Weak Theories of Arithmetic

Louise Hay Logic Seminar, UIC

Victoria Noquez

September 29, 2011

Abstract

We will use a forcing argument to show that certain statements provable in a nonstandard extension of primitive recursive arithmetic are also provable in primitive recursive arithmetic.

1 PRA^{ω}

1.1 Finite Types

• N is a type, meant to denote the natural numbers

For types σ and τ ,

- $\sigma \rightarrow \tau$ is a type, denoting functions from things of type of σ to things of type τ
- $\sigma \times \tau$ is a type, denoting the cross product of the set of things of type σ and the set of things of type τ

We use $\sigma, \tau \to \rho$ to abbreviate $\sigma \to (\tau \to \rho)$.

1.2 Language of $PRA^{\omega}(L)$

L has variables of all finite types and the following constants

- 0 of type N (zero)
- S of type $N \to N$ (successor)

For types σ and τ

- \langle , \rangle of type $\sigma, \tau \to \sigma \times \tau$ (pairing)
- ()₀ and ()₁ of type $\sigma \times \tau \to \sigma$ and $\sigma \times \tau \to \tau$ respectively (projections)
- R of type $N, (N, N \to N), N \to N$ (primtive recursion)
- Cond_{σ} of type $N, \sigma, \sigma \to \sigma$ (indicator)

1.3 Axioms of PRA^{ω}

For r[z] of type N, z of appropriate type

• Application For *s*, *t* terms, *x* a variable,

 $r[(\lambda xt)(s)] = r[t[s/x]]$

• **Projection** For *x*, *y* terms

$$r[(\langle x, y \rangle)_0] = r[x]$$
$$r[(\langle x, y \rangle)_1] = r[y]$$

• Successor For x, y of type N

 $\neg S(x) = 0$ $S(x) = S(y) \rightarrow x = y$

• **Primitive Recursion** For a, x of type N, f of type $N, N \to N$

$$R(a, f, 0) = a$$

$$R(a, f, (S(x))) = f(x, R(a, f, x))$$

• Indicator For n of type N, x, y of type σ

$$r[Cond_{\sigma}(0, x, y)] = r[x]$$
$$r[Cond_{\sigma}(S(n), x, y)] = r[y]$$

2 Σ_1 -induction

For every Σ_1 -formula ϕ in L,

$$\forall x(\phi(0) \land \forall y < x(\phi(y) \to \phi(y+1)) \to \phi(x))$$

Fact: Over PRA^{ω} , this is equivalent to saying that every bounded function on N has a least upper bound, and attains it. That is, for all f of type $N \to N$,

$$\exists z \forall y (f(y) \le z) \to \exists x \forall y (f(y) \le f(x))$$

3 $NPRA^{\omega}$

- **3.1** Language of $NPRA^{\omega}$ (L^{st})
 - Symbols of L
 - st(t), a unary predicate over N (standard)
 - ω , a constant of type N (infinity)

3.2 Axioms of $NPRA^{\omega}$

- Axioms of PRA^{ω}
- $\neg st(\omega)$ (ω is non-standard)
- For x, y of type N,

$$st(x) \land y < x \to st(y)$$

(everything below a standard element is standard)

• For x_1, \ldots, x_k of type N and f of type $N^k \to N$

$$st(x_1) \land \ldots \land st(x_k) \to st(f(x_1, \ldots, x_k))$$

(the standard part of the universe is closed under primitive recursion)

• For $\psi(\vec{x})$ quantifier free, internal, and not involving ω , with free variables shown,

$$\forall^{st} \vec{x} \psi(\vec{x}) \to \forall \vec{x} \psi(\vec{x})$$

4 The Interpretation

4.1 Translating the terms of L^{st} to terms of L

- Let ω be a type N variable in L, corresponding to the constant ω in L^{st}
- For each variable x in L^{st} of type σ , let \tilde{x} be of type $N \to \sigma$ in L
- If $t[x_1, \ldots, x_n]$ is a term of L^{st} with free variables shown, let \hat{t} denote $t[\tilde{x}_1(\omega), \ldots, \tilde{x}_k(\omega)]$ where the constant ω is replacted with the variable ω

4.2 The Forcing Relation \Vdash

For a unvary predicate p, let Cond(p) denote $\forall z \exists \omega \geq zp(\omega)$. For predicate p, q, let $q \leq p$ denote $\forall u(q(u) \rightarrow p(u)) \wedge Cond(q)$. We define $p \Vdash \phi$ for formulas ϕ of L^{st} inductively as follows:

- $p \Vdash t_1 = t_2 \equiv \exists z \forall \omega \ge z(p(\omega) \to \hat{t_1}(\omega) = \hat{t_2}(\omega))$
- $p \Vdash t_1 < t_2 \equiv \exists z \forall \omega \ge z(p(\omega) \to \hat{t_1}(\omega) < \hat{t_2}(\omega))$
- $p \Vdash st(t) \equiv \exists z \forall \omega \ge z(p(\omega) \to \hat{t}(\omega) < z)$
- $p \Vdash \phi \to \psi \equiv \forall q \preceq p(q \Vdash \phi \to q \Vdash \psi)$
- $p \Vdash \phi \land \psi \equiv (p \Vdash \phi) \land (p \Vdash \psi)$
- $p \Vdash \neg \phi \equiv \forall q \preceq p(q \nvDash \phi)$
- $p \Vdash \forall x \phi \equiv \forall \widetilde{x} (p \Vdash \phi)$

Facts:

- $p \Vdash \phi \lor \psi \equiv \forall q \preceq p \exists r \preceq q (r \Vdash \phi \lor r \Vdash \psi)$
- $p \Vdash \exists x \phi \equiv \forall q \preceq p \exists r \preceq q \exists \widetilde{x}(r \Vdash \phi)$
- $Cond(p) \rightarrow \neg (p \Vdash \phi \land p \Vdash \neg \phi)$

Let $\Vdash \phi$ denote $\forall p(Cond(p) \rightarrow p \Vdash \phi)$.

5 The Theorem

Theorem 1. Suppose NPRA^{ω} proves $\forall^{st}x \exists y\phi(x,y)$ where ϕ is a quantifier free formula of L with free variables shown. Then PRA^{ω} + Σ_1 -induction proves $\forall x \exists y\phi(x,y)$.

5.1 Outline of Proof

- 1. For ϕ in the language L^{st} , if ϕ is provable classically, then PRA^{ω} proves $\Vdash \phi$.
 - (a) For each formula ϕ in the language of L^{st} , if ϕ is provable in intuitionistic logic, and has free variables \vec{x} , then PRA^{ω} proves $\Vdash \forall \vec{x} \phi$.
 - (b) For each formula ϕ of L^{st} , PRA^{ω} proves $\Vdash \neg \neg \phi \rightarrow \phi$.
- 2. If ϕ is an axiom of PRA^{ω} , then PRA^{ω} proves $\Vdash \phi$
- 3. PRA^{ω} proves $\Vdash (\phi(0) \land \forall k < x(\phi(k) \to \phi(k+1)) \to \phi(x)$ for any x of type N and Σ_1 -formula ϕ of L.
- 4. Suppose ϕ is any formula of L^{st} and $NPRA^{\omega}$ proves ϕ . Then PRA^{ω} proves $\Vdash \phi$.
- 5. Cleverly apply this to prove the theorem.

You can find the whole proof at www.math.uic.edu/~noquez/research.html