Dp-Rank in Randomizations

Victoria Noquez
University of Illinois at Chicago

April 25, 2015

XVI Graduate Student Conference in Logic Chicago, IL

Overview

(1) Randomizations
(2) Dp-Rank

Randomizations

- Keisler (1999): Introduced randomizations of first order structures, the idea being to form a new structure whose elements are random elements of the original structure.
- Keisler and Ben Yaacov (2009): Introduced viewing randomizations as continuous structures.

Definition

For a complete (first order or continuous) theory T, its randomization T^{R} is the continuous theory whose models are the randomizations of models of T.

Fact

T^{R} admits quantifier elimination.

Properties Preserved By Randomizations

Theorem (Ben Yaacov 2009)

A classical theory T is \qquad if and only if T^{R} is --------- .

- ω-categorical
- ω-stable
- stable
- NIP

Theorem (Ben Yaacov 2011)

If a theory T is simple and unstable, then T^{R} is not simple.

Dp-Rank and NIP

Dp-rank was originally introduced by Usvyatsov in 2008 as an attempt to capture how far a certain type (or theory) is from having the independence property.

Definition (Recall)

A formula $\phi(x ; y)$ is NIP if we cannot find an infinite set A of $|x|$-tuples such that for all $A_{0} \subset A$, there is some $b_{A_{0}}$ of size $|y|$ such that

$$
\phi\left(A ; b_{A_{0}}\right)=A_{0} .
$$

A theory is NIP if every formula is.

Dp-Rank

Definition

For a theory $T, d p-r k(T)<\kappa$ if the following does NOT exist:

- formulas $\phi_{\alpha}\left(x_{\alpha} ; y\right)$ for $\alpha<\kappa$
- an array ($a_{\alpha}^{i}: i<\omega, \alpha<\kappa$) of tuples with $\left|a_{\alpha}^{i}\right|=\left|x_{\alpha}\right|$
- for every $\eta: \kappa \rightarrow \omega$, a tuple b_{η} with $\left|b_{\eta}\right|=|y|$ such that

$$
\vDash \phi_{\alpha}\left(a_{\alpha}^{i} ; b_{\eta}\right) \Leftrightarrow \eta(\alpha)=i
$$

This is called an ICT-pattern of length κ.
We say that $d p-r k(T)=\kappa$ if κ is the least such that this pattern does not exist.

Continuous Dp-Rank

Definition

A collection of continuous formulas $\left\{\phi_{j}(x ; y): j<n\right\}$ is an ICT-pattern of length n if there exist the following

- $\left(\left(a_{0}^{i}, \ldots, a_{n-1}^{i}\right): i<\omega\right)$, an array of tuples
- $0 \leq r_{j}<s_{j} \leq 1$ for $j<n$
- For all $\bar{i}=\left(i_{0}, \ldots, i_{n-1}\right) \in \omega^{n}, b_{\bar{i}}$ such that for all $j<n$

$$
\phi_{j}\left(a_{j}^{i_{j}}, b_{\bar{i}}\right) \geq s_{j}
$$

and for all $k<n, k \neq i_{j}$,

$$
\phi_{j}\left(a_{j}^{k}, b_{\bar{i}}\right) \leq r_{j} .
$$

We will focus on theories with dp-rank $=1$. We call these dp-minimal.

Geometric Interpretation

- Let $\left(\phi_{0}(x ; y), \phi_{1}(x ; y)\right)$ be an ICT-pattern of length 2. Let $\epsilon_{j}=s_{j}-r_{j}$ for $j=0,1$.
- For a fixed $m<\omega$, consider the set $C_{m}:=\left\{\left(\phi_{0}\left(a_{0}^{i}, b\right), \phi_{1}\left(a_{1}^{i}, b\right)\right)_{i<m}: b \in \mathcal{M}\right\} \subset\left([0,1]^{2}\right)^{m}$.
- Fix $i_{1}<m$ and pick b_{0}, \ldots, b_{m-1} corresponding to $\bar{i}=\left(0, i_{1}\right), \ldots,\left(m-1, i_{1}\right)$ respectively. This gives us an m element subset of C_{m}
- Looking at the first column of each of these gives us m elements of \mathbb{R}^{m} whose convex hull contains an m-simplex with side length $\sqrt{2} \epsilon_{0}$.
- Do the analogous thing with the second column.

Goal

To show that for a collection of n formulas
$Q=\left(\phi_{0}(x ; y), \ldots, \phi_{n-1}(x ; y)\right)$, the following are equivalent:

- Q is an ICT pattern of length n
- Some combinatorial characterization
- The ratio of the width of the convex hulls of the columns (as described on the previous slide) to the (asymptotic) width of m-simplices goes to 0 as $m \rightarrow \infty$.

Why is this what we want?

- By width, we mean Gaussian Mean Width (the average distance between two parallel planes which bound the set)
- This behaves nicely (in other words, preserves our geometric interpretation of dp-rank) when we crush convex compacts in \mathbb{R}^{n}.
- Crushing convex compacts is what happens to our sets of interest when we put two formulas together using truncated subtraction.
- Since $\left\{0,1,-\frac{x}{2}\right\}$ is a complete set of connectives in continuous logic, and we have quantifier elimination, this is what we need to induct on formulas.

Thank You!

