for k = 4, 5 and more generally for n > k2/ log k. Their proof is somewhat
complicated since it uses the Hilton-Milner theorem on nontrivial intersecting families. In this note
we prove their conjecture.

Theorem 2. Let k ≥ 3 and n ≥ 3k/2. Then f(n, k, 2k) =
(
n−1
k−1

)
with equality only for a star.

Our proof is shorter than in [2], and perhaps simpler, since it uses only EKR. The main idea is to
reduce the problem to a situation where we have a partition of the ground set into pairwise disjoint
k-sets. The problem in this environment is then handled in the following (somewhat technical)
lemma.

Lemma 3. Fix k, t ≥ 2 and 1 ≤ l ≤ k. Let S1, . . . , St be pairwise disjoint k-sets and X =
⋃

i Si.
Suppose that F ⊂ X l with Si ∈ F for all i if l = k and F = {S1, S2} if t = 2 as well. Suppose that
for every A,B ∈ F and i ∈ [t], A ∩B ∩ Si = ∅ implies that |(A ∪B)− Si| > l. Then |F| < (

tk−1
l−1

)
.

Proof. We proceed by induction on t. For the base case, suppose that t = 2. If l = k, then |F| =
2 <

(
2k−1
k−1

)
, so assume that l < k. If A,B ∈ F are disjoint l-sets, then either |A∩S1|+ |B ∩S1| ≤ l

or |A∩S2|+ |B ∩S2| ≤ l. Say the first inequality holds. Then A,B, 2 violate the hypothesis of the
lemma, since |(A ∪ B) − S2| = |A ∩ S1| + |B ∩ S1| ≤ l. Consequently, F is an intersecting family,
and by EKR, we have |F| ≤ (

2k−1
l−1

)
. If equality holds, then since 2l < 2k, again by EKR we obtain⋂

F∈F F = {x}, and F consists of all l-sets containing x. We may assume without loss of generality
that x ∈ S1. Now take two different sets A,B ∈ F with A ⊂ S1 and B ∩ S1 = {x}. Then A, B, 2,
violate the hypothesis of the lemma, hence equality cannot hold.

Next suppose that t ≥ 3 and the result holds for t− 1. We first consider the case l < k. If there
exist A,B ∈ F and i 6= j for which A ⊂ Si and B ⊂ Sj , then A,B, i (and also A,B, j) violate the
hypothesis. Hence we may assume that there is an i0, such that no A ∈ F satisfies A ⊂ Si0 . By
relabelling if necessary, assume i0 = t.

Now consider any F ∈ F . Write F as F1 ∪F2, where F1 = F ∩St and F2 = F −F1. For a fixed
F1 of size l − r (1 ≤ r ≤ l), let Fr be the family of all r-sets F2 ⊂

⋃t−1
i=1 Si such that F1 ∪ F2 ∈ F .

If there exist C, D ∈ Fr and i ∈ [t − 1] for which C ∩ D ∩ Si = ∅ and |(C ∪ D) − Si| ≤ r, then
C1 = C ∪ F1, D1 = D ∪ F1, i violate the hypothesis of the lemma, since C1 ∩D1 ∩ Si = ∅ and

|(C1 ∪D1)− Si| = |(C ∪D)− Si|+ |F1| ≤ r + (l − r) = l.

Hence by induction, we conclude that |Fr| <
(
(t−1)k−1

r−1

)
. Recalling that F ∩ (St)l = ∅, we obtain

|F| <
l∑

r=1

( |St|
l − r

)(
(t− 1)k − 1

r − 1

)
=

l∑

r=1

(
k

l − r

)(
(t− 1)k − 1

r − 1

)
=

(
tk − 1
l − 1

)
.
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Next we consider the case l = k. In this case St ∈ F , so a similar argument as above yields

|F| ≤
k∑

r=1

(
k

k − r

)((
(t− 1)k − 1

r − 1

)
− 1

)
+ 1 =

(
tk − 1
k − 1

)
−

k∑

r=1

(
k

r

)
+ 1 <

(
tk − 1
k − 1

)
,

where the last inequality holds since k ≥ 2.

To settle the cases of small n, we need a recent result of the author and Verstraëte [3] who
proved that for 3k/2 ≤ n ≤ 2k, every family F ⊂ [n]k containing no three sets A,B,C for which
A ∩B ∩ C = ∅ satisfies |F| ≤ (

n−1
k−1

)
, and equality holds only if F is a star (the bound |F| ≤ (

n−1
k−1

)

was proved much earlier by Frankl [1], but he didn’t characterize the case of equality).

Proof of Theorem 2: The cases 3k/2 ≤ n ≤ 2k are settled by the result of [3], so we consider
n > 2k. Suppose that F ⊂ [n]k such that A,B, C ∈ F and |A ∪ B ∪ C| ≤ 2k implies that
A ∩B ∩ C 6= ∅. We will show that |F| ≤ (

n−1
k−1

)
with equality only if F is a star.

Let S1, . . . , St be a maximum subfamily of pairwise disjoint k-sets from F . If t = 1, then F is
in fact intersecting, and the theorem follows from EKR, so assume that t ≥ 2. If n = tk, then set
l = k. The condition on F in the theorem implies the condition on F in Lemma 3 (with Si in the
statement of the lemma playing the role of C ∈ F above). Hence we may apply Lemma 3 directly
and obtain |F| < (

n−1
k−1

)
.

We now suppose that n > tk and let Y = [n]−⋃
i Si. As in the proof of Lemma 3, each F ∈ F

can be written as F1 ∪ F2, where F1 = F ∩ Y , and F2 = F − F1. By construction of S1, . . . , St, no
A ∈ F satisfies A ⊂ Y . Now fix F1 ⊂ Y k−l (1 ≤ l ≤ k), and consider the family Fl of all l-sets
F2 ⊂

⋃t
i=1 Si such that F1∪F2 ∈ F . Suppose first that l < k. If there exist A,B ∈ Fl and i ∈ [t] for

which A∩B∩Si = ∅ and |(A∪B)−Si| ≤ l, then consider the three sets A1 = A∪F1, B1 = B∪F1, Si.
Clearly A1 ∩B1 ∩ Si = ∅ and

|A1 ∪B1 ∪ Si| = |Si|+ |(A ∪B)− Si|+ |F1| ≤ k + l + (k − l) = 2k.

If l = k then observe that Si ∈ Fk for all i ∈ [t], and if in addition t = 2, then Fk = {S1, S2}, since
a third set in Fk is prohibited by the conditions on F . Consequently, Fl satisfies the hypothesis of
Lemma 3, and we obtain |Fl| <

(
tk−1
l−1

)
for all 1 ≤ l ≤ k. Therefore, noting again that F ∩ Y k = ∅,

|F| <
k∑

l=1

( |Y |
k − l

)(
tk − 1
l − 1

)
=

k∑

l=1

(
n− tk

k − l

)(
tk − 1
l − 1

)
=

(
n− 1
k − 1

)
.

We end by conjecturing an extension of this problem to more than three sets.

Conjecture 4. Let k ≥ d ≥ 3 and n ≥ dk/(d − 1). Suppose that F ⊂ [n]k such that for every
A1, . . . , Ad ∈ F satisfying |⋃i Ai| ≤ 2k we have

⋂
i Ai 6= ∅. Then |F| ≤ (

n−1
k−1

)
, with equality only if

F is a star.
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