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Abstract

Let the k-graph Fank consist of k edges that pairwise intersect exactly in one vertex

x, plus one more edge intersecting each of these edges in a vertex different from x. We

prove that, for n sufficiently large, the maximum number of edges in an n-vertex k-graph

containing no copy of Fank is
∏k

i=1b
n+i−1

k c, which equals the number of edges in a complete

k-partite k-graph with almost equal parts. This is the only extremal example. This result

is a special case of our more general theorem that applies to a larger class of excluded

configurations.

1 Introduction

The first theorem in extremal graph theory is Mantel’s 1907 result, which determines the max-

imum number of edges in a triangle-free graph on n vertices (cf. Turán [22]). There are several

possible generalizations of this problem to k-uniform hypergraphs (k-graphs for short). One was

suggested by Katona [9] and Bollobás [1] (see Frankl-Füredi [4, 5], de Caen [2], Sidorenko [20],

Shearer [19], Keevash-Mubayi [10], Pikhurko [16]). Another extension, the so-called expanded
∗Partially supported by NSF Grant DMS-0400812, and an Alfred P. Sloan Research Fellowship.
†Partially supported by NSF Grant DMS-0457512.
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triangle, was studied by Frankl [3] and Keevash-Sudakov [11]. In this paper we provide yet

another generalization.

Let Fank be the k-graph comprising k + 1 edges E1, . . . , Ek, E, with Ei ∩ Ej = {x} for all

i 6= j, where x 6∈ E, and |Ei ∩ E| = 1 for all i. In other words, k edges share a single common

vertex x and the last edge intersects each of the other edges in a single vertex different from x.

Please note that Fan2 is simply a triangle, and in this sense Fank generalizes the definition of

K3. There is another, perhaps more subtle way that Fank is an extension of K3.

Call a hypergraph simple if every two edges share at most one vertex. One of the formulations

of the celebrated Erdős-Faber-Lovász conjecture states that the minimum number of edges in

a simple k-graph that is not k-partite is k + 1. Kahn [8] proved this with k + 1 replaced by

(1 + o(1)) k, but the question of the exact value remains open. If the conjecture is true, then

Fank is a simple k-graph that is not k-partite with the minimum number of edges, and in this

sense it generalizes a 2-graph triangle.

For l ≥ k, let T k
l (n) be the complete l-partite k-graph with part sizes bn/lc or dn/le: every

edge of T k
l (n) has at most one vertex in each of the l parts, and all edges subject to this

restriction are present. Let

tkl (n) = |T k
l (n)|.

(We identify a k-graph with its edge set.) It is convenient to agree that T k
l (n) = ∅ and tkl (n) = 0

if l < k. Given a k-graph F , we write ex(n, F ) for the maximum number of edges in an n-vertex

k-graph containing no copy of F . Mantel proved that ex(n, Fan2) = t22(n) for all positive n.

Here we generalize this to k > 2, for large n.

Theorem 1 Let k ≥ 3. Then, for all sufficiently large n, the maximum number of edges in

an n-vertex k-graph containing no copy of Fank is tkk(n) =
∏k

i=1b
n+i−1

k c. The only k-graph for

which equality holds is T k
k (n).

Our approach to proving Theorem 1 comes from two recent papers by the current authors

[13, 15]. Although the paper [15] has been accepted by the Journal of Combinatorial Theory,

Series B, its publication is suspended for an indefinite period of time because of a disagreement

over the copyright between the author and the publisher. We feel that the approach is quite

versatile and may be applicable to other hypergraph Turán problems. Therefore, we give a

complete description of the method and provide self-contained proofs for any claims from [15].

So suppose that we wish to prove that ex(n, F ) = tkl (n) for a given F . The method has four

steps:

Step 1. Define an appropriately chosen family F of k-graphs such that F ∈ F . There is no

general recipe for F . A particular property that F should possess is that any F -free k-graph of
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order n can be made F-free by removing o(nk) edges. Then ex(n, F ) = ex(n,F) + o(nk) but,

hopefully, ex(n,F) is easier to analyze.

Step 2. Prove that F is stable with respect to T k
l (n). Loosely speaking, this means that

every F-free k-graph G on n vertices with close to ex(n,F) edges can be transformed to T k
l (n)

without changing too many edges.

Step 3. From the stability of F , deduce the stability of F . (We use the property of F from

Step 1, whose proof is combined with Step 3 in this article.)

Step 4. Using the stability of F , deduce the exact result ex(n, F ) = tkl (n). This technique

was first employed by Simonovits [21] to determine ex(n, F ) exactly for color-critical 2-graphs

F . Recently, stability has been used to determine exact results for several hypergraph Turán

problems [6, 10, 11, 12, 15, 16].

The next three sections give the details of Steps 2–4, culminating in a proof of Theorem 1.

Actually, our main result, Theorem 3 proved in Section 4, determines the exact extremal func-

tion for a more general configuration which includes Fank as a special case. We next define the

family used in Step 1.

Fix l ≥ k ≥ 2. Let Fk
l be the set of all minimal k-graphs F such that there is an l-set C,

called the core, such that at least one edge D ∈ F lies entirely in C and every pair of vertices

of C is covered by an edge of F . (Of course, it suffices to consider only pairs not inside D.) Let

F k
l be the k-graph with edges: [k] and Eij ∪ {i, j} over all pairs {i, j} ∈

(
[l]
2

)
\

(
[k]
2

)
, where Eij

are pairwise disjoint (k − 2)-sets disjoint from [l]. Clearly, F k
l ∈ Fk

l . Note that

• Fk
k = {F k

k } and F k
k is the k-graph of one edge,

• F2
l = {K2

l },

• F k
k+1 = Fank.

For l ≥ k ≥ 2 a particular Fk
l+1-free k-graph is T k

l (n). It is easy to see this, since if T k
l (n)

contains a copy of F ∈ Fk
l+1, then the vertex set in T k

l (n) playing the role of C must have at

most one point in each part of T k
l (n) but there are not enough parts to accommodate these l+1

vertices. Consequently, the maximum size of an n-vertex Fk
l+1-free k-graph is at least tkl (n). In

fact, we have an equality:

Theorem 2 Let n ≥ l ≥ k ≥ 2, and let G be an n-vertex Fk
l+1-free k-graph. Then |G| ≤ tkl (n),

and if equality holds then G = T k
l (n).

This result can be proved by a straightforward modification of the proof of Theorem 1 in
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[13]. Also, one can obtain it as a by-product of our proof of Theorem 4 below (see the remark

following the inequality (4)).

The main theorem of the current paper is the following extension of Theorem 1.

Theorem 3 Let l ≥ k ≥ 2. Then, for all sufficiently large n, we have ex(n, F k
l+1) = tkl (n) and

T k
l (n) is the unique maximum F k

l+1-free k-graph of order n.

Let us specify here the notation we are going to use. We write V (G) for the vertex set of a

k-graph G. Given a vertex x ∈ V (G), the link of x is the (k − 1)-graph

LG(x) = {S \ {x} : S ∈ G, S 3 x},

and the degree is degG(x) = |LG(x)|. The codegree of x and y, written codegG(x, y), is the

number of edges in G containing both x and y, and the neighborhood of x is

NG(x) = {y : codeg(x, y) > 0, y 6= x}.

Given X ⊂ V (G), let eG(X) be the number of edges in G that contain at least two vertices

from X. In all cases above, we omit the subscript G if the k-graph G is obvious from context.

For S ⊂ V (G), we write G[S] for the hypergraph induced by G on S. Two k-graphs F and G

of the same order are m-close if we can add or remove at most m edges from the first graph

and make it isomorphic to the second; in other words, for some bijection σ : V (F ) → V (G) the

symmetric difference between σ(F ) = {σ(D) : D ∈ F} and G has at most m edges.

The notation a± b means a number between a− b and a + b.

2 Step 2: Fk
l+1 is stable

Our goal in this section is to prove the following stability result.

Theorem 4 For any l ≥ k ≥ 2 and δ > 0 there exist ε > 0 and M such that the following

holds for all n > M : If G is an n-vertex Fk
l+1-free k-graph with at least tkl (n)− εnk edges, then

G is δnk-close to T k
l (n).

The proof of Theorem 4 has many similarities to that in [13, Theorem 3]. Thus we will refer

to [13] for proofs of some claims, when the arguments are identical. In particular, we use the

following facts shown in [13].

Equation (1) in [13]: For any l ≥ k ≥ 2 and 0 ≤ s ≤ n we have

tkl−1(n− s) + s · tk−1
l−1 (n− s) ≤ tkl (n). (1)
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Hint. The left-hand side of (1) is the number of edges in the complete l-partite k-graph with

one part of size s and other part sizes being bn−s
l−1 c and dn−s

l−1 e.

Claim 1 in [13]: For any l ≥ k ≥ 2 and δ > 0 there are ε > 0 and M such that, for any

l-partite k-graph of order n ≥ M and size at least tkl (n) − εnk, the number of vertices in each

part is (
1
l
± δ

)
n. (2)

Proof of Theorem 4. Our proof uses induction on k + l. It is convenient to start with the

trivial base case l = k − 1 which formally satisfies the conclusion of the theorem: F k
k is the

k-graph of one edge, and T k
k−1(n) has no edges. The other base case k = 2 is the content of the

Simonovits stability theorem [21], so we further assume that l ≥ k > 2.

Let δ = δl > 0 be given. Our goal is to obtain ε = εl and M = Ml satisfying the theorem.

We choose the constants in this order:

δl � δl−1 � εl−1 � εl �
1

Ml−1
� 1

Ml
,

where a � b means that b > 0 is sufficiently small depending on a (and k, l). In particular,

we assume that εl−1,Ml−1 demonstrate the validity of the theorem for l − 1, k − 1, and δl−1.

Suppose that n > Ml. Let G be an Fk
l+1-free k-graph on n vertices with

|G| ≥ tkl (n)− εln
k. (3)

Pick a vertex x ∈ V (G) of maximum degree ∆. Let N = N(x) be the neighborhood of

x, that is, the set of vertices y 6= x for which codegG(x, y) > 0. Consider the k-graph G[N ]

induced by N , and suppose that it contains a copy H of a member of Fk
l . Let C ⊂ V (H) be

the core of H, and D ⊂ C for some D ∈ G. Form H ′ from H by adding the vertex x and edges

containing each pair {x, v} with v ∈ C. These edges exist by the definition of N . Therefore H ′

contains a member of Fk
l+1 with core C ∪ {x}, which is a contradiction. Consequently, G[N ] is

Fk
l -free.

Next consider the (k−1)-graph L, where L = L(x) is the link of x. Suppose that L contains

a copy H of a member of Fk−1
l . Enlarge every edge of H to contain x. The resulting k-graph

contains a copy of some H ′ ∈ Fk
l+1 with core C∪{x}, a contradiction. Therefore L is Fk−1

l -free.

Set s = n − |N | and let X = V (G) \N . Note that x ∈ X. Since G[N ] is Fk
l -free and L is

Fk−1
l -free, Theorem 2 implies that |G[N ]| ≤ tkl−1(n− s) and ∆ = |L| ≤ tk−1

l−1 (n− s). This gives

|G| ≤ |G[N ]|+ s ·∆− eG(X)

≤ tkl−1(n− s) + s · tk−1
l−1 (n− s)− eG(X)

≤ tkl (n)− eG(X), (4)
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where the last inequality follows from (1). (Recall that eG(X) is the number of edges of G

that intersect X in at least two vertices.) At this stage, one can deduce the upper bound in

Theorem 2 by induction on k + l since, obviously, eG(X) ≥ 0. (A further routine analysis will

also show that T k
l (n) is the unique extremal configuration for ex(n,Fk

l+1).)

The inequalites (3) and (4) imply that

tkl (n)− εln
k ≤ tkl−1(n− s) + s · tk−1

l−1 (n− s).

Note that the right-hand side is the size of the l-partite k-graph with n vertices such that one

part has size s and the other l − 1 parts are almost equal. From (2), we conclude that

s =
(

1
l
± δl−1

)
n. (5)

Moreover, routine calculations show (alternatively, see Claim 2 in [13, Theorem 3]) that (3)

and (4) imply that

∆ = |L| > tk−1
l−1 (n− s)− εl−1(n− s)k−1. (6)

Now consider L. This (k − 1)-graph has n − s vertices. Since n ≥ Ml � Ml−1, we have

n − s ≥ Ml−1 by (5). Because of (6) we may apply the induction hypothesis to the Fk−1
l -free

(k − 1)-graph L. We conclude that there exists a Turán hypergraph Tl−1
∼= T k−1

l−1 (n − s) with

vertex partition N = W1 ∪ . . . ∪Wl−1 such that

|Tl−1 4 L| ≤ δl−1(n− s)k−1. (7)

By (5) we conclude that for each i ∈ [l − 1] we have

|Wi| =
n− s

l − 1
± 1 =

(
1
l
± δl−1

)
n. (8)

Let Wl = X and let Tl be the l-partite k-graph with the vertex partition W1 ∪ . . . ∪ Wl.

By (5) and (8) Tl is δl
2 nk-close to a T k

l (n) because we can transform one to the other by moving

at most δl−1n× l vertices between parts, thus changing at most δl−1ln×
(
n−1
k−1

)
< (δl/2)nk edges.

We will show that

|G \ Tl| ≤
δl

5
nk. (9)

This implies, in view of (3) and the inequality |Tl| ≤ tkl (n), that

|G4 Tl| = |Tl| − |G|+ 2|G \ Tl| ≤ εl n
k +

2δl

5
nk <

δl

2
nk,

and the desired bound |G4 T k
l (n)| ≤ δln

k follows from the triangle inequality.

From (4) we conclude that eG(X) ≤ εln
k. Suppose on the contrary to (9) that we have

more than δl
5 nk − εln

k > δl
6 nk edges of G intersecting some part of N in at least two vertices.
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By averaging there is an i ∈ [l − 1] such that |B| ≥ δl
6l n2, where B consists of all 2-subsets of

Wi covered by at least one edge of G. Assume that i = l − 1 without loss of generality.

Let w = (1
l − δl−1)n. Recall that w is a lower bound on each |Wi| by (5) and (8). For every

choice of x1 ∈ W1, . . . , xl−2 ∈ Wl−2 and {xl−1, xl} ∈ B, at least wl−2 × δl
6l n2 choices in total,

we consider a potential copy of Fk
l+1 with core C = {x, x1, . . . , xl}. (Recall that x is the chosen

vertex of maximum degree.) As G is Fk
l+1-free, at least one of the following must hold:

1. K 6∈ G, where K = {x, x1, . . . , xk−1}.

2. A pair {x, xi} with i ∈ [l] is not covered by an edge of G.

3. A pair {xi, xj} with {i, j} 6= {l − 1, l} is not covered by an edge of G.

One of these three alternatives holds for at least one third of the choices of xi’s. If it is

Alternative 1, then for each such K we have K \ {x} ∈ Tl−1 \L. Any fixed set K is counted at

most nl−k+1 times. Now, since δl−1 � δl, we obtain a contradiction to (7):

|Tl−1 \ L| ≥ 1
3
× wl−2 × δl

6l
n2 × n−l+k−1 > δl−1(n− s)k−1.

If it is Alternative 2, then we obtain a contradiction as follows. For every uncovered pair {x, xi},
the vertex xi belongs to at least wk−2 edges of the (k − 1)-graph Tl−1. None of these edges

belongs to L, for otherwise the pair {x, xi} would be covered by an edge of G. On the other

hand, every edge D ∈ Tl−1 \L appears this way for at most (k− 1) nl−1 choices of the sequence

(x1, . . . , xl): we have to choose xi ∈ D and then the other l − 1 vertices xj . Thus we have

|Tl−1 \ L| ≥ 1
3
× wl−2 × δl

6l
n2 × wk−2 × 1

(k − 1) nl−1
> δl−1(n− s)k−1,

again a contradiction to (7). Finally, suppose that Alternative 3 appears frequently. Each pair

{xi, xj} belongs to at least wk−3 edges of Tl−1 \L. However, each such edge is counted at most(
k−1
2

)
nl−2 times. Hence,

|Tl−1 \ L| ≥ 1
3
× wl−2 × δl

6l
n2 × wk−3 ×

(
k − 1

2

)−1

n−l+2 > δl−1(n− s)k−1.

Again we obtain a contradiction to (7). This completes the proof of Theorem 4.

3 Step 3: F k
l+1 is stable

Please note that Theorem 5 below is formally stronger than Theorem 4. However, it follows

from Theorem 4 by an application of Lemma 4 from [15]. The last result indirectly relies on the

recent Hypergraph Regularity Lemma of Gowers [7] or Nagle-Rödl-Schacht-Skokan [14, 18, 17].
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For our particular hypergraph F k
l+1, the recourse to such a complicated technique is not really

necessary and we present a short and self-contained proof, similar to the proof of Lemma 3

in [15].

Theorem 5 For any l ≥ k ≥ 2 and δ > 0 there exist ε > 0 and M such that the following holds

for all n > M : Any n-vertex F k
l+1-free k-graph G with at least tkl (n) − εnk edges is δnk-close

to T k
l (n).

Proof. Given δ > 0, let δ � ε � 1/M .

Suppose that n > M and G is an n-vertex F k
l+1-free k-graph with at least tkl (n)−εnk edges.

Let G′ be obtained from G by deleting all edges that contain a pair of vertices whose codegree

is at most l3
(

n
k−3

)
. Since the number of pairs of vertices is

(
n
2

)
, we have

|G \G′| ≤ l3
(

n

k − 3

)
×

(
n

2

)
< εnk <

δ

2
nk. (10)

Now we argue that G′ is Fk
l+1-free. Suppose on the contrary that G′ contains a copy of some

F ∈ Fk
l+1 with core C and edge D ⊂ C . Since every pair of vertices x, y ∈ C is contained in

an edge of G′, we have, by l ≥ k ≥ 2,

codegG(x, y) ≥ l3
(

n

k − 3

)
>

((
l + 1

2

)
(k − 2) + l + 1

) (
n

k − 3

)
.

Hence we can greedily choose edges of G containing all pairs in
(
C
2

)
\

(
D
2

)
, so that these edges

intersect C in precisely two vertices and are pairwise disjoint outside C. The resulting set of(
l+1
2

)
−

(
k
2

)
edges, together with D, forms a copy of F k

l+1 in G, a contradiction.

We have

|G′| > |G| − ε nk ≥ (tkl (n)− εnk)− ε nk = tkl (n)− 2εnk.

We apply Theorem 4 to G′ and conclude that G′ is δ
2 nk-close to T k

l (n). By (10), G and T k
l (n)

are δnk-close. The proof is complete.

4 Step 4: Proof of Theorem 3

Proof. If k = 2, then Theorem 3 is precisely the Turán theorem [22]. Thus let us assume that

l ≥ k ≥ 3. Choose small c � c′ � δ > 0. Let n be large.

Let G be an F k
l+1-free k-graph on [n] with |G| = tkl (n). We will show that G is l-partite.

This implies the theorem because T k
l (n) is the unique l-partite k-graph on n vertices with tkl (n)

edges, and the addition of any edge to T k
l (n) yields a copy of F k

l+1.
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Let W1 ∪ · · · ∪Wl be a partition of [n] such that

f =
∑
D∈G

∣∣∣{i ∈ [l] : D ∩Wi 6= ∅}
∣∣∣

is maximum possible. Let T be the complete l-partite k-graph on W1 ∪ · · · ∪ Wl. Let us call

the edges in T \ G missing and the edges in G \ T bad. As |T | ≤ tkl (n) = |G|, the number of

bad edges is at least the number of missing edges.

By Theorem 5, there is an l-partite k-graph which is δnk-close to G. Consequently, f ≥
k(|G| − δnk). On the other hand,

f ≤ k|G ∩ T |+ (k − 1)|G \ T | = k|G| − |G \ T |.

This implies that |G \ T | ≤ kδnk and, in view of |T | ≤ |G|,

|T \G| ≤ kδnk. (11)

Thus we have |T | ≥ |G∩T | ≥ tkl (n)− kδnk. From (2) we conclude that for each i ∈ [l] we have,

for example, | |Wi| − n
l | ≤

n
2l .

If G ⊂ T , then we are done. Thus, let us assume that B is non-empty, where the 2-graph

B consists of all bad pairs, that is, pairs of vertices which come from the same part Wi and are

covered by an edge of G.

For distinct vertices x, y call the pair {x, y} sparse if G has at most
((

l+1
2

)
(k − 2) + l + 1

) (
n

k−3

)
edges containing both x and y; otherwise {x, y} is called dense. It is easy to see that if we have

a fixed (l + 1)-set C ⊂ V (G) containing at least one edge D ∈ G, then at least one pair of

vertices {x, y} from
(
C
2

)
\

(
D
2

)
is sparse. (For otherwise we can greedily build a copy of F k

l+1 in

G with the core C.)

Let A consist of those z ∈ V (G) which are incident to at least cnk−1 missing edges.

Claim 1 Any bad pair {x0, x1} intersects A.

Proof of Claim. Assume without loss of generality that x0, x1 ∈ W1 are covered by D ∈ G.

It is easy to see that for any choice of xi ∈ Wi \D for i ∈ [2, l] (at least ( n
2l − k)l−1 > ( n

3l )
l−1

choices), at least one pair {xi, xj} with {i, j} 6= {0, 1} is sparse or the k-tuple {x1, x2, . . . , xk}
is missing for otherwise we obtain a copy of F k

l+1. (In fact, we can make stronger claims but

this one suffices.)

If the second alternative occurs at least a half of the time, then x1 ∈ A. Indeed, any k-tuple

D 3 x1 is counted at most nl−k times (the number of ways to choose xk+1, . . . , xl), so x1 belongs

to at least 1
2 ( n

3l )
l−1/nl−k ≥ cnk−1 missing edges, as required.
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So, suppose that for at least half of the choices, the first alternative holds, i.e., there is a

sparse pair. Each such pair {xi, xj} appears, very roughly, at most nl−3 times unless {xi, xj} ∩
{x0, x1} 6= ∅ when the pair is counted at most nl−2 times. There are two further alternatives

to consider.

If at least a quarter of the time, the found sparse pair is disjoint from {x0, x1}, then we

obtain at least 1
4( n

3l )
l−1/nl−3 ≥ cn2 sparse pairs, each intersecting two parts Wi. But this leads

to a contradiction to (11): each such sparse pair in contained in at least, say, ( n
3l )

k−2 missing

edges while each missing edge contains at most
(
k
2

)
sparse pairs. Hence, at least a quarter

of the time, the sparse pair intersects {x0, x1}, so one of these vertices, say x0, is in at least
1
8

(
n
3l

)l−1
/nl−2 sparse pairs, which implies that x0 ∈ A. The claim has been proved.

Considering vertices from A, we obtain at least |A| × cnk−1/k missing edges and, con-

sequently, at least |A| × cnk−1/k bad edges. Let B consist of the pairs (D, {x, y}), where

{x, y} ∈ B, D ∈ G and x, y ∈ D. (Thus D is a bad edge.) As each bad edge contains at

least one bad pair, we conclude that |B| ≥ |A| × cnk−1/k. For any (D, {x, y}) ∈ B, we have

{x, y} ∩A 6= ∅ by Claim 1. If we fix x and D, then, obviously, there are at most k − 1 ways to

choose a bad pair {x, y} ⊂ D. By Claim 1, some vertex x ∈ A, say x ∈ W1, belongs to at least

|B|
(k − 1) |A|

≥ c

k(k − 1)
nk−1

bad edges, each intersecting W1 in another vertex y.

Let Y1 ⊂ W1 be the neighborhood of x in the 2-graph B. Let Z1 ⊂ Y1 be the set of those

vertices z for which {x, z} is dense. The number of edges containing x and some vertex of

Y1 \ Z1 is at most l3nk−2 < c
2k(k−1) nk−1. Consequently, the number of bad edges containing x

and some vertex of Z1 is at least c
2k(k−1) nk−1. Therefore |Z1| ≥ c

2k(k−1)n ≥ c′n.

Let Zj consist of those z ∈ Wj for which {x, z} is dense, j ∈ [2, l]. If |Zj | ≥ c′n for each

j ∈ [2, l], then every l-tuple (x1, x2, . . . , xl) with xj ∈ Zj (at least (c′n)l choices) generates a

sparse pair not containing x or the edge {x1, . . . , xk} is missing. The latter alternative cannot

happen, say, at least half of the time because otherwise we obtain more than 1
2 (c′n)l/nl−k >

kδnk missing edges, a contradiction to (11). Thus at least half of the time, we obtain a sparse

pair disjoint from x. This gives at least 1
2 (c′n)l/nl−2 sparse pairs, each intersecting some two

parts, which leads to a contradiction to (11).

Hence, assume that, for example, |Z2| < c′n. This means that all but at most c′n pairs

{x, z} with z ∈ W2 are sparse, that is, there are at most l3nk−2 + c′nk−1 < 2c′nk−1 G-edges

containing x and intersecting W2. Let us contemplate moving x from W1 to W2. Some edges of

G may decrease their contribution to f . But each such edge must contain x and intersect W2

so the corresponding decrease is at most 2c′nk−1. On the other hand, the number of edges of G

10



containing x, intersecting W1\{x}, and disjoint from W2 is at least ( c
k(k−1)−2c′) nk−1 > 2c′nk−1.

Hence, by moving x from W1 to W2 we strictly increase f , a contradiction to the choice of the

parts Wi. The theorem is proved.
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