MATHEMATICS 586: Homework 3
 University of Illinois at Chicago (Professor Nicholls)
 Spring 2024

Due Friday, March 15 by 2 pm .

1. Find the explicit solution to the obstacle problem

$$
\begin{array}{ll}
u(-1)=0, & \\
u^{\prime \prime}=0, & -1<x<A \\
u(A)=f(A), \quad u^{\prime}(A)=f^{\prime}(A) & A<x<B \\
u(x)=f(x), & \\
u(B)=f(B), \quad u^{\prime}(B)=f^{\prime}(B) & B<x<1 \\
u^{\prime \prime}=0, & \\
u(1)=0, &
\end{array}
$$

when the obstacle is
(a) $f(x)=\frac{1}{2}-x^{2}$,
(b) $f(x)=\frac{1}{2}-\sin ^{2}(\pi x / 2)$. (The free boundaries now have to be found numerically.)
2. Write a computer program to solve the obstacle problem (1) for an arbitrary function $f(x)$, using the Finite Difference method with the projected SOR algorithm. Compare the numerical solution quantitatively with the exact solution when
(a) $f(x)=\frac{1}{2}-x^{2}$,
(b) $f(x)=\frac{1}{2}-\sin ^{2}(\pi x / 2)$.

For instance, if you set $\omega=1.8, N=1600$, and tolerance 10^{-6}, how many iterations are required for convergence? What is the $\left(L^{\infty}\right)$ norm of the difference between your approximate solution and the exact one?
3. Wilmott, Howison, and Dewynne: Chapter 9, \#5. (Do not answer the questions in the last sentence.)
4. (Johnson: Exercise 1.1) Show that if w is continuous on $[0,1]$ and

$$
\int_{0}^{1} w v \mathrm{~d} x=0, \quad \forall v \in V
$$

then $w(x) \equiv 0$ for $x \in[0,1]$.
5. (Johnson: Exercise 1.16) Show that the problem

$$
\begin{array}{ll}
-u^{\prime \prime}(x)=f(x) & \text { on } I=(0,1) \\
u(0)=u^{\prime}(1)=0, &
\end{array}
$$

can be given the following variational formulation: Find $u \in V$ such that

$$
\left(u^{\prime}, v^{\prime}\right)=(f, v), \quad \forall v \in V,
$$

where $V=\left\{v \mid v\right.$ cont., $v^{\prime} \mathrm{p} / \mathrm{w}$ cont., $\left.v(0)=0\right\}$. Formulate a Finite Element Method for this problem using piecewise linear functions. Determine the corresponding linear system of equations in the case of a uniform partition and study in particular how the boundary condition $u^{\prime}(1)=0$ is approximated by the method.
6. Solve the following one-dimensional Poisson problem by the Finite Element Method:

$$
\begin{array}{ll}
-u^{\prime \prime}(x)=\pi^{2} \sin (\pi x) & 0<x<1 \\
u(0)=u(1)=0 &
\end{array}
$$

Use piecewise linear functions and verify the second order accuracy by using 20, 40, and 80 uniform elements. Note that the exact solution is:

$$
u_{\text {exact }}(x)=\sin (\pi x) .
$$

