General Properties of Definable and Algebraic Closure

Victoria Noquez

December 10, 2012

10.7 Exercise

Let \mathcal{M} be an L-structure, $A \subset M$, and $a \in M^n$. Statements (1), (2), and (3) are equivalent:

- (1) a is definable in \mathcal{M} over A.
- (2) For any $\mathcal{N} \succeq \mathcal{M}$ the only realization of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} is a.
- (3) For any $\epsilon > 0$ there is an L(A)-formula $\phi(x)$ and $\delta > 0$ such that $\phi^{\mathcal{M}}(a) = 0$ and the diameter of $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$ is $\leq \epsilon$.
- If \mathcal{N} is any fixed ω_1 -saturated elementary extension of \mathcal{M} , then (1) is equivalent to:
 - (4) The only realization of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} is a.
- $(1) \Rightarrow (2)$ Suppose a is definable in \mathcal{M} over A. Let $(\phi_k(x))_{k < \omega}$ be L(A)-formulas such that

$$\forall \epsilon > 0 \exists K \forall k \ge K \forall \overline{x} \in M^n |\phi_k^{\mathcal{M}}(\overline{x}) - d(\overline{x}, a)| \le \epsilon.$$

Let $\epsilon > 0$ be given and let K witness this for $\frac{\epsilon}{2}$. Let $\mathcal{N} \succeq \mathcal{M}$ and let $b \in N^n$ realize $tp_{\mathcal{M}}(a/A)$. For $k \ge K$, $|\phi_k^{\mathcal{M}}(a) - d(a, a)| \le \frac{\epsilon}{2}$, so $\phi_k^{\mathcal{M}}(a) \le \frac{\epsilon}{2}$, thus $\phi_k(x) \le \frac{\epsilon}{2}$ is in $tp_{\mathcal{M}}(a/A)$. Hence, $\mathcal{N} \vDash \phi_k(b) \le \frac{\epsilon}{2}$. $\mathcal{M} \vDash \sup_x |\phi_k(x) - d(x, a)| \le \frac{\epsilon}{2}$, so by elementarity, $\mathcal{N} \vDash \sup_x |\phi_k(x) - d(x, a)| \le \frac{\epsilon}{2}$, so in particular, $\mathcal{N} \vDash |\phi_k(b) - d(b, a)| \le \frac{\epsilon}{2}$. Thus, $d(a, b) \le |d(a, b) - \phi_k^{\mathcal{N}}(b)| + |\phi_k^{\mathcal{N}}(b)| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Hence, since $\epsilon > 0$ was arbitrary, a = b. So a is the only realization of $tp_{\mathcal{M}}(a/A)$ in $\mathcal{N} \succeq \mathcal{M}$.

 $(2) \Rightarrow (4)$ Clear.

(4) \Rightarrow (3) We will prove the contrapositive: suppose (3) fails, then $\exists \epsilon > 0$ such that for all L(A)-formulas $\phi(x)$ and $\delta > 0$, if $\phi^{\mathcal{M}}(a) = 0$, then the set $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$ has diameter $\geq \epsilon$. Let such an $\epsilon > 0$ be given. Let p(x) be the following type over $A \cup \{a\}$: $tp_{\mathcal{M}}(a/A) \cup \{d(x,a) \geq \frac{\epsilon}{2}\}.$

Claim 1. p(x) is finitely satisfiable.

Proof. Let $\Gamma(x)$ be a finite subset of p(x), and let $\{\phi_1(x) = 0, \dots, \phi_m(x) = 0, d(x, a) \ge \frac{\epsilon}{2}\} \supset \Gamma(x)$ where $\phi_i(x) = 0 \in tp_{\mathcal{M}}(a/A)$. Then for $\phi(x) = \max\{\phi_1(x), \dots, \phi_m(x)\}, \phi(x) = 0 \in tp_{\mathcal{M}}(a/A)$, so $\phi(x) = 0 \in p(x)$. Thus, it is enough to show that $\{\phi(x) = 0, d(x, a) \ge \frac{\epsilon}{2}\}$ is satisfiable. By $\neg(3)$, $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$ has diameter $\ge \epsilon$ for every $\delta > 0$, so $\{b \in M^n | \phi^{\mathcal{M}}(b) = 0\} = \bigcup_{\delta > 0} \{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$ has diameter $\ge \epsilon$. So choose b such that $d(b, a) \ge \frac{\epsilon}{2}$ and $\phi^{\mathcal{M}}(b) = 0$. This satisfies $\Gamma(x)$.

Now, let $\mathcal{N} \succeq \mathcal{M}$ be ω_1 -saturated. Since p(x) is finitely satisfiable, and A (without loss of generality, by 10.10(3)) is countable, p(x) is realized by some $b \in N^n$. But $d(a,b) \geq \frac{\epsilon}{2} > 0$, so $a \neq b$. Thus, a is not the only realization of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} .

(3) \Rightarrow (1) Let $\phi_k(x)$ an L(A)-formula and $\delta_k > 0$ be witnesses of (3) for $\epsilon = \frac{1}{k}$. Then $\phi_k^{\mathcal{M}}(a) = 0$ and $\phi_k^{\mathcal{M}}(b) < \delta_k \Rightarrow d(a,b) \leq \frac{1}{k}$ since $a \in \{b \in M^n | \phi_k^{\mathcal{M}}(b) < \delta_k\}$ and it has diameter $\leq \frac{1}{k}$. So by Proposition 9.19, $\{a\}$ is definable.

10.8 Exercise

Let \mathcal{M} be an L-structure, $A \subset M$, and $a \in M^n$. Statements (1), (2), (3), and (4) are equivalent:

- (1) a is algebraic in \mathcal{M} over A.
- (2) For any $\mathcal{N} \succeq \mathcal{M}$, every realization of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} is in M^n .
- (3) For any $\epsilon > 0$ there is an L(A)-forumla $\phi(x)$ and $\delta > 0$ such that $\phi^{\mathcal{M}}(a) = 0$ and the set $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$ has a finite ϵ -net.
- (4) For any $\mathcal{N} \succeq \mathcal{M}$, the set of realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} is compact.

If \mathcal{N} is any fixed ω_1 -saturated extension of \mathcal{M} , then (1) is equivalent to:

(5) The set of realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} is compact.

If \mathcal{N} is any fixed κ -saturated elementary extension of \mathcal{M} , with κ uncountable, then (1) is equivalent to:

(6) The set of realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} has density character $< \kappa$.

(1) \Rightarrow (3) Let $C \subset M^n$ be a compact set containing a and let $(\phi_k)_{k<\omega}$ be L(A)-formulas such that $\forall x \in M^n$, $|\phi_k^{\mathcal{M}}(x) - d(x,C)| \leq \frac{1}{k}$. Let $\epsilon > 0$ be given. Choose k so that $\frac{3}{k} < \frac{\epsilon}{3}$. Let $\delta = \frac{1}{k}$ and $\phi(x) = \phi_k(x) - \frac{1}{k}$ (where $x - y = \max(x - y, 0)$). Then, since $|\phi_k^{\mathcal{M}}(a) - d(a,C)| = \phi_k^{\mathcal{M}}(a) \leq \frac{1}{k}$ because $a \in C$, $\phi^{\mathcal{M}}(a) = \phi_k^{\mathcal{M}}(a) - \frac{1}{k} = 0$. Let $b \in M^n$ with $\phi^{\mathcal{M}}(b) < \delta$. $\phi_k^{\mathcal{M}}(b) - \frac{1}{k} < \frac{1}{k}$, so $\phi_k^{\mathcal{M}}(b) < \frac{2}{k}$. Thus $d(b,C) \leq |\phi_k^{\mathcal{M}}(b) - d(b,C)| + |\phi_k^{\mathcal{M}}(b)| \leq \frac{1}{k} + \frac{2}{k} = \frac{3}{k} < \frac{\epsilon}{3}$. Now consider the open cover $\{B(c, \frac{\epsilon}{2}) : c \in C\}$ of C. Since C is compact, there are $c_1, \ldots, c_m \in C$ such that $B(c_1, \frac{\epsilon}{2}), \ldots, B(c_m, \frac{\epsilon}{2})$ is a finite subcover of C. Let $b \in \{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$. Since $d(b,C) < \frac{\epsilon}{3}$, we can choose $x \in C$ such that $d(b,x) < \frac{\epsilon}{2}$. Since $\{B(c_i, \frac{\epsilon}{2}) | 1 \leq i \leq m\}$ is a cover of C, there is c_i such that $x \in B(c_i, \frac{\epsilon}{2})$. So $d(b, c_i) \leq d(b, x) + d(x, c_i) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. So $\{B(c_i, \epsilon) | 1 \leq i \leq m\}$ is a finite ϵ -net of $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$. (3) \Rightarrow (1) Let $\mathcal{N} \succeq \mathcal{M}$ be ω_1 -saturated.

Claim 2. For any $\epsilon > 0$, there is an L(A)-formula $\phi(x)$ and $\delta > 0$ such that $\phi^{\mathcal{N}}(a) = 0$ and $\{b \in N^n | \phi^{\mathcal{N}}(b) < \delta\}$ has a finite ϵ -net.

Proof. Let $\epsilon > 0$ be given. Choose an L(A)-formula $\phi(x)$ and $\delta > 0$ such that there are b_1, \ldots, b_m which give a finite ϵ -net of $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$. So $\mathcal{M} \models \sup_b \min(\delta - \phi(b), \min_{1 \le i \le m} (d(b, b_i) - \epsilon)) = 0$. Since $\mathcal{M} \preceq \mathcal{N}$, $\mathcal{N} \models \sup_b \min(\delta - \phi(b), \min_{1 \le i \le m} (d(b, b_i) - \epsilon)) = 0$. So for $b \in \{b \in N^n | \phi^{\mathcal{N}}(b) < \delta\}$, $\delta - \phi^{\mathcal{N}}(b) > 0$, so $\min_{1 \le i \le m} (b, b_i) - \epsilon = 0$ for some i, so $d(b, b_i) \le \epsilon$. Thus, b_1, \ldots, b_m give a finite ϵ -net of $\{b \in N^n | \phi^{\mathcal{N}}(b) < \delta\}$.

For $k \ge 1$, let $\phi_k(x)$ an L(A)-formula and $\delta_k > 0$ be witnesses of this in \mathcal{N} for $\epsilon = \frac{1}{k}$. Let $C = \bigcap_{k < \omega} Z(\phi_k(x) - \frac{\delta_k}{2})$.

 \square

Claim 3. C is compact.

Proof. Let $\epsilon > 0$ be given. Let k be such that $\frac{1}{k} < \epsilon$. Then, since $C \subset Z(\phi_k(x) - \frac{\delta_k}{2}) \subset \{b \in N^n | \phi_k^{\mathcal{N}}(b) < \delta_k\}$, and there is a finite ϵ -net of $\{b \in N^n | \phi_k^{\mathcal{N}}(b) < \delta_k\}$, we get a finite ϵ -net of C.

Let $(b_k)_{k < \omega}$ be a sequence in C. We will define $C_1 \supset C_2 \supset \ldots$ subsets of C with $diam(C_k) \leq \frac{1}{k}$ and $(a_k)_{k < \omega}$ a subsequence of (b_k) such that $\{k \in \omega | b_k \in C_i\}$ is infinite and (a_k) is Cauchy.

Let $C_1 = C$, $a_1 = b_1$. Given a_1, \ldots, a_k and $C_1 \supset \ldots \supset C_k$, let B_1, \ldots, B_m be a finite $\frac{1}{k+1}$ -net of C. Then $B_1 \cap C_k, \ldots, B_m \cap C_k$ is a finite $\frac{1}{k+1}$ -net of C_k . Since there are infinitely many j such that $b_j \in C_k$, for at least one $B_i, B_i \cap C_k$ is such that for infinitely many $j, b_j \in B_i \cap C_k$. Let $C_{k+1} = B_i \cap C_k$ and let $a_{k+1} = b_j$ where j is the least such that $b_j \in C_{k+1}$ and if $a_1 = b_{i_1}, \ldots, a_k = b_{i_k}, j > i_1, \ldots, i_k$.

So for any $\epsilon > 0$, choose N such that $\frac{1}{N} < \epsilon$. Then for k, j > N, $a_k, a_j \in C_N$, so $d(a_k, a_j) < \frac{1}{N} = \operatorname{diam}(C_N) < \epsilon$. So (a_k) is Cauchy.

Since \mathcal{N} is complete, (a_k) converges to some c. Now consider $\phi_k(x) - \frac{\delta_k}{2}$. Let $\epsilon > 0$ be given, and let Δ be the modulus of uniform continuity for $\phi_k(x) - \frac{\delta_k}{2}$. Choose j such that $d(a_j, c) < \Delta(\epsilon)$. Then $|(\phi_k^{\mathcal{N}}(a_j) - \frac{\delta_k}{2}) - (\phi_k^{\mathcal{N}}(c) - \frac{\delta_k}{2})| \leq \epsilon$. But since $a_j \in C$, $\phi_k^{\mathcal{N}}(a_j) - \delta_k = 0$, so $\phi_k^{\mathcal{N}}(c) - \delta_k \leq \epsilon$. Thus, since $\epsilon > 0$ was arbitrary, $\phi_k^{\mathcal{N}}(c) - \frac{\delta_k}{2} = 0$. So since k was arbitrary, $c \in C$. Hence, C is sequentially compact.

Thus, since \mathcal{N} is a metric space, C is compact.

By Proposition 9.14, C = Z(P) for some predicate P which is definable over A. So by Proposition 10.6, C is definable over A since \mathcal{N} is ω_1 -saturated.

Since $\phi_k^{\mathcal{N}}(a) = 0$ for all $k, \phi_k^{\mathcal{N}}(a) - \frac{\delta_k}{2} = 0$, so $a \in C$.

Thus, $a \in acl_{\mathcal{N}}(A) = acl_{\mathcal{M}}(A)$ by Corollary 10.5. So *a* is algebraic over *A* in \mathcal{M} , as required.

 $(3) \Rightarrow (4)$ Let $\mathcal{N} \succeq \mathcal{M}$ and let $D \subset \mathbb{N}^n$ be the set of realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} .

Claim 4. For every $\epsilon > 0$, there is a finite ϵ -net of D.

Proof. Let $\epsilon > 0$ be given. Let $\phi(x)$ be an L(A) formula and $\delta > 0$ be such that $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$ has a finite ϵ -net. Let c_1, \ldots, c_m be such that $B(c_1, \epsilon), \ldots, B(c_m, \epsilon)$ is that net. So $\mathcal{M} \models \sup_b(\min(\delta - \phi(b), \min_{1 \le i \le m} (d(c_i, b) - \epsilon))) = 0$. So since $\mathcal{M} \preceq \mathcal{N},$ $\mathcal{N} \models \sup_b(\min(\delta - \phi(b), \min_{1 \le i \le m} (d(c_i, b) - \epsilon))) = 0$. Let $b \in D$. Since $\phi^{\mathcal{M}}(a) = 0$ and $b \models tp_{\mathcal{M}}(a/A), \ \phi^{\mathcal{N}}(b) = 0$. $\delta - \phi(b) > 0$, so for some $i, \ d(c_i, b) - \epsilon = 0$, so $\epsilon \ge d(c_i, b)$. Thus, $B(c_1, \epsilon), \ldots, B(c_m, \epsilon)$ is a finite ϵ -net of D.

Claim 5. D is sequentially compact.

Proof. Let $(b_k)_{k<\omega}$ be a sequence in D. We will define $C_1 \supset C_2 \supset \ldots$ subsets of D with $diam(C_k) \leq \frac{1}{k}$ and $(a_k)_{k<\omega}$ a subsequence of (b_k) such that $\{k \in \omega | b_k \in C_i\}$ is infinite and (a_k) is Cauchy.

Let $C_1 = D$, $a_1 = b_1$. Given a_1, \ldots, a_k and $C_1 \supset \ldots \supset C_k$, let B_1, \ldots, B_m be a finite $\frac{1}{k}$ net of D. Then $B_1 \cap C_k, \ldots, B_m \cap C_k$ is a finite $\frac{1}{k+1}$ -net of C_k . Since there are infinitely many j such that $b_j \in C_k$, for at least one $B_i, B_i \cap C_k$ is such that for infinitely many $j, b_j \in B_i \cap C_k$. Let $C_{k+1} = B_i \cap C_k$ and let $a_{k+1} = b_j$ where j is the least such that $b_j \in C_{k+1}$ and if $a_1 = b_{i_1}, \ldots, a_k = b_{i_k}, j > i_1, \ldots, i_k$.

So for any $\epsilon > 0$, choose N such that $\frac{1}{N} < \epsilon$. Then for k, j > N, $a_k, a_j \in C_N$, so $d(a_k, a_j) < \frac{1}{N} = \operatorname{diam}(C_N) < \epsilon$. So (a_k) is Cauchy.

Since \mathcal{M} is complete, (a_k) converges to some c. Now let ϕ be an L(A)-formula such that $\phi = 0 \in tp_{\mathcal{M}}(a/A)$. Let $\epsilon > 0$ be given, and let Δ be the modulus of uniform continuity for ϕ . Choose k such that $d(a_k, c) < \Delta(\epsilon)$. Then $|\phi^{\mathcal{N}}(a_k) - \phi^{\mathcal{N}}(c)| \leq \epsilon$. But since $a_k \in D$, $\phi^{\mathcal{N}}(a_k) = 0$, so $\phi^{\mathcal{N}}(c) \leq \epsilon$. Thus, since $\epsilon > 0$ was arbitrary, $\phi^{\mathcal{N}}(c) = 0$. So since ϕ was arbitrary, $c \models tp_{\mathcal{M}}(a/A)$, so $c \in D$. Hence, D is sequentially compact.

Thus, since \mathcal{N} is a metric space, D is compact, as required.

(4) \Rightarrow (3) Since $\mathcal{M} \succeq \mathcal{M}$, the set of realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{M} is compact. Let $\epsilon > 0$ be given. Let $b_1, \ldots, b_n \models tp_{\mathcal{M}}(a/A)$ be such that $B(b_1, \epsilon), \ldots, B(b_n, \epsilon)$ is a finite ϵ -net of the realizations of $tp_{\mathcal{M}}(a/A)$. Let $\phi(x) = \min_{1 \le i \le m} (d(x, b_i) - \frac{\epsilon}{2})$. Let $\delta = \frac{\epsilon}{2}$.

Then $\phi^{\mathcal{M}}(x) < \delta \Leftrightarrow d(x, b_i) - \frac{\epsilon}{2} < \frac{\epsilon}{2}$ for some $1 \leq i \leq m \Leftrightarrow d(x, b_i) < \epsilon$ for some $1 \leq i \leq m$. That is, $x \in \{b \in M^n | \phi^{\mathcal{M}}(x) < \delta\}$ if and only if x is in one of the $B(b_i, \epsilon)$, so this set has a finite ϵ -net.

(3) \Rightarrow (2) Let $\epsilon > 0$ be given. Let $\phi(x) = 0 \in tp_{\mathcal{M}}(a/A)$ and $\delta > 0$ be such that $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$ has a finite ϵ -net.

Let
$$B(b_1, \epsilon), \ldots, B(b_m, \epsilon)$$
 with $b_1, \ldots, b_m \in M^n$ be such a net.
 $\mathcal{M} \models \sup_c(\min(\delta - \phi(c), \min_{1 \le i \le m} (d(c, b_i) - \epsilon))) = 0$, so since $\mathcal{M} \preceq \mathcal{N}$,

 $\mathcal{N} \vDash \sup_{c} (\min(\delta - \phi(c), \min_{1 \le i \le m} (d(c, b_i) - \epsilon))) = 0. \text{ So for } c \in N^n \text{ with } \phi^{\mathcal{N}}(c) = 0, \text{ for some } 1 \le i \le m, \ d(c, b_i) \le \epsilon.$

So let $c \in N^n$ and suppose $c \models tp_{\mathcal{M}}(a/A)$. Then for each $\frac{1}{k}$, since $\phi^{\mathcal{N}}(c) = 0$ for all $\phi = 0 \in tp_{\mathcal{M}}(a/A)$, we can find some $b_k \in \mathcal{M}$ such that $d(c, b_k) \leq \frac{1}{k}$. Thus, c is the limit of the sequence $(b_k)_{k < \omega}$ in \mathcal{M} and \mathcal{M} is complete, so $c \in M^n$.

(2) \Rightarrow (3) Suppose \neg (3). That is, $\exists \epsilon > 0$ such that for every L(A)-formula ϕ and $\delta > 0$ such that $\phi^{\mathcal{M}}(a) = 0$, there is no finite ϵ -net of $\{b \in M | \phi^{\mathcal{M}}(b) < \delta\}$. Let B be the set of all realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{M} . For $b \in B$, let $\psi_b(x)$ be $\epsilon - d(x, b)$. Let p be the following type over $A \cup B$: $\{\phi(x) \leq \frac{1}{n} | \phi$ is an L(A)-formula, $\phi^{\mathcal{M}}(a) = 0, n \in \mathbb{N}\} \cup \{\psi_b(x) : b \in B\}$.

Claim 6. p is finitely satisfiable.

Proof. Let $\Gamma \subset p$ be finite. Then there are $b_1, \ldots, b_n \models tp_{\mathcal{M}}(a/A)$ and ϕ_1, \ldots, ϕ_m L(A)-formulas such that $\phi_i^{\mathcal{M}}(a) = 0$ so that $\Gamma \subset \{\psi_{b_1} = 0, \ldots, \psi_{b_n} = 0, \phi_1(x) < \frac{1}{n_1}, \ldots, \phi_m(x) < \frac{1}{n_m}\}$. Let $\phi = \max(\phi_1, \ldots, \phi_m)$ and $\delta = \min(\frac{1}{n_1}, \ldots, \frac{1}{n_m})$. We know $\phi^{\mathcal{M}}(a) = 0$, so $B(b_1, \epsilon), \ldots, B(b_n, \epsilon)$ is not a cover of $\{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\}$. So choose $x \in \{b \in M^n | \phi^{\mathcal{M}}(b) < \delta\} \setminus (B(b_1, \epsilon) \cup \ldots \cup B(b_n, \epsilon))$. Thus, $x \models \Gamma$. \Box

Let $\mathcal{N} \succeq \mathcal{M}$ be such that there is $y \in N^n$ realizing p. So $y \models tp_{\mathcal{M}}(a/A)$ since for all L(A)-formulas with $\phi(x) = 0 \in tp_{\mathcal{M}}(a/A)$, and all $n \in \mathbb{N}$, $\phi^{\mathcal{N}}(y) \leq \frac{1}{n}$, so $\phi^{\mathcal{N}}(y) = 0$. $d(y,b) \geq \epsilon > 0$ for all $b \in B$, so $y \notin B$. Thus, $y \notin M^n$.

- $(4) \Rightarrow (5)$ Clear.
- (5) \Rightarrow (4) Let $\mathcal{N} \succeq \mathcal{M}$ and let $\mathcal{N}' \succeq \mathcal{N}$ be an ω_1 -saturated elementary extension. Then $\{b \in \mathcal{N} | b \vDash tp_{\mathcal{M}}(a/A)\} = \{b \in \mathcal{N}' | b \vDash tp_{\mathcal{M}}(a/A)\} \cap \mathcal{N}$. $\{b \in \mathcal{N}' | b \vDash tp_{\mathcal{M}}(a/A)\}$ is compact by assumption and \mathcal{N} is complete, and thus closed, so $\{b \in \mathcal{N} | b \vDash tp_{\mathcal{M}}(a/A)\}$ is compact.
- (4) \Rightarrow (6) The set of realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} is compact, and thus, separable. That is, it has a countable dense subset, so its density character is $< \kappa$, since κ is is uncountable.
- (6) \Rightarrow (4) Suppose there is $\epsilon > 0$ such that there is no finite ϵ -net of the realizations in \mathcal{N} of $p(x) = tp_{\mathcal{M}}(a/A)$. Note: in the proof of (3) \Rightarrow (4), we saw that it is enough to show that if for every $\epsilon > 0$, the set of realizations of $tp_{\mathcal{M}}(a/A)$ has a finite ϵ -net, to see that it is compact. So if we assume the set of realizations in not compact, there must be some such $\epsilon > 0$.

Consider the following type in κ variables:

$$\Gamma((x_i)_{i<\kappa}) = \bigcup_{i<\kappa} p(x_i) \cup \{d(x_i, x_j) \ge \epsilon : i \ne j\}.$$

Claim 7. Γ is finitely satisfiable.

Proof. Suppose not. Let n be such that $p(x_1) \cup \ldots \cup p(x_n) \cup \{d(x_i, x_j) \ge \epsilon | i, j \le n\}$ is realized by some a_1, \ldots, a_n but $p(x_1) \cup \ldots \cup p(x_n) \cup p(x_{n+1}) \cup \{d(x_i, x_j) \ge \epsilon | i, j \le n+1\}$ is not satisfiable. Then, for every $b \models p(x), d(a_i, b) < \epsilon$ for some $1 \le i \le n$. So these give a finite ϵ -net of the set of realizations. $\Rightarrow \Leftarrow$.

Thus, by compactness, $\Gamma((x_i)_{i < \kappa})$ is satisfiable.

Fact 1. If \mathcal{M} is ω -saturated and $(\inf_{y} \phi(\overline{x}, y))^{\mathcal{M}} = 0$, then there is $y \in \mathcal{M}$ such that $\phi(\overline{x}, y) = 0$.

Proof. Let q(y) be the type over $\overline{x} \{\phi(\overline{x}, y) \leq \frac{1}{k} | k < \omega\}$. This is finitely satisfiable, since for any $k < \omega$, there is y such that $\phi(\overline{x}, y) \leq \frac{1}{k}$. Thus, by ω -saturation, since \overline{x} is finite, there is y realizing q, and for such a y, we must have $\phi(\overline{x}, y) = 0$.

Lemma 2. If $q((x_i)_{i < \kappa})$, a type over A with $|A| < \kappa$, is finitely satisfiable and \mathcal{M} is κ -saturated, then q is realized in \mathcal{M}

Proof. Let $p((x_i)_{i < \kappa})$ be a completion of q. For $\gamma < \kappa$, let $\phi((x_i)_{i \le \gamma})$ denote a formula whose variables are among $(x_i)_{i \le \gamma}$. Let $p|^{\gamma}((x_i)_{i \le \gamma})$ be the set of formulas from p who variables are among $(x_i)_{i \le \gamma}$.

We will inductively build a sequence $(a_i)_{i < \kappa}$ which realizes p. By κ -saturation, since $|A| < \kappa$, we can find $a_0 \models p|^0(x_0)$.

Then, suppose we have $(a_i)_{i<\gamma}$. Let $\phi((x_i)_{i<\gamma}, x_{\gamma}) = 0$ be from $p|^{\gamma}((x_i)_{i\leq\gamma})$. Then, since p is complete, $\inf_{y} \phi((x_i)_{i<\gamma}, y) = 0$ is in p, and thus, in $p|^{\beta}$ for some $\beta < \gamma$. Thus, $\inf_{y} \phi((a_i)_{i<\gamma}, y) = 0$. So by the previous fact, there is some $a_{\gamma} \in \mathcal{M}$ such that $\phi((a_i)_{i<\gamma}, a_{\gamma}) = 0$. Hence, $p|^{\gamma}((a_i)_{i<\gamma}, x_{\gamma})$ is finitely satisfiable.

So, if we consider $p|^{\gamma}((a_i)_{i < \gamma}, x_{\gamma})$ as a 1-type over $A \cup \{a_i | i < \gamma\}$, since $\gamma < \kappa$, $|A \cup \{a_i | i < \gamma\}| < \kappa$, so by κ -saturation, there is a_{γ} realizing it.

Thus, we get $(a_i)_{i < \kappa}$ realizing $p((x_i)_{i < \kappa})$, and hence, $q((x_i)_{i < \kappa})$.

So by κ -saturation, since A is, without loss of generality, countable by 10.11(3), $\Gamma((x_i)_{i < \kappa})$ is realized by some $(a_i)_{i < \kappa}$ in \mathcal{N} .

Now suppose the set of realizations of p in \mathcal{N} has density character $\lambda < \kappa$. Let S be a size λ dense subset of the set of realizations.

We know from Γ that there are at least κ many distinct realizations and that for every a_i there is $s \in S$ such that $d(a_i, s) < \frac{\epsilon}{2}$. So since $|S| < \kappa$, there must be some $s \in S$ with $i \neq j$ such that $d(a_i, s) < \frac{\epsilon}{2}$ and $d(a_j, s) < \frac{\epsilon}{2}$ (or else there could only be at most λ many a_i 's). But then $d(a_i, a_j) \leq d(a_i, s) + d(a_j, s) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \Rightarrow \Leftarrow$.

Thus, the set of realizations of $tp_{\mathcal{M}}(a/A)$ in \mathcal{N} has density character $\geq \kappa$.

10.11 Exercise

Let \mathcal{M} be an *L*-structure and A, B be subsets of \mathcal{M} . We write dcl instead of $dcl_{\mathcal{M}}$. Properties of dcl:

(1) $A \subset dcl(A)$.

Proof. Let $a \in A$. Then d(x, a) is an L(A)-formula, so $a \in dcl(A)$.

(2) If $A \subset dcl(B)$ then $dcl(A) \subset dcl(B)$.

Proof.

Lemma 3. For $X \subset \mathcal{M}$, if $\sigma \in Aut(\mathcal{M}/X)$, then $\sigma(x) = x$ for all $x \in dcl(X)$.

Proof. Let $x \in dcl(X)$. By 10.7(2), x is the only realization of $tp_{\mathcal{M}}(x/X)$. Let $\sigma \in Aut(\mathcal{M}/X)$. Then $\sigma(x) \models tp_{\mathcal{M}}(x/X)$, so $\sigma(x) = x$. \Box

Let $a \in dcl(A)$. By 10.7(2), it is enough to show that the only realization of $tp_{\mathcal{M}}(a/B)$ is a. Let $b \models tp_{\mathcal{M}}(a/B)$. Let $\sigma \in Aut(\mathcal{M}/B)$ be such that $\sigma(a) = b$. Since σ fixes B point wise, by the lemma, it fixes dcl(B) point wise, and thus, A point wise. $\sigma \in Aut(\mathcal{M}/A)$, so by the lemma, $\sigma(a) = a$. Thus, b = a. Hence, $a \in dcl(B)$.

(3) If $a \in dcl(A)$ then there exists a countable set $A_0 \subset A$ such that $a \in dcl(A_0)$.

Proof. Let $a \in dcl(A)$. Let $\phi_k(x, \overline{y})$ and $\overline{a_k} \in A^{|\overline{y}|}$ be such that $|d(x, a) - \phi_k(x, \overline{a_k})| \leq \frac{1}{k}$. Let $A_0 = \bigcup_{k < \omega} \overline{a_k}$. A_0 is countable, since each |y| is finite. Thus, d(x, a) is definable over A_0 , so $a \in dcl(A_0)$.

(4) If A is a dense subset of B, then dcl(A) = dcl(B).

Proof. $A \subset B \Rightarrow A \subset dcl(B)$ by (1), so $dcl(A) \subset dcl(B)$ by (2). Let $b \in dcl(B)$. By 10.7(2), it is enough to show that b is the only realization of $tp_{\mathcal{M}}(b/A)$.

Claim 8. For $A \subset B$ dense, if $c \models tp_{\mathcal{M}}(b/A)$ then $c \models tp_{\mathcal{M}}(b/B)$.

Proof. Let $\phi(x, b_1, \ldots, b_m) = 0 \in tp_{\mathcal{M}}(b/B)$ with $b_1, \ldots, b_m \in B$. Let $\epsilon > 0$ be given. We will show that $\phi(c, b_1, \ldots, b_m) \leq \epsilon$, and thus, since $\epsilon > 0$ was arbitrary, $\phi(c, b_1, \ldots, b_m) = 0$.

Let δ be such that $\max(d(a_1, b_1), \ldots, d(a_m, b_m)) < \delta \Rightarrow |\phi(x, b_1, \ldots, b_m) - \phi(x, a_1, \ldots, a_m)| \le \epsilon$ $\epsilon (\delta = \Delta(\epsilon)$ where Δ is the modulus of uniform continuity for ϕ). We can choose such an $a_1, \ldots, a_m \in A$ since $A \subset B$ is dense. So since $\phi(b, b_1, \ldots, b_m) = 0$, $\phi(b, a_1, \ldots, a_m) \le \epsilon$. Thus, since $c \models tp_{\mathcal{M}}(b/A)$, $\phi(c, a_1, \ldots, a_m) \le \epsilon$, as required.

Hence $c \models tp_{\mathcal{M}}(b/B)$.

So suppose $a \models tp_{\mathcal{M}}(b/A)$. Then by the claim, $a \models tp_{\mathcal{M}}(b/B)$. So since $b \in dcl(B)$, by 10.7(2), we must have b = a.

Hence, b is the only realization of $tp_{\mathcal{M}}(b/A)$, so $b \in dcl(A)$.

10.12 Exercise

Let \mathcal{M} be an *L*-structure and A, B be subsets of \mathcal{M} . We write *acl* instead of *acl*_{\mathcal{M}}. Properties of *acl*:

(1) $A \subset acl(A)$.

Proof. Let $a \in A$. Then $\{a\}$ is definable by d(x, a), an L(A)-formula, and it is compact, so $a \in acl(A)$.

(2) If $A \subset acl(B)$ then $acl(A) \subset acl(B)$.

Proof.

Lemma 4. For any $X \subset \mathcal{M}$, if $\sigma \in Aut(\mathcal{M}/X)$ and $x \in acl(X)$, then $\sigma(x) \in acl(X)$.

Proof. Let $x \in acl(X)$ and $\sigma \in Aut(\mathcal{M}/X)$. Then $tp_{\mathcal{M}}(\sigma(x)/X) = tp_{\mathcal{M}}(x/X)$. So by 10.8(2), since $x \in acl(X)$, the only realizations of this type are in \mathcal{M} . Thus, by 10.8(2), $\sigma(x) \in acl(X)$.

Let $a \in acl(A)$. Let $\mathcal{N} \succeq \mathcal{M}$ and $b \in \mathcal{N}$ be such that $b \models tp_{\mathcal{M}}(a/B)$. So, by 10.8(2), it is enough to show that $b \in \mathcal{M}$ to see that $a \in acl(B)$.

Let $\sigma \in Aut(\mathcal{N}/B)$ be such that $\sigma(a) = b$. σ fixes B, so it fixes acl(B) set wise. So $\sigma(A) \subset acl(B) \subset \mathcal{M}$.

Claim 9. $\sigma(a) \in acl_{\mathcal{N}}(\sigma(A))$

Proof. Let $C \subset \mathcal{N}$ be compact with $a \in C$ which is definable over A (in fact, since $a \in acl(A)$, there is such a C in \mathcal{M}). $\sigma(C)$ is compact since σ is an isometry, and definable over $\sigma(A)$, so since $\sigma(a) \in \sigma(C)$, $\sigma(a) \in acl_{\mathcal{N}}(\sigma(A))$.

Since $\sigma(A) \subset \mathcal{M}$, by Proposition 10.5, $acl_{\mathcal{N}}(\sigma(A)) = acl_{\mathcal{M}}(\sigma(A))$, so $\sigma(a) \in \mathcal{M}$, and thus, $b \in \mathcal{M}$ as required.

(3) If $a \in acl(A)$ then there exists a countable set $A_0 \subset A$ such that $a \in acl(A_0)$.

Proof. Let C be a compact set definable over A with $a \in C$. Let $\phi_k(x, \overline{y})$ and $\overline{a_k} \in A^{|\overline{y}|}$ be such that $|d(x, C) - \phi_k(x, \overline{a_k})| \leq \frac{1}{k}$. Let $A_0 = \bigcup_{k < \omega} \overline{a_k}$. A_0 is countable, since each |y| is finite. Thus, C is definable over A_0 , so $a \in acl(A_0)$.

(4) If A is a dense subset of B, then acl(A) = acl(B).

Proof. $A \subset B \Rightarrow A \subset acl(B)$ by $(1) \Rightarrow acl(A) \subset acl(B)$ by (2). So let $b \in acl(B)$. Consider $tp_{\mathcal{M}}(b/A)$. By Claim 8, if $a \models tp_{\mathcal{M}}(b/A)$, then $a \models tp_{\mathcal{M}}(b/B)$, so since $b \in acl(B)$, by 10.8(2), $a \in \mathcal{M}$. Thus, by 10.8(2), $b \in acl(A)$. Hence, acl(A) = acl(B).