MATHEMATICS 586: Homework 2
 University of Illinois at Chicago (Professor Nicholls)
 Spring 2024

Due Friday, February 23 by 2 pm .

1. Wilmott, Howison, \& Dewynne, Chapter 4, \# 1.
2. Wilmott, Howison, \& Dewynne, Chapter 5, \# 2.
3. Wilmott, Howison, \& Dewynne, Chapter 5, \# 3.
4. Consider the function $f(x)=e^{x}$.
(a) Verify computationally that both the "forward difference" approximation

$$
\left(\delta_{+} f\right)(x ; h):=\frac{f(x+h)-f(x)}{h}
$$

and the "backward difference" approximation

$$
\left(\delta_{-} f\right)(x ; h):=\frac{f(x)-f(x-h)}{h}
$$

simulate $f^{\prime}(x)$ to order one in h at $x=1$. In particular, pick several (four or five) values of $h=h_{j}$, compute $\left(\delta_{+} f\right)\left(1 ; h_{j}\right)$ and $\left(\delta_{-} f\right)\left(1 ; h_{j}\right)$, compute the errors

$$
\varepsilon_{+}\left(h_{j}\right)=\frac{\left|\left(\delta_{+} f\right)(1 ; h)-f^{\prime}(1)\right|}{\left|f^{\prime}(1)\right|}, \quad \varepsilon_{-}\left(h_{j}\right)=\frac{\left|\left(\delta_{-} f\right)(1 ; h)-f^{\prime}(1)\right|}{\left|f^{\prime}(1)\right|}
$$

and then do a least squares fit to the error relation $\varepsilon=C h^{r}$; you should see $r \approx 1$. To do this fit, use the fact that

$$
\log (\varepsilon)=\log (C)+r \log (h)
$$

so that you can do a linear least squares fit to the data $\left\{\log \left(h_{j}\right), \log \left(\varepsilon_{j}\right)\right\}$.
(b) Verify computationally that the "centered difference" approximation

$$
\left(\delta_{0} f\right)(x ; h):=\frac{f(x+h)-f(x-h)}{2 h}
$$

simulates $f^{\prime}(x)$ to order two in h at $x=1$.
5. Implement the Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR) methods for solving tridiagonal systems of linear equations, $M \vec{x}=\vec{b}$. Use the stopping criteria:

$$
\max \left\{\left\|\vec{x}^{k}-\vec{x}^{k-1}\right\|,\left\|A \vec{x}^{k}-\vec{b}\right\|\right\}<\tau
$$

Consider the Crank-Nicholson matrix

$$
M=\left(\begin{array}{cccccc}
1 & 0 & & \cdots & & 0 \\
-\mu / 2 & (1+\mu) & -\mu / 2 & 0 & \cdots & 0 \\
& & \ddots & \ddots & & \\
& & & & & \\
0 & \cdots & 0 & -\mu / 2 & (1+\mu) & -\mu / 2 \\
0 & & \cdots & & 0 & 1
\end{array}\right) \in \mathbf{R}^{m \times m},
$$

with $\mu=0.25$, and the vectors $\vec{x}=(\pi, \ldots, \pi)^{T} \in \mathbf{R}^{m}$ and $\vec{b}=(\pi, \ldots, \pi)^{T} \in \mathbf{R}^{m}$ (Note that these choices give us the solution $\vec{x}=M^{-1} \vec{b}$).
(a) Solve the system $M \vec{x}=\vec{b}$ using these three algorithms with $\tau=10^{-10}$ and $\omega=1.5$ (for SOR) for $m=10,10^{2}, 10^{3}, 10^{4}$. Report the relative errors. How many iterations did each method require?
(b) For

$$
\omega_{j}=j / 50, \quad j=1, \ldots, 99
$$

solve $M \vec{x}=\vec{b}\left(m=10^{4}, \tau=10^{-10}\right)$ using SOR. Report the number of iterations required for each ω_{j}. For which value(s) of ω_{j} is the number of iterations minimized?
6. The θ-scheme for the heat equation is

$$
-\theta \mu v_{j+1}^{n+1}+(1+2 \theta \mu) v_{j}^{n+1}-\theta \mu v_{j-1}^{n+1}=(1-\theta) \mu v_{j+1}^{n}+(1-2(1-\theta) \mu) v_{j}^{n}+(1-\theta) \mu v_{j-1}^{n},
$$

where $\mu=(\Delta t) /(\Delta x)^{2}>0,0 \leq \theta \leq 1$. (Notice that if $\theta=1 / 2$ you get CrankNicholson).
(a) If $1 / 2 \leq \theta \leq 1$, show that this scheme is unconditionally stable.
(b) If $0<\theta<1 / 2$, show that this scheme is stable if

$$
\mu \leq \frac{1}{2(1-2 \theta)}
$$

7. Consider the heat equation:

$$
\begin{aligned}
& \partial_{t} u=\partial_{x}^{2} u \\
& u(x, 0)=\sin (2 x) \\
& u(0, t)=u(\pi, t)=0 .
\end{aligned}
$$

(a) Implement the Crank-Nicholson Finite Difference scheme to approximate the solution to the heat equation above. Keeping the ratio $\lambda=(\Delta t) /(\Delta x)$ fixed at 1.0, choose four or five ($\Delta t, \Delta x$) pairs to demonstrate the convergence of your code at $T=1$ by measuring

$$
\varepsilon(\Delta t, \Delta x):=\frac{\left\|v^{N}-u_{\text {exact }}(\cdot, T)\right\|_{\Delta x}}{\left\|u_{\text {exact }}(\cdot, T)\right\|_{\Delta x}} .
$$

(b) Identify the order of convergence of this method. Why do you get this answer?

