Weak Theories of Arithmetic

Louise Hay Logic Seminar, UIC

Victoria Noquez
September 29, 2011

Abstract

We will use a forcing argument to show that certain statements provable in a nonstandard extension of primitive recursive arithmetic are also provable in primitive recursive arithmetic.

$1 P R A^{\omega}$

1.1 Finite Types

- N is a type, meant to denote the natural numbers

For types σ and τ,

- $\sigma \rightarrow \tau$ is a type, denoting functions from things of type of σ to things of type τ
- $\sigma \times \tau$ is a type, denoting the cross product of the set of things of type σ and the set of things of type τ We use $\sigma, \tau \rightarrow \rho$ to abbreviate $\sigma \rightarrow(\tau \rightarrow \rho)$.

1.2 Language of $P R A^{\omega}(L)$

L has variables of all finite types and the following constants

- 0 of type N (zero)
- S of type $N \rightarrow N$ (successor)

For types σ and τ

- \langle,$\rangle of type \sigma, \tau \rightarrow \sigma \times \tau$ (pairing)
- ($)_{0}$ and ($)_{1}$ of type $\sigma \times \tau \rightarrow \sigma$ and $\sigma \times \tau \rightarrow \tau$ respectively (projections)
- R of type $N,(N, N \rightarrow N), N \rightarrow N$ (primtive recursion)
- Cond $_{\sigma}$ of type $N, \sigma, \sigma \rightarrow \sigma$ (indicator)

1.3 Axioms of $P R A^{\omega}$

For $r[z]$ of type N, z of appropriate type

- Application For s, t terms, x a variable,

$$
r[(\lambda x t)(s)]=r[t[s / x]]
$$

- Projection For x, y terms

$$
\begin{aligned}
& r\left[(\langle x, y\rangle)_{0}\right]=r[x] \\
& r\left[(\langle x, y\rangle)_{1}\right]=r[y]
\end{aligned}
$$

- Successor For x, y of type N

$$
\begin{gathered}
\neg S(x)=0 \\
S(x)=S(y) \rightarrow x=y
\end{gathered}
$$

- Primitive Recursion For a, x of type N, f of type $N, N \rightarrow N$

$$
\begin{gathered}
R(a, f, 0)=a \\
R(a, f,(S(x)))=f(x, R(a, f, x))
\end{gathered}
$$

- Indicator For n of type N, x, y of type σ

$$
\begin{gathered}
r\left[\operatorname{Cond}_{\sigma}(0, x, y)\right]=r[x] \\
r\left[\operatorname{Cond}_{\sigma}(S(n), x, y)\right]=r[y]
\end{gathered}
$$

$2 \quad \Sigma_{1}$-induction

For every Σ_{1}-formula ϕ in L,

$$
\forall x(\phi(0) \wedge \forall y<x(\phi(y) \rightarrow \phi(y+1)) \rightarrow \phi(x))
$$

Fact: Over $P R A^{\omega}$, this is equivalent to saying that every bounded function on N has a least upper bound, and attains it. That is, for all f of type $N \rightarrow N$,

$$
\exists z \forall y(f(y) \leq z) \rightarrow \exists x \forall y(f(y) \leq f(x))
$$

$3 N P R A^{\omega}$

3.1 Language of $N P R A^{\omega}\left(L^{s t}\right)$

- Symbols of L
- $s t(t)$, a unary predicate over N (standard)
- ω, a constant of type N (infinity)

3.2 Axioms of $N P R A^{\omega}$

- Axioms of $P R A^{\omega}$
- $\neg s t(\omega)(\omega$ is non-standard)
- For x, y of type N,

$$
s t(x) \wedge y<x \rightarrow s t(y)
$$

(everything below a standard element is standard)

- For x_{1}, \ldots, x_{k} of type N and f of type $N^{k} \rightarrow N$

$$
\operatorname{st}\left(x_{1}\right) \wedge \ldots \wedge \operatorname{st}\left(x_{k}\right) \rightarrow \operatorname{st}\left(f\left(x_{1}, \ldots, x_{k}\right)\right)
$$

(the standard part of the universe is closed under primitive recursion)

- For $\psi(\vec{x})$ quantifier free, internal, and not involving ω, with free variables shown,

$$
\forall^{s t} \vec{x} \psi(\vec{x}) \rightarrow \forall \vec{x} \psi(\vec{x})
$$

4 The Interpretation

4.1 Translating the terms of $L^{\text {st }}$ to terms of L

- Let ω be a type N variable in L, corresponding to the constant ω in $L^{s t}$
- For each variable x in $L^{s t}$ of type σ, let \widetilde{x} be of type $N \rightarrow \sigma$ in L
- If $t\left[x_{1}, \ldots, x_{n}\right]$ is a term of $L^{s t}$ with free variables shown, let \widehat{t} denote $t\left[\widetilde{x_{1}}(\omega), \ldots \widetilde{x_{k}}(\omega)\right]$ where the constant ω is replacted with the variable ω

4.2 The Forcing Relation \Vdash

For a unvary predicate p, let $\operatorname{Cond}(p)$ denote $\forall z \exists \omega \geq z p(\omega)$. For predicate p, q, let $q \preceq p$ denote $\forall u(q(u) \rightarrow$ $p(u)) \wedge \operatorname{Cond}(q)$. We define $p \Vdash \phi$ for formulas ϕ of $L^{s t}$ inductively as follows:

- $p \Vdash t_{1}=t_{2} \equiv \exists z \forall \omega \geq z\left(p(\omega) \rightarrow \widehat{t_{1}}(\omega)=\widehat{t_{2}}(\omega)\right)$
- $p \Vdash t_{1}<t_{2} \equiv \exists z \forall \omega \geq z\left(p(\omega) \rightarrow \widehat{t_{1}}(\omega)<\widehat{t_{2}}(\omega)\right)$
- $p \Vdash s t(t) \equiv \exists z \forall \omega \geq z(p(\omega) \rightarrow \widehat{t}(\omega)<z)$
- $p \Vdash \phi \rightarrow \psi \equiv \forall q \preceq p(q \Vdash \phi \rightarrow q \Vdash \psi)$
- $p \Vdash \phi \wedge \psi \equiv(p \Vdash \phi) \wedge(p \Vdash \psi)$
- $p \Vdash \neg \phi \equiv \forall q \preceq p(q \nVdash \phi)$
- $p \Vdash \forall x \phi \equiv \forall \widetilde{x}(p \Vdash \phi)$

Facts:

- $p \Vdash \phi \vee \psi \equiv \forall q \preceq p \exists r \preceq q(r \Vdash \phi \vee r \Vdash \psi)$
- $p \Vdash \exists x \phi \equiv \forall q \preceq p \exists r \preceq q \exists \widetilde{x}(r \Vdash \phi)$
- $\operatorname{Cond}(p) \rightarrow \neg(p \Vdash \phi \wedge p \Vdash \neg \phi)$

Let $\Vdash \phi$ denote $\forall p(\operatorname{Cond}(p) \rightarrow p \Vdash \phi)$.

5 The Theorem

Theorem 1. Suppose $N P R A^{\omega}$ proves $\forall^{s t} x \exists y \phi(x, y)$ where ϕ is a quantifier free formula of L with free variables shown. Then $P R A^{\omega}+\Sigma_{1}$-induction proves $\forall x \exists y \phi(x, y)$.

5.1 Outline of Proof

1. For ϕ in the language $L^{s t}$, if ϕ is provable classically, then $P R A^{\omega}$ proves $\Vdash \phi$.
(a) For each formula ϕ in the language of $L^{s t}$, if ϕ is provable in intuitionistic logic, and has free variables \vec{x}, then $P R A^{\omega}$ proves $\Vdash \forall \vec{x} \phi$.
(b) For each formula ϕ of $L^{s t}, P R A^{\omega}$ proves $\Vdash \neg \neg \phi \rightarrow \phi$.
2. If ϕ is an axiom of $P R A^{\omega}$, then $P R A^{\omega}$ proves $\Vdash \phi$
3. $P R A^{\omega}$ proves $\Vdash\left(\phi(0) \wedge \forall k<x(\phi(k) \rightarrow \phi(k+1)) \rightarrow \phi(x)\right.$ for any x of type N and Σ_{1}-formula ϕ of L.
4. Suppose ϕ is any formula of $L^{s t}$ and $N P R A^{\omega}$ proves ϕ. Then $P R A^{\omega}$ proves $\Vdash \phi$.
5. Cleverly apply this to prove the theorem.

You can find the whole proof at www.math.uic.edu/~noquez/research.html

