Rational Points of a Definable Set

Victoria Noquez

University of Illinois at Chicago

April 21, 2013

XIV Graduate Student Conference in Logic Urbana, IL

Victoria Noquez (UIC)

1 Background and Statement of the Theorem

- 2 r-parameterization
- 3 Diophantine Approximation
 - 4 The Main Lemma
- 5 Proof of the Theorem

An infinite structure $\langle M, <, ... \rangle$ which is totally ordered by \langle is *o-minimal* if every definable subset of M is a finite union of points and intervals.

Example

$$\overline{\mathbb{R}}:=\langle \mathbb{R},+,\cdot,-,0,1,<
angle$$

An *o-minimal expansion* of an o-minimal \mathcal{L} -structure \mathcal{M} is an \mathcal{L}' -structure $\mathcal{M}' = \langle \mathcal{M}, \ldots \rangle$ where $\mathcal{L}' \supset \mathcal{L}$, and \mathcal{M}' is o-minimal.

Example

 $\mathbb{R}_{exp} = \langle \overline{\mathbb{R}}, exp \upharpoonright_{[0,1]}
angle$ is an o-minimal expansion of $\overline{\mathbb{R}}$

Example (Non-Example)

 $\mathbb{R}_{\sin} = \langle \overline{\mathbb{R}}, \sin \rangle$ is not an o-minimal expansion of $\overline{\mathbb{R}}$, since $\{x | \sin(x) = 0\}$ is definable but it is a discrete infinite set, so it is not o-minimal.

 $X \subset \mathbb{R}^n$ is *semi-algebraic* if it is defined by a finite boolean combination of $f(x_1, \ldots, x_n) = 0$ and $g(x_1, \ldots, x_n) > 0$ for $f, g \in \mathbb{R}[x_1, \ldots, x_n]$.

By quantifier elimination, semi-algebraic sets are exactly the definable sets in $\overline{\mathbb{R}}.$

So every definable $X \subset \mathbb{R}$ must be a finite union of intervals and points, since $f, g \in \mathbb{R}[x]$ have only finitely many roots (in \mathbb{R}).

For any $X \subset \mathbb{R}^n$, the algebraic part of X, X^{alg} , is the union of all infinite connected semi-algebraic subsets of X. $X^{tr} = X \setminus X^{alg}$ is the transcendental part of X.

Example

Let $X \subset \mathbb{R}$ be the definable set pictured above. Then $X^{alg} = A_1 \cup A_2 \cup A_4$, the infinite connected components, and $X^{tr} = A_3 \cup A_5$, the discrete points.

Note: By o-minimality, it is important that we include "infinite" in the definition of X^{alg} , otherwise we would have $X^{alg} = X$ for every definable $X \subset \mathbb{R}$.

For $\frac{a}{b} \in \mathbb{Q}$, $a, b \in \mathbb{Z}$, b > 0 and gcd(a, b) = 1,

$$H(rac{a}{b})=\max\{|a|,|b|\}$$

is the *height* of $\frac{a}{b}$. For $q_1, \ldots, q_n \in \mathbb{Q}$, $H(q_1, \ldots, q_n) = \max_{1 \leq i \leq n} \{H(q_i)\}$.

Definition

For $X \subset \mathbb{R}^n$, $X(\mathbb{Q}, T) := \{\overline{q} \in X \cap \mathbb{Q}^n | H(\overline{q}) \leq T\}$.

- Previously, for S ⊂ ℝⁿ and t ∈ Z, we wanted to find the number of integer points in the *dilation* of S by t, that is, {(tx₁,..., tx_n)|(x₁,..., x_n) ∈ S}.
- This is equivalent to finding points in S of the form $(\frac{m_1}{t}, \ldots, \frac{m_n}{t})$ where $m_1, \ldots, m_n \in \mathbb{Z}$.
- Height is a generalization of this idea.

Goal

We're interested in establishing bounds on $|X^{tr}(\mathbb{Q}, T)|$ under natural geometric conditions on X and seeing how fast this set grows as we change T, with the guiding idea that transcendental sets should contain few rational points.

Theorem (Pila-Wilkie 2006)

For $X \subset \mathbb{R}^n$ definable in an o-minimal expansion of $\overline{\mathbb{R}}$, for any $\epsilon > 0$, $\exists c > 0$ such that for all $T \ge 1$,

 $#X^{tr}(\mathbb{Q},T) \leq cT^{\epsilon}.$

Theorem (Uniform Pila-Wilkie)

Let $(X_a)_{a \in A}$ be a family of subsets of \mathbb{R}^n definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For any $\epsilon > 0$ there is another definable family $(Y_a)_{a \in A}$, with $Y_a \subset X_a^{alg}$, and a constant c > 0 such that for all $T \ge 1$,

$\#(X_a \setminus Y_a)(\mathbb{Q}, T) < cT^{\epsilon}.$

Note: $Y_a \subset X_a^{alg}$ means that $X_a \setminus Y_a \supseteq X_a^{tr}$, so the uniform version implies the original version.

Let $X \subset M^n$ be definable. A definable function $\phi : (0, 1)^{\dim X} \to X$ is called a *partial parameterization* of X. A finite set S of partial parameterizations of X is called a *parameterization* of X if $\bigcup_{\phi \in S} Im(\phi) = X$.

Definition

A parameterization *S* of a definable set $X \subset M^n$ is called an *r*-parameterization if every $\phi \in S$ is $C^{(r)}$ and $\phi^{(\alpha)}$ is strongly bounded for $\alpha \in \mathbb{N}^{\dim X}$, $|\alpha| \leq r$ where $|\alpha|$ is the sum of the coordinates of α .

Theorem

For any $r \in \mathbb{N}$ and any strongly bounded definable set X, there exists an *r*-parameterization of X.

Corollary (Uniform Version)

Let $n, m, r \ge 1$ and suppose $X \subset (0, 1)^n \times M^m$ is a definable family. Then there exists $N \in \mathbb{N}$ and, for each $\overline{y} \in M^m$, a set $S_{\overline{y}}$ of N functions, each mapping $(0, 1)^{\dim X_{\overline{y}}} \to X_{\overline{y}}$ and each of class $C^{(r)}$ such that

(1)
$$\bigcup_{\phi \in S_{\overline{y}}} Im(\phi) = X_{\overline{y}}$$
, and

(2)
$$|\phi^{(\alpha)}(\overline{x})| \leq 1$$
 for each $\phi \in S_{\overline{y}}$, $\alpha \in \mathbb{N}^{\dim X_{\overline{y}}}$, $|\alpha| \leq r$ for all $\overline{x} \in (0, 1)^{\dim X_{\overline{y}}}$.

From now on, by definable we mean definable in an o-minimal expansion of $\overline{\mathbb{R}}.$

Recall the following definitions:

Definition

A hypersurface of degree d in \mathbb{R}^n is a set of the form $\{\overline{x} \in \mathbb{R}^n | f(\overline{x}) = 0\}$, $f \in \mathbb{R}[\overline{x}]$ non-zero, deg(f) = d.

Definition

The *fiber dimension* of a definable family $Z \subset \mathbb{R}^n \times \mathbb{R}^m$ is the maximal dimension of a fiber of Z.

Theorem (Bombieri-Pila)

Let $k, n \in \mathbb{N}$, k < n. For each $d \in \mathbb{N}$, $d \ge 1$, there is r = r(k, n, d), and positive constants $\epsilon = \epsilon(k, n, d)$ and c = c(k, n, d) such that the following holds.

Let $\phi : (0,1)^k \to \mathbb{R}^n$ be a function of class $C^{(r)}$ with $|\phi^{(\alpha)}(\overline{x})| \leq 1$. For $T \geq 1$, $(Im(\phi))(\mathbb{Q}, T)$ is contained in the union of at most cT^{ϵ} hypersurfaces of degree at most d. Furthermore, $\epsilon \to 0$ as $d \to \infty$.

Note: $\epsilon \to 0$ as $d \to \infty$, since as we get more complicated hypersurfaces (that is, of higher degree), we will not need as many.

Lemma (Main Lemma)

Let $X \subset (0,1)^n \times M^m$ be a definable family of fiber dimension k < n. For ease of notation, we let $A = \pi_2(Z)$. Let $\epsilon > 0$ be given. There exists $d \in \mathbb{N}$ and K > 0 such that for any $a \in A, T \ge 1, X_a(\mathbb{Q}, T)$ is contained in the union of at most KT^{ϵ} hypersurfaces of degree d.

Proof.

- Given $\epsilon > 0$, let *d* be such that $\epsilon(k, n, d)$ from the Bombieri-Pila Theorem is $< \epsilon$, and let r = r(k, n, d).
- There exists N, and for each a ∈ A, S_a which is an r-parameterization of X_a with |S_a| ≤ N.
- By the Bombieri-Pila Theorem, (Im(φ))(Q, T) is contained in at most cT^ε hypersurfaces of degree at most d, for some c.
- Let $K = N \cdot c$.
- $X_a(\mathbb{Q}, T)$ is in at most KT^{ϵ} hypersurfaces of degree $\leq d$.

Theorem (Uniform Pila-Wilkie)

Let $(X_a)_{a \in A}$ be a family of subsets of \mathbb{R}^n definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For any $\epsilon > 0$ there is another definable family $(Y_a)_{a \in A}$, $Y_a \subset X_a^{alg}$ and a constant c > 0 such that for all $T \ge 1$,

 $\#(X_a \setminus Y_a)(\mathbb{Q}, T) < cT^{\epsilon}.$

Note: $x \mapsto -x$ and $x \mapsto x^{-1}$ preserves height and infinite connected components, so without loss of generality, we may assume that $X \subset [0, 1]^n \times \mathbb{R}^m$.

Lemma

If the theorem holds for definable families of the form $X \subset (0,1)^n \times \mathbb{R}^m$, then it holds for definable families of the form $X \subset [0,1]^n \times \mathbb{R}^m$.

So, without loss of generality, we may further assume that $X \subset (0,1)^n imes \mathbb{R}^m$.

Let $A = \pi_2(X)$. We proceed by induction on $k = \max_{a \in A} \dim X_a$.

k=0

- X_a is finite by o-minimality.
- By uniform bounding, there is $N \in \mathbb{N}$ such that $|X_a| < N$ for all $a \in A$.

• Let
$$Y_a:= \emptyset \subset X^{alg}_a.$$
 Let $c=N_a$

• For $T \geq 1$, $\#(X_a \setminus Y_a)(\mathbb{Q}, T) \leq |X_a| \leq N \leq cT^{\epsilon}$.

Proof of the Theorem

0 < k < n

- Let d be as in the Main Lemma for $\frac{\epsilon}{2}$.
- Use $b \in \mathbb{R}^{j}$ to index hypersurfaces of degree $\leq d$ (for some sufficiently large j), call these H_{b} .
- Define $Y \subset (0,1)^n imes (\mathbb{R}^m imes \mathbb{R}^j)$ by $Y_{ab} = X_a \cap H_b$.
- dim $Y_{ab} < \dim X_a \le k$ for all a, b, since H_b is a hypersurface.
- By IH, there is $Z \subset (0,1)^n \times (\mathbb{R}^m \times \mathbb{R}^j)$, $Z_{ab} \subset Y_{ab}^{alg}$, $\#(Y_{ab} \setminus Z_{ab})(\mathbb{Q}, T) < cT^{\frac{\epsilon}{2}}$
- Let $Z_a = \bigcup_{b \in \mathbb{R}^j} Z_{ab}$.
- By the Main Lemma, for every $a \in A$ there is $B'_a \subset \mathbb{R}^j$, $|B'_a| \leq KT^{\frac{\epsilon}{2}}$ such that $X_a(\mathbb{Q}, T)$ is contained in $\bigcup_{b \in B'_2} H_b$.

• Hence, $\#(X_a \setminus Z_a)(\mathbb{Q}, T) \leq cT^{\frac{\epsilon}{2}}KT^{\frac{\epsilon}{2}} = CT^{\epsilon}$ for C = cK.

We must handle this case separately, since the Main Lemma requires k < n.

k = n

- For $y \in A$, let Z_y be the set of interior points of X_y . This is definable.
- Each x ∈ Z_y is in an open neighborhood contained in Z_y ⊂ X_y, and thus, an infinite connected component. So Z_y ⊂ X_y^{alg}.
- For $y \in A$ with dim $X_y = n$, the interior of $X_y \neq \emptyset$ since $X_y \subset (0,1)^n$, so dim $X_y \setminus Z_y \leq n-1$.
- The family $X \setminus Z$ has fiber dimension $\leq n 1$, so use IH to get the result.

Thank You!