General Properties of Definable and Algebraic Closure

Victoria Noquez

December 10, 2012

10.7 Exercise

Let \mathcal{M} be an L-structure, $A \subset M$, and $a \in M^{n}$. Statements (1), (2), and (3) are equivalent:
(1) a is definable in \mathcal{M} over A.
(2) For any $\mathcal{N} \succeq \mathcal{M}$ the only realization of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in \mathcal{N} is a.
(3) For any $\epsilon>0$ there is an $L(A)$-formula $\phi(x)$ and $\delta>0$ such that $\phi^{\mathcal{M}}(a)=0$ and the diameter of $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$ is $\leq \epsilon$.

If \mathcal{N} is any fixed ω_{1}-saturated elementary extension of \mathcal{M}, then (1) is equivalent to:
(4) The only realization of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in \mathcal{N} is a.
$(1) \Rightarrow(2)$ Suppose a is definable in \mathcal{M} over A. Let $\left(\phi_{k}(x)\right)_{k<\omega}$ be $L(A)$-formulas such that

$$
\forall \epsilon>0 \exists K \forall k \geq K \forall \bar{x} \in M^{n}\left|\phi_{k}^{\mathcal{M}}(\bar{x})-d(\bar{x}, a)\right| \leq \epsilon
$$

Let $\epsilon>0$ be given and let K witness this for $\frac{\epsilon}{2}$. Let $\mathcal{N} \succeq \mathcal{M}$ and let $b \in N^{n}$ realize $t p_{\mathcal{M}}(a / A)$. For $k \geq K,\left|\phi_{k}^{\mathcal{M}}(a)-d(a, a)\right| \leq \frac{\epsilon}{2}$, so $\phi_{k}^{\mathcal{M}}(a) \leq \frac{\epsilon}{2}$, thus $\phi_{k}(x) \leq \frac{\epsilon}{2}$ is in $t p_{\mathcal{M}}(a / A)$. Hence, $\mathcal{N} \vDash \phi_{k}(b) \leq \frac{\epsilon}{2}$. $\mathcal{M} \vDash \sup _{x}\left|\phi_{k}(x)-d(x, a)\right| \leq \frac{\epsilon}{2}$, so by elementarity, $\mathcal{N} \vDash \sup _{x}\left|\phi_{k}(x)-d(x, a)\right| \leq \frac{\epsilon}{2}$, so in particular, $\mathcal{N} \vDash\left|\phi_{k}(b)-d(b, a)\right| \leq \frac{\epsilon}{2}$. Thus, $d(a, b) \leq\left|d(a, b)-\phi_{k}^{\mathcal{N}}(b)\right|+\left|\phi_{k}^{\mathcal{N}}(b)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Hence, since $\epsilon>0$ was arbitrary, $a=b$. So a is the only realization of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in $\mathcal{N} \succeq \mathcal{M}$.
$(2) \Rightarrow(4)$ Clear.
$(4) \Rightarrow(3)$ We will prove the contrapositive: suppose (3) fails, then $\exists \epsilon>0$ such that for all $L(A)$-formulas $\phi(x)$ and $\delta>0$, if $\phi^{\mathcal{M}}(a)=0$, then the set $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$ has diameter $\geq \epsilon$. Let such an $\epsilon>0$ be given. Let $p(x)$ be the following type over $A \cup\{a\}$: $t p_{\mathcal{M}}(a / A) \cup\left\{d(x, a) \geq \frac{\epsilon}{2}\right\}$.

Claim 1. $p(x)$ is finitely satisfiable.

Proof. Let $\Gamma(x)$ be a finite subset of $p(x)$, and let $\left\{\phi_{1}(x)=0, \ldots, \phi_{m}(x)=0, d(x, a) \geq\right.$ $\left.\frac{\epsilon}{2}\right\} \supset \Gamma(x)$ where $\phi_{i}(x)=0 \in \operatorname{tp}_{\mathcal{M}}(a / A)$. Then for $\phi(x)=\max \left\{\phi_{1}(x), \ldots, \phi_{m}(x)\right\}$, $\phi(x)=0 \in \operatorname{tp}_{\mathcal{M}}(a / A)$, so $\phi(x)=0 \in p(x)$. Thus, it is enough to show that $\{\phi(x)=$ $\left.0, d(x, a) \geq \frac{\epsilon}{2}\right\}$ is satisfiable. By $\neg(3),\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$ has diameter $\geq \epsilon$ for every $\delta>0$, so $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)=0\right\}=\bigcup_{\delta>0}\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$ has diameter $\geq \epsilon$. So choose b such that $d(b, a) \geq \frac{\epsilon}{2}$ and $\phi^{\mathcal{M}}(b)=0$. This satisfies $\Gamma(x)$.

Now, let $\mathcal{N} \succeq \mathcal{M}$ be ω_{1}-saturated. Since $p(x)$ is finitely satisfiable, and A (without loss of generality, by $10.10(3))$ is countable, $p(x)$ is realized by some $b \in N^{n}$. But $d(a, b) \geq \frac{\epsilon}{2}>0$, so $a \neq b$. Thus, a is not the only realization of $t p_{\mathcal{M}}(a / A)$ in \mathcal{N}.
$(3) \Rightarrow(1)$ Let $\phi_{k}(x)$ an $L(A)$-formula and $\delta_{k}>0$ be witnesses of (3) for $\epsilon=\frac{1}{k}$. Then $\phi_{k}^{\mathcal{M}}(a)=0$ and $\phi_{k}^{\mathcal{M}}(b)<\delta_{k} \Rightarrow d(a, b) \leq \frac{1}{k}$ since $a \in\left\{b \in M^{n} \mid \phi_{k}^{\mathcal{M}}(b)<\delta_{k}\right\}$ and it has diameter $\leq \frac{1}{k}$. So by Proposition 9.19, $\{a\}$ is definable.

10.8 Exercise

Let \mathcal{M} be an L-structure, $A \subset M$, and $a \in M^{n}$. Statements (1), (2), (3), and (4) are equivalent:
(1) a is algebraic in \mathcal{M} over A.
(2) For any $\mathcal{N} \succeq \mathcal{M}$, every realization of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in \mathcal{N} is in M^{n}.
(3) For any $\epsilon>0$ there is an $L(A)$-forumla $\phi(x)$ and $\delta>0$ such that $\phi^{\mathcal{M}}(a)=0$ and the set $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$ has a finite ϵ-net.
(4) For any $\mathcal{N} \succeq \mathcal{M}$, the set of realizations of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in \mathcal{N} is compact.

If \mathcal{N} is any fixed ω_{1}-saturated extension of \mathcal{M}, then (1) is equivalent to:
(5) The set of realizations of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in \mathcal{N} is compact.

If \mathcal{N} is any fixed κ-saturated elementary extension of \mathcal{M}, with κ uncountable, then (1) is equivalent to:
(6) The set of realizations of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in \mathcal{N} has density character $<\kappa$.
$(1) \Rightarrow(3)$ Let $C \subset M^{n}$ be a compact set containing a and let $\left(\phi_{k}\right)_{k<\omega}$ be $L(A)$-formulas such that $\forall x \in M^{n},\left|\phi_{k}^{\mathcal{M}}(x)-d(x, C)\right| \leq \frac{1}{k}$. Let $\epsilon>0$ be given. Choose k so that $\frac{3}{k}<\frac{\epsilon}{3}$. Let $\delta=\frac{1}{k}$ and $\phi(x)=\phi_{k}(x) \dot{-} \frac{1}{k}($ where $x \dot{-} y=\max (x-y, 0)$).
Then, since $\left|\phi_{k}^{\mathcal{M}}(a)-d(a, C)\right|=\phi_{k}^{\mathcal{M}}(a) \leq \frac{1}{k}$ because $a \in C, \phi^{\mathcal{M}}(a)=\phi_{k}^{\mathcal{M}}(a) \dot{-} \frac{1}{k}=0$. Let $b \in M^{n}$ with $\phi^{\mathcal{M}}(b)<\delta$. $\phi_{k}^{\mathcal{M}}(b) \dot{-} \frac{1}{k}<\frac{1}{k}$, so $\phi_{k}^{\mathcal{M}}(b)<\frac{2}{k}$. Thus $d(b, C) \leq \mid \phi_{k}^{\mathcal{M}}(b)-$ $d(b, C)\left|+\left|\phi_{k}^{\mathcal{M}}(b)\right| \leq \frac{1}{k}+\frac{2}{k}=\frac{3}{k}<\frac{\epsilon}{3}\right.$. Now consider the open cover $\left\{B\left(c, \frac{\epsilon}{2}\right): c \in C\right\}$ of C. Since C is compact, there are $c_{1}, \ldots, c_{m} \in C$ such that $B\left(c_{1}, \frac{\epsilon}{2}\right), \ldots, B\left(c_{m}, \frac{\epsilon}{2}\right)$ is a finite subcover of C. Let $b \in\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$. Since $d(b, C)<\frac{\epsilon}{3}$, we can choose $x \in C$ such that $d(b, x)<\frac{\epsilon}{2}$. Since $\left\{\left.B\left(c_{i}, \frac{\epsilon}{2}\right) \right\rvert\, 1 \leq i \leq m\right\}$ is a cover of C, there is c_{i} such that $x \in B\left(c_{i}, \frac{\epsilon}{2}\right)$. So $d\left(b, c_{i}\right) \leq d(b, x)+d\left(x, c_{i}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. So $\left\{B\left(c_{i}, \epsilon\right) \mid 1 \leq i \leq m\right\}$ is a finite ϵ-net of $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$.
$(3) \Rightarrow(1)$ Let $\mathcal{N} \succeq \mathcal{M}$ be ω_{1}-saturated.
Claim 2. For any $\epsilon>0$, there is an $L(A)$-formula $\phi(x)$ and $\delta>0$ such that $\phi^{\mathcal{N}}(a)=0$ and $\left\{b \in N^{n} \mid \phi^{\mathcal{N}}(b)<\delta\right\}$ has a finite ϵ-net.

Proof. Let $\epsilon>0$ be given. Choose an $L(A)$-formula $\phi(x)$ and $\delta>0$ such that there are b_{1}, \ldots, b_{m} which give a finite ϵ-net of $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$. So
$\mathcal{M} \vDash \sup _{b} \min \left(\delta \dot{-} \phi(b), \min _{1 \leq i \leq m}\left(d\left(b, b_{i}\right) \dot{-} \epsilon\right)\right)=0$. Since $\mathcal{M} \preceq \mathcal{N}$,
$\mathcal{N} \vDash \sup _{b} \min \left(\delta \dot{-} \phi(b), \min _{1 \leq i \leq m}\left(d\left(b, b_{i}\right) \dot{-} \epsilon\right)\right)=0$. So for $b \in\left\{b \in N^{n} \mid \phi^{\mathcal{N}}(b)<\delta\right\}$, $\delta \dot{-} \phi^{\mathcal{N}}(b)>0$, so $\min _{1 \leq i \leq m}\left(b, b_{i}\right) \dot{-} \epsilon=0$ for some i, so $d\left(b, b_{i}\right) \leq \epsilon$. Thus, b_{1}, \ldots, b_{m} give a finite ϵ-net of $\left\{b \in N^{n} \mid \phi^{\mathcal{N}}(b)<\delta\right\}$.

For $k \geq 1$, let $\phi_{k}(x)$ an $L(A)$-formula and $\delta_{k}>0$ be witnesses of this in \mathcal{N} for $\epsilon=\frac{1}{k}$.
Let $C=\bigcap_{k<\omega} Z\left(\phi_{k}(x) \dot{-} \frac{\delta_{k}}{2}\right)$.
Claim 3. C is compact.
Proof. Let $\epsilon>0$ be given. Let k be such that $\frac{1}{k}<\epsilon$. Then, since $C \subset Z\left(\phi_{k}(x) \dot{-} \frac{\delta_{k}}{2}\right) \subset$ $\left\{b \in N^{n} \mid \phi_{k}^{\mathcal{N}}(b)<\delta_{k}\right\}$, and there is a finite ϵ-net of $\left\{b \in N^{n} \mid \phi_{k}^{\mathcal{N}}(b)<\delta_{k}\right\}$, we get a finite ϵ-net of C.
Let $\left(b_{k}\right)_{k<\omega}$ be a sequence in C. We will define $C_{1} \supset C_{2} \supset \ldots$ subsets of C with $\operatorname{diam}\left(C_{k}\right) \leq \frac{1}{k}$ and $\left(a_{k}\right)_{k<\omega}$ a subsequence of $\left(b_{k}\right)$ such that $\left\{k \in \omega \mid b_{k} \in C_{i}\right\}$ is infinite and $\left(a_{k}\right)$ is Cauchy.
Let $C_{1}=C, a_{1}=b_{1}$. Given a_{1}, \ldots, a_{k} and $C_{1} \supset \ldots \supset C_{k}$, let B_{1}, \ldots, B_{m} be a finite $\frac{1}{k+1}$-net of C. Then $B_{1} \cap C_{k}, \ldots, B_{m} \cap C_{k}$ is a finite $\frac{1}{k+1}$-net of C_{k}. Since there are infinitely many j such that $b_{j} \in C_{k}$, for at least one $B_{i}, B_{i} \cap C_{k}$ is such that for infinitely many $j, b_{j} \in B_{i} \cap C_{k}$. Let $C_{k+1}=B_{i} \cap C_{k}$ and let $a_{k+1}=b_{j}$ where j is the least such that $b_{j} \in C_{k+1}$ and if $a_{1}=b_{i_{1}}, \ldots, a_{k}=b_{i_{k}}, j>i_{1}, \ldots, i_{k}$.
So for any $\epsilon>0$, choose N such that $\frac{1}{N}<\epsilon$. Then for $k, j>N, a_{k}, a_{j} \in C_{N}$, so $d\left(a_{k}, a_{j}\right)<\frac{1}{N}=\operatorname{diam}\left(C_{N}\right)<\epsilon$. So $\left(a_{k}\right)$ is Cauchy.
Since \mathcal{N} is complete, $\left(a_{k}\right)$ converges to some c. Now consider $\phi_{k}(x) \doteq \frac{\delta_{k}}{2}$. Let $\epsilon>0$ be given, and let Δ be the modulus of uniform continuity for $\phi_{k}(x)-\frac{\delta_{k}}{2}$. Choose j such that $d\left(a_{j}, c\right)<\Delta(\epsilon)$. Then $\left|\left(\phi_{k}^{\mathcal{N}}\left(a_{j}\right) \dot{-} \frac{\delta_{k}}{2}\right)-\left(\phi_{k}^{\mathcal{N}}(c) \dot{-} \frac{\delta_{k}}{2}\right)\right| \leq \epsilon$. But since $a_{j} \in C$, $\phi_{k}^{\mathcal{N}}\left(a_{j}\right) \dot{-} \delta_{k}=0$, so $\phi_{k}^{\mathcal{N}}(c) \dot{-} \delta_{k} \leq \epsilon$. Thus, since $\epsilon>0$ was arbitrary, $\phi_{k}^{\mathcal{N}}(c) \dot{-} \frac{\delta_{k}}{2}=0$. So since k was arbitrary, $c \in C$. Hence, C is sequentially compact.
Thus, since \mathcal{N} is a metric space, C is compact.
By Proposition 9.14, $C=Z(P)$ for some predicate P which is definable over A. So by Proposition 10.6, C is definable over A since \mathcal{N} is ω_{1}-saturated.
Since $\phi_{k}^{\mathcal{N}}(a)=0$ for all $k, \phi_{k}^{\mathcal{N}}(a) \dot{-} \frac{\delta_{k}}{2}=0$, so $a \in C$.
Thus, $a \in \operatorname{acl}_{\mathcal{N}}(A)=a c l_{\mathcal{M}}(A)$ by Corollary 10.5. So a is algebraic over A in \mathcal{M}, as required.
$(3) \Rightarrow(4)$ Let $\mathcal{N} \succeq \mathcal{M}$ and let $D \subset N^{n}$ be the set of realizations of $t_{\mathcal{M}}(a / A)$ in \mathcal{N}.
Claim 4. For every $\epsilon>0$, there is a finite ϵ-net of D.
Proof. Let $\epsilon>0$ be given. Let $\phi(x)$ be an $L(A)$ formula and $\delta>0$ be such that $\{b \in$ $\left.M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$ has a finite ϵ-net. Let c_{1}, \ldots, c_{m} be such that $B\left(c_{1}, \epsilon\right), \ldots, B\left(c_{m}, \epsilon\right)$ is that net. So $\mathcal{M} \vDash \sup _{b}\left(\min \left(\delta \dot{-} \phi(b), \min _{1 \leq i \leq m}\left(d\left(c_{i}, b\right) \dot{-} \epsilon\right)\right)\right)=0$. So since $\mathcal{M} \preceq \mathcal{N}$, $\mathcal{N} \vDash \sup _{b}\left(\min \left(\delta \dot{-} \phi(b), \min _{1 \leq i \leq m}\left(d\left(c_{i}, b\right) \dot{-} \epsilon\right)\right)\right)=0$. Let $b \in D$. Since $\phi^{\mathcal{M}}(a)=0$ and $b \vDash t p_{\mathcal{M}}(a / A), \phi^{\mathcal{N}}(b)=0 . \delta \dot{-} \phi(b)>0$, so for some $i, d\left(c_{i}, b\right) \dot{-} \epsilon=0$, so $\epsilon \geq d\left(c_{i}, b\right)$. Thus, $B\left(c_{1}, \epsilon\right), \ldots, B\left(c_{m}, \epsilon\right)$ is a finite ϵ-net of D.

Claim 5. D is sequentially compact.
Proof. Let $\left(b_{k}\right)_{k<\omega}$ be a sequence in D. We will define $C_{1} \supset C_{2} \supset \ldots$ subsets of D with $\operatorname{diam}\left(C_{k}\right) \leq \frac{1}{k}$ and $\left(a_{k}\right)_{k<\omega}$ a subsequence of $\left(b_{k}\right)$ such that $\left\{k \in \omega \mid b_{k} \in C_{i}\right\}$ is infinite and $\left(a_{k}\right)$ is Cauchy.
Let $C_{1}=D, a_{1}=b_{1}$. Given a_{1}, \ldots, a_{k} and $C_{1} \supset \ldots \supset C_{k}$, let B_{1}, \ldots, B_{m} be a finite $\frac{1}{k}$ net of D. Then $B_{1} \cap C_{k}, \ldots, B_{m} \cap C_{k}$ is a finite $\frac{1}{k+1}$-net of C_{k}. Since there are infinitely many j such that $b_{j} \in C_{k}$, for at least one $B_{i}, B_{i} \cap C_{k}$ is such that for infinitely many $j, b_{j} \in B_{i} \cap C_{k}$. Let $C_{k+1}=B_{i} \cap C_{k}$ and let $a_{k+1}=b_{j}$ where j is the least such that $b_{j} \in C_{k+1}$ and if $a_{1}=b_{i_{1}}, \ldots, a_{k}=b_{i_{k}}, j>i_{1}, \ldots, i_{k}$.
So for any $\epsilon>0$, choose N such that $\frac{1}{N}<\epsilon$. Then for $k, j>N, a_{k}, a_{j} \in C_{N}$, so $d\left(a_{k}, a_{j}\right)<\frac{1}{N}=\operatorname{diam}\left(C_{N}\right)<\epsilon$. So $\left(a_{k}\right)$ is Cauchy.
Since \mathcal{M} is complete, $\left(a_{k}\right)$ converges to some c. Now let ϕ be an $L(A)$-formula such that $\phi=0 \in \operatorname{tp}_{\mathcal{M}}(a / A)$. Let $\epsilon>0$ be given, and let Δ be the modulus of uniform continuity for ϕ. Choose k such that $d\left(a_{k}, c\right)<\Delta(\epsilon)$. Then $\left|\phi^{\mathcal{N}}\left(a_{k}\right)-\phi^{\mathcal{N}}(c)\right| \leq \epsilon$. But since $a_{k} \in D, \phi^{\mathcal{N}}\left(a_{k}\right)=0$, so $\phi^{\mathcal{N}}(c) \leq \epsilon$. Thus, since $\epsilon>0$ was arbitrary, $\phi^{\mathcal{N}}(c)=0$. So since ϕ was arbitrary, $c \vDash t p_{\mathcal{M}}(a / A)$, so $c \in D$. Hence, D is sequentially compact.

Thus, since \mathcal{N} is a metric space, D is compact, as required.
$(4) \Rightarrow(3)$ Since $\mathcal{M} \succeq \mathcal{M}$, the set of realizations of $\operatorname{tp}_{\mathcal{M}}(a / A)$ in \mathcal{M} is compact. Let $\epsilon>0$ be given. Let $b_{1}, \ldots, b_{n} \vDash t p_{\mathcal{M}}(a / A)$ be such that $B\left(b_{1}, \epsilon\right), \ldots, B\left(b_{n}, \epsilon\right)$ is a finite ϵ-net of the realizations of $\operatorname{tp}_{\mathcal{M}}(a / A)$. Let $\phi(x)=\min _{1 \leq i \leq m}\left(d\left(x, b_{i}\right)-\frac{\epsilon}{2}\right)$. Let $\delta=\frac{\epsilon}{2}$.
Then $\phi^{\mathcal{M}}(x)<\delta \Leftrightarrow d\left(x, b_{i}\right) \dot{-} \frac{\epsilon}{2}<\frac{\epsilon}{2}$ for some $1 \leq i \leq m \Leftrightarrow d\left(x, b_{i}\right)<\epsilon$ for some $1 \leq i \leq m$. That is, $x \in\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(x)<\delta\right\}$ if and only if x is in one of the $B\left(b_{i}, \epsilon\right)$, so this set has a finite ϵ-net.
$(3) \Rightarrow(2)$ Let $\epsilon>0$ be given. Let $\phi(x)=0 \in t p_{\mathcal{M}}(a / A)$ and $\delta>0$ be such that $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\right.$ $\delta\}$ has a finite ϵ-net.
Let $B\left(b_{1}, \epsilon\right), \ldots, B\left(b_{m}, \epsilon\right)$ with $b_{1}, \ldots, b_{m} \in M^{n}$ be such a net.
$\mathcal{M} \vDash \sup _{c}\left(\min \left(\delta \dot{-} \phi(c), \min _{1 \leq i \leq m}\left(d\left(c, b_{i}\right) \dot{-} \epsilon\right)\right)\right)=0$, so since $\mathcal{M} \preceq \mathcal{N}$,
$\mathcal{N} \vDash \sup _{c}\left(\min \left(\delta \dot{-} \phi(c), \min _{1 \leq i \leq m}\left(d\left(c, b_{i}\right) \dot{-} \epsilon\right)\right)\right)=0$. So for $c \in N^{n}$ with $\phi^{\mathcal{N}}(c)=0$, for some $1 \leq i \leq m, d\left(c, b_{i}\right) \leq \epsilon$.
So let $c \in N^{n}$ and suppose $c \vDash t_{\mathcal{M}}(a / A)$. Then for each $\frac{1}{k}$, since $\phi^{\mathcal{N}}(c)=0$ for all $\phi=0 \in \operatorname{tp}_{\mathcal{M}}(a / A)$, we can find some $b_{k} \in \mathcal{M}$ such that $d\left(c, b_{k}\right) \leq \frac{1}{k}$. Thus, c is the limit of the sequence $\left(b_{k}\right)_{k<\omega}$ in \mathcal{M} and \mathcal{M} is complete, so $c \in M^{n}$.
$(2) \Rightarrow(3)$ Suppose $\neg(3)$. That is, $\exists \epsilon>0$ such that for every $L(A)$-formula ϕ and $\delta>0$ such that $\phi^{\mathcal{M}}(a)=0$, there is no finite ϵ-net of $\left\{b \in M \mid \phi^{\mathcal{M}}(b)<\delta\right\}$. Let B be the set of all realizations of $p_{\mathcal{M}}(a / A)$ in \mathcal{M}. For $b \in B$, let $\psi_{b}(x)$ be $\epsilon-d(x, b)$. Let p be the following type over $A \cup B$: $\left\{\left.\phi(x) \leq \frac{1}{n} \right\rvert\, \phi\right.$ is an $L(A)$-forumla, $\left.\phi^{\mathcal{M}}(a)=0, n \in \mathbb{N}\right\} \cup\left\{\psi_{b}(x): b \in B\right\}$.

Claim 6. p is finitely satisfiable.
Proof. Let $\Gamma \subset p$ be finite. Then there are $b_{1}, \ldots, b_{n} \vDash t p_{\mathcal{M}}(a / A)$ and $\phi_{1}, \ldots, \phi_{m}$ $L(A)$-formulas such that $\phi_{i}^{\mathcal{M}}(a)=0$ so that $\Gamma \subset\left\{\psi_{b_{1}}=0, \ldots, \psi_{b_{n}}=0, \phi_{1}(x)<\right.$ $\left.\frac{1}{n_{1}}, \ldots, \phi_{m}(x)<\frac{1}{n_{m}}\right\}$. Let $\phi=\max \left(\phi_{1}, \ldots, \phi_{m}\right)$ and $\delta=\min \left(\frac{1}{n_{1}}, \ldots, \frac{1}{n_{m}}\right)$. We know $\phi^{\mathcal{M}}(a)=0$, so $B\left(b_{1}, \epsilon\right), \ldots, B\left(b_{n}, \epsilon\right)$ is not a cover of $\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\}$. So choose $x \in\left\{b \in M^{n} \mid \phi^{\mathcal{M}}(b)<\delta\right\} \backslash\left(B\left(b_{1}, \epsilon\right) \cup \ldots \cup B\left(b_{n}, \epsilon\right)\right)$. Thus, $x \vDash \Gamma$.

Let $\mathcal{N} \succeq \mathcal{M}$ be such that there is $y \in N^{n}$ realizing p. So $y \vDash t p_{\mathcal{M}}(a / A)$ since for all $L(A)$-formulas with $\phi(x)=0 \in \operatorname{tp}_{\mathcal{M}}(a / A)$, and all $n \in \mathbb{N}, \phi^{\mathcal{N}}(y) \leq \frac{1}{n}$, so $\phi^{\mathcal{N}}(y)=0$. $d(y, b) \geq \epsilon>0$ for all $b \in B$, so $y \notin B$. Thus, $y \notin M^{n}$.
$(4) \Rightarrow(5)$ Clear.
(5) $\Rightarrow(4)$ Let $\mathcal{N} \succeq \mathcal{M}$ and let $\mathcal{N}^{\prime} \succeq \mathcal{N}$ be an ω_{1}-saturated elementary extension. Then $\{b \in$ $\left.\mathcal{N} \mid b \vDash t_{\mathcal{M}}(a / A)\right\}=\left\{b \in \mathcal{N}^{\prime} \mid b \vDash \operatorname{tp}_{\mathcal{M}}(a / A)\right\} \cap \mathcal{N} .\left\{b \in \mathcal{N}^{\prime} \mid b \vDash t p_{\mathcal{M}}(a / A)\right\}$ is compact by assumption and \mathcal{N} is complete, and thus closed, so $\left\{b \in \mathcal{N} \mid b \vDash \operatorname{tp}_{\mathcal{M}}(a / A)\right\}$ is compact.
$(4) \Rightarrow(6)$ The set of realizations of $\operatorname{tp} p_{\mathcal{M}}(a / A)$ in \mathcal{N} is compact, and thus, separable. That is, it has a countable dense subset, so its density character is $<\kappa$, since κ is is uncountable.
$(6) \Rightarrow(4)$ Suppose there is $\epsilon>0$ such that there is no finite ϵ-net of the realizations in \mathcal{N} of $p(x)=t p_{\mathcal{M}}(a / A)$. Note: in the proof of $(3) \Rightarrow(4)$, we saw that it is enough to show that if for every $\epsilon>0$, the set of realizations of $t p_{\mathcal{M}}(a / A)$ has a finite ϵ-net, to see that it is compact. So if we assume the set of realizations in not compact, there must be some such $\epsilon>0$.

Consider the following type in κ variables:
$\Gamma\left(\left(x_{i}\right)_{i<\kappa}\right)=\bigcup_{i<\kappa} p\left(x_{i}\right) \cup\left\{d\left(x_{i}, x_{j}\right) \geq \epsilon: i \neq j\right\}$.
Claim 7. Γ is finitely satisfiable.
Proof. Suppose not. Let n be such that $p\left(x_{1}\right) \cup \ldots \cup p\left(x_{n}\right) \cup\left\{d\left(x_{i}, x_{j}\right) \geq \epsilon \mid i, j \leq n\right\}$ is realized by some a_{1}, \ldots, a_{n} but $p\left(x_{1}\right) \cup \ldots \cup p\left(x_{n}\right) \cup p\left(x_{n+1}\right) \cup\left\{d\left(x_{i}, x_{j}\right) \geq \epsilon \mid i, j \leq n+1\right\}$ is not satisfiable. Then, for every $b \vDash p(x), d\left(a_{i}, b\right)<\epsilon$ for some $1 \leq i \leq n$. So these give a finite ϵ-net of the set of realizations. $\Rightarrow \Leftarrow$.

Thus, by compactness, $\Gamma\left(\left(x_{i}\right)_{i<\kappa}\right)$ is satisfiable.
Fact 1. If \mathcal{M} is ω-saturated and $\left(\inf _{y} \phi(\bar{x}, y)\right)^{\mathcal{M}}=0$, then there is $y \in \mathcal{M}$ such that $\phi(\bar{x}, y)=0$.

Proof. Let $q(y)$ be the type over $\bar{x}\left\{\left.\phi(\bar{x}, y) \leq \frac{1}{k} \right\rvert\, k<\omega\right\}$. This is finitely satisfiable, since for any $k<\omega$, there is y such that $\phi(\bar{x}, y) \leq \frac{1}{k}$. Thus, by ω-saturation, since \bar{x} is finite, there is y realizing q, and for such a y, we must have $\phi(\bar{x}, y)=0$.

Lemma 2. If $q\left(\left(x_{i}\right)_{i<\kappa}\right)$, a type over A with $|A|<\kappa$, is finitely satisfiable and \mathcal{M} is κ-saturated, then q is realized in \mathcal{M}

Proof. Let $p\left(\left(x_{i}\right)_{i<\kappa}\right)$ be a completion of q. For $\gamma<\kappa$, let $\phi\left(\left(x_{i}\right)_{i \leq \gamma}\right)$ denote a formula whose variables are among $\left(x_{i}\right)_{i \leq \gamma}$. Let $\left.p\right|^{\gamma}\left(\left(x_{i}\right)_{i \leq \gamma}\right)$ be the set of formulas from p who variables are among $\left(x_{i}\right)_{i \leq \gamma}$.
We will inductively build a sequence $\left(a_{i}\right)_{i<\kappa}$ which realizes p. By κ-saturation, since $|A|<\kappa$, we can find $\left.a_{0} \vDash p\right|^{0}\left(x_{0}\right)$.
Then, suppose we have $\left(a_{i}\right)_{i<\gamma}$. Let $\phi\left(\left(x_{i}\right)_{i<\gamma}, x_{\gamma}\right)=0$ be from $p \gamma^{\gamma}\left(\left(x_{i}\right)_{i \leq \gamma}\right)$. Then, since p is complete, $\inf _{y} \phi\left(\left(x_{i}\right)_{i<\gamma}, y\right)=0$ is in p, and thus, in $\left.p\right|^{\beta}$ for some $\beta<\gamma$. Thus, $\inf _{y} \phi\left(\left(a_{i}\right)_{i<\gamma}, y\right)=0$. So by the previous fact, there is some $a_{\gamma} \in \mathcal{M}$ such that $\phi\left(\left(a_{i}\right)_{i<\gamma}, a_{\gamma}\right)=0$. Hence, $\left.p\right|^{\gamma}\left(\left(a_{i}\right)_{i<\gamma}, x_{\gamma}\right)$ is finitely satisfiable.
So, if we consider $\left.p\right|^{\gamma}\left(\left(a_{i}\right)_{i<\gamma}, x_{\gamma}\right)$ as a 1-type over $A \cup\left\{a_{i} \mid i<\gamma\right\}$, since $\gamma<\kappa, \mid A \cup\left\{a_{i} \mid i<\right.$ $\gamma\} \mid<\kappa$, so by κ-saturation, there is a_{γ} realizing it.
Thus, we get $\left(a_{i}\right)_{i<\kappa}$ realizing $p\left(\left(x_{i}\right)_{i<\kappa}\right)$, and hence, $q\left(\left(x_{i}\right)_{i<\kappa}\right)$.

So by κ-saturation, since A is, without loss of generality, countable by 10.11(3), $\Gamma\left(\left(x_{i}\right)_{i<\kappa}\right)$ is realized by some $\left(a_{i}\right)_{i<\kappa}$ in \mathcal{N}.
Now suppose the set of realizations of p in \mathcal{N} has density character $\lambda<\kappa$. Let S be a size λ dense subset of the set of realizations.

We know from Γ that there are at least κ many distinct realizations and that for every a_{i} there is $s \in S$ such that $d\left(a_{i}, s\right)<\frac{\epsilon}{2}$. So since $|S|<\kappa$, there must be some $s \in S$ with $i \neq j$ such that $d\left(a_{i}, s\right)<\frac{\epsilon}{2}$ and $d\left(a_{j}, s\right)<\frac{\epsilon}{2}$ (or else there could only be at most λ many $a_{i}{ }^{\prime}$'s). But then $d\left(a_{i}, a_{j}\right) \leq d\left(a_{i}, s\right)+d\left(a_{j}, s\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \Rightarrow \Leftarrow$.
Thus, the set of realizations of $t p_{\mathcal{M}}(a / A)$ in \mathcal{N} has density character $\geq \kappa$.

10.11 Exercise

Let \mathcal{M} be an L-structure and A, B be subsets of \mathcal{M}. We write $d c l$ instead of $d c l_{\mathcal{M}}$.
Properties of $d c l$:
(1) $A \subset \operatorname{dcl}(A)$.

Proof. Let $a \in A$. Then $d(x, a)$ is an $L(A)$-formula, so $a \in d c l(A)$.
(2) If $A \subset d c l(B)$ then $d c l(A) \subset d c l(B)$.

Proof.
Lemma 3. For $X \subset \mathcal{M}$, if $\sigma \in \operatorname{Aut}(\mathcal{M} / X)$, then $\sigma(x)=x$ for all $x \in \operatorname{dcl}(X)$.
Proof. Let $x \in \operatorname{dcl}(X)$. By $10.7(2), x$ is the only realization of $\operatorname{tp}_{\mathcal{M}}(x / X)$. Let $\sigma \in$ $\operatorname{Aut}(\mathcal{M} / X)$. Then $\sigma(x) \vDash t p_{\mathcal{M}}(x / X)$, so $\sigma(x)=x$.

Let $a \in d c l(A)$. By $10.7(2)$, it is enough to show that the only realization of $t p_{\mathcal{M}}(a / B)$ is a. Let $b \vDash \operatorname{tp}_{\mathcal{M}}(a / B)$. Let $\sigma \in \operatorname{Aut}(\mathcal{M} / B)$ be such that $\sigma(a)=b$. Since σ fixes B point wise, by the lemma, it fixes $d c l(B)$ point wise, and thus, A point wise. $\sigma \in \operatorname{Aut}(\mathcal{M} / A)$, so by the lemma, $\sigma(a)=a$. Thus, $b=a$.
Hence, $a \in \operatorname{dcl}(B)$.
(3) If $a \in \operatorname{dcl}(A)$ then there exists a countable set $A_{0} \subset A$ such that $a \in \operatorname{dcl}\left(A_{0}\right)$.

Proof. Let $a \in d c l(A)$. Let $\phi_{k}(x, \bar{y})$ and $\overline{a_{k}} \in A^{|\bar{y}|}$ be such that $\left|d(x, a)-\phi_{k}\left(x, \overline{a_{k}}\right)\right| \leq \frac{1}{k}$. Let $A_{0}=\bigcup_{k<\omega} \overline{a_{k}} . A_{0}$ is countable, since each $|y|$ is finite. Thus, $d(x, a)$ is definable over A_{0}, so $a \in d c l\left(A_{0}\right)$.
(4) If A is a dense subset of B, then $\operatorname{dcl}(A)=\operatorname{dcl}(B)$.

Proof. $A \subset B \Rightarrow A \subset \operatorname{dcl}(B)$ by (1), so $d c l(A) \subset d c l(B)$ by (2).
Let $b \in d c l(B)$. By $10.7(2)$, it is enough to show that b is the only realization of $t p_{\mathcal{M}}(b / A)$.
Claim 8. For $A \subset B$ dense, if $c \vDash \operatorname{tp}_{\mathcal{M}}(b / A)$ then $c \vDash t p_{\mathcal{M}}(b / B)$.
Proof. Let $\phi\left(x, b_{1}, \ldots, b_{m}\right)=0 \in \operatorname{tp}(b / B)$ with $b_{1}, \ldots, b_{m} \in B$. Let $\epsilon>0$ be given. We will show that $\phi\left(c, b_{1}, \ldots, b_{m}\right) \leq \epsilon$, and thus, since $\epsilon>0$ was arbitrary, $\phi\left(c, b_{1}, \ldots, b_{m}\right)=0$.
Let δ be such that $\max \left(d\left(a_{1}, b_{1}\right), \ldots, d\left(a_{m}, b_{m}\right)\right)<\delta \Rightarrow\left|\phi\left(x, b_{1}, \ldots, b_{m}\right)-\phi\left(x, a_{1}, \ldots, a_{m}\right)\right| \leq$ $\epsilon(\delta=\Delta(\epsilon)$ where Δ is the modulus of uniform continuity for $\phi)$. We can choose such an $a_{1}, \ldots, a_{m} \in A$ since $A \subset B$ is dense. So since $\phi\left(b, b_{1}, \ldots, b_{m}\right)=0, \phi\left(b, a_{1}, \ldots, a_{m}\right) \leq \epsilon$. Thus, since $c \vDash t p_{\mathcal{M}}(b / A), \phi\left(c, a_{1}, \ldots, a_{m}\right) \leq \epsilon$, as required.
Hence $c \vDash t p_{\mathcal{M}}(b / B)$.

So suppose $a \vDash t p_{\mathcal{M}}(b / A)$. Then by the claim, $a \vDash t p_{\mathcal{M}}(b / B)$. So since $b \in d c l(B)$, by 10.7(2), we must have $b=a$.

Hence, b is the only realization of $\operatorname{tp}_{\mathcal{M}}(b / A)$, so $b \in d c l(A)$.

10.12 Exercise

Let \mathcal{M} be an L-structure and A, B be subsets of \mathcal{M}. We write $a c l$ instead of $\operatorname{acl}_{\mathcal{M}}$.
Properties of acl:
(1) $A \subset \operatorname{acl}(A)$.

Proof. Let $a \in A$. Then $\{a\}$ is definable by $d(x, a)$, an $L(A)$-formula, and it is compact, so $a \in \operatorname{acl}(A)$.
(2) If $A \subset \operatorname{acl}(B)$ then $\operatorname{acl}(A) \subset \operatorname{acl}(B)$.

Proof.
Lemma 4. For any $X \subset \mathcal{M}$, if $\sigma \in \operatorname{Aut}(\mathcal{M} / X)$ and $x \in \operatorname{acl}(X)$, then $\sigma(x) \in \operatorname{acl}(X)$.
Proof. Let $x \in \operatorname{acl}(X)$ and $\sigma \in \operatorname{Aut}(\mathcal{M} / X)$. Then $\operatorname{tp}_{\mathcal{M}}(\sigma(x) / X)=\operatorname{tp}_{\mathcal{M}}(x / X)$. So by $10.8(2)$, since $x \in \operatorname{acl}(X)$, the only realizations of this type are in \mathcal{M}. Thus, by $10.8(2), \sigma(x) \in \operatorname{acl}(X)$.

Let $a \in \operatorname{acl}(A)$. Let $\mathcal{N} \succeq \mathcal{M}$ and $b \in \mathcal{N}$ be such that $b \vDash t p_{\mathcal{M}}(a / B)$. So, by 10.8(2), it is enough to show that $b \in \mathcal{M}$ to see that $a \in \operatorname{acl}(B)$.
Let $\sigma \in \operatorname{Aut}(\mathcal{N} / B)$ be such that $\sigma(a)=b$. σ fixes B, so it fixes $\operatorname{acl}(B)$ set wise. So $\sigma(A) \subset \operatorname{acl}(B) \subset \mathcal{M}$.
Claim 9. $\sigma(a) \in \operatorname{acl}_{\mathcal{N}}(\sigma(A))$
Proof. Let $C \subset \mathcal{N}$ be compact with $a \in C$ which is definable over A (in fact, since $a \in \operatorname{acl}(A)$, there is such a C in $\mathcal{M}) . \sigma(C)$ is compact since σ is an isometry, and definable over $\sigma(A)$, so since $\sigma(a) \in \sigma(C), \sigma(a) \in \operatorname{acl}_{\mathcal{N}}(\sigma(A))$.

Since $\sigma(A) \subset \mathcal{M}$, by Proposition 10.5, $\operatorname{acl}_{\mathcal{N}}(\sigma(A))=\operatorname{acl}_{\mathcal{M}}(\sigma(A))$, so $\sigma(a) \in \mathcal{M}$, and thus, $b \in \mathcal{M}$ as required.
(3) If $a \in \operatorname{acl}(A)$ then there exists a countable set $A_{0} \subset A$ such that $a \in \operatorname{acl}\left(A_{0}\right)$.

Proof. Let C be a compact set definable over A with $a \in C$.
Let $\phi_{k}(x, \bar{y})$ and $\overline{a_{k}} \in A^{|\bar{y}|}$ be such that $\left|d(x, C)-\phi_{k}\left(x, \overline{a_{k}}\right)\right| \leq \frac{1}{k}$. Let $A_{0}=\bigcup_{k<\omega} \overline{a_{k}} . A_{0}$ is countable, since each $|y|$ is finite. Thus, C is definable over A_{0}, so $a \in \operatorname{acl}\left(A_{0}\right)$.
(4) If A is a dense subset of B, then $\operatorname{acl}(A)=\operatorname{acl}(B)$.

Proof. $A \subset B \Rightarrow A \subset \operatorname{acl}(B)$ by $(1) \Rightarrow \operatorname{acl}(A) \subset \operatorname{acl}(B)$ by (2).
So let $b \in \operatorname{acl}(B)$. Consider $t_{\mathcal{M}}(b / A)$. By Claim 8, if $a \vDash t p_{\mathcal{M}}(b / A)$, then $a \vDash$ $t p_{\mathcal{M}}(b / B)$, so since $b \in \operatorname{acl}(B)$, by 10.8(2), $a \in \mathcal{M}$. Thus, by $10.8(2), b \in \operatorname{acl}(A)$.
Hence, $\operatorname{acl}(A)=\operatorname{acl}(B)$.

