Fields

Victoria Noquez

March 19, 2009

§5.1 Basics

Definition 1. A field K is a commutative non-zero ring $(0 \neq 1)$ such that any $x \in K$, $x \neq 0$, has a unique inverse x^{-1} such that $x x^{-1}=x^{-1} x=1$.

Definition 2. A field homomorphism $f: K \rightarrow K^{\prime}$ is just a ring homomorphism. Note that f is necessarily injective, since if $x \in K \backslash 0, f(x) \cdot f\left(x^{-1}\right)=1 \Rightarrow f(x) \neq 0$.

Remark 1. Every field K is a domain, that is, for every $a, b \in K$, if $a b=0$, then $a=0$ or $b=0$. More generally, any subring of a field is a domain.

Definition 3. If R is a domain and $S=R \backslash\{0\}, K=S^{-1} R$ is called the field of fractions of R.

Definition 4. An extension L / K means $K \subset L$ is a subfield of the field L. A subextension or intermediate extension of L / K is a subfield M of L which contains K. We denote this $L / M / K$.

Proposition 1. Let R be principal (PID). Let $p \in R$ be a prime element. Then $R / p R$ is a field.

Proof. Let $a \in R$ such that $\bar{a} \neq 0$ in $R / p R$. This means that p does not divide a in R, so $\operatorname{gcd}(a, p)=1$. By Bézout's lemma, there are $b, c \in R$ such that $b a+c p=1$, so in $R / p R$, $\bar{b} \cdot \bar{a}+0=1$, which means that $\bar{b} \bar{a}=1$, so $\bar{a} \in(R / p R)^{\times}$. Hence, since every non-zero element has a multiplicative inverse, $R / p R$ is a field.

Corollary 2. Let K be a field. Let $P \in K[T]$ be an irreducible polynomial. Then $K[T] / P K[T]$ is a field.

Proof. $R=K[T]$ is a PID, which means that P is prime.
Definition 5. The characteristic of a field $K, \operatorname{char}(K) \in\{0\} \cup\{p \mid p$ prime $\}$ is defined by $\operatorname{char}(K) \cdot \mathbb{Z}=\operatorname{ker}(\phi: \mathbb{Z} \rightarrow K)$ where ϕ is defined by $1 \mapsto 1$. There are two possible cases here. If $\operatorname{char}(K)=0$, then for every $n \in \mathbb{Z} \backslash 0, n \cdot 1_{k} \neq 0$ in K, which means that that $\mathbb{Q} \hookrightarrow K$ uniquely (for $m \neq 0$) by $\frac{n}{m} \mapsto\left(n \cdot 1_{k}\right) \cdot\left(m \cdot 1_{k}\right)^{-1}$. In this case, K is an extension of \mathbb{Q}. If $\operatorname{char}(K)=p>0$ for some prime p, then $\alpha: \mathbb{Z} \rightarrow K$ induces $\bar{\alpha}: \mathbb{Z} / p \mathbb{Z} \rightarrow K$, so this is a map from $\mathbb{F}_{p} \rightarrow K$.

Remark 2. If L / K, then $\operatorname{char}(L)=\operatorname{char}(K)$.

Corollary 3. If $\operatorname{char}(K) \neq \operatorname{char}(L)$ then there is no field homomorphism from $K \rightarrow L$ (since field homomorphisms must be injective).

Proposition 4. For a field K, char $(K)=0$ if and only if K is an extension of \mathbb{Q}. $\operatorname{char}(K)=p>0$ if and only if K is an extension of \mathbb{F}_{p}.

Proof. Obvious from the above remarks.
Definition 6. The degree of an extension L / K is the dimension of L as a K vector space, which belongs to $\mathbb{N} \cup\{\infty\}$, denoted $[L: K]$. If $M / L / K$ is an extension, then the degree of $M / K,[M: K]$ is equal to $[M: L][L: K]$.

Definition 7. An extension L / K is finite if the degree $[L: K]<\infty$.
Proposition 5. If K is a finite field then char $(K)=p>0$ and K has p^{n} elements where $n=\left[K: \mathbb{F}_{p}\right]$.

Proof. char $(K)=0$ if and only if $\mathbb{Q} \hookrightarrow K$ which implies that K is infinite. So we know that if $\operatorname{char}(K)=p, K / \mathbb{F}_{p}$. As an \mathbb{F}_{p} vector space, $K \cong\left(\mathbb{F}_{p}\right)^{n}$ (since it is finite) for $n=\operatorname{dim}_{\mathbb{F}_{p}}(K)$, so $\#(K)=p^{n}$.

Notation: If L / K is an extension and $E \subset L$, recall that $K[E]$ is the smallest subring of L containing K and E, which is equal to the set of all polynomials (over K) evalutaed at elements of E. We now let $K(E)$ denote the smallest subfield of L containing K and E. This is equal to the field of fractions of $K[E]$.

Definition 8. If L / K is an extension, L is a finitely generated extension of K if there exists a finite $E \subset L$ such that $L=K(E)$.

Note that a finitely generated extension is different than a finite extension. For example, $K(T)$ is a finitely generated extension of K, but is not a finite extension of K.

Definition 9. Let L / K be an extension. Let M_{1}, M_{2} be two subextensions. $M_{1} M_{2}=$ $K\left(M_{1} \cup M_{2}\right)$ is a subextension of L / M_{i} for $i=1,2$, and hence, of L / K.

$M_{1} M_{2}$ is the composite of M_{1} and M_{2}.
In this definition, we could replace K with the characteristic field $(\mathbb{Q}$ if $\operatorname{char} L=0$ and \mathbb{F}_{p} if char $L=p>0$).

§5.2 Algebraic Extension

Definition 10. Let L / K be an extension. Let $x \in L . x$ is algebraic over K if there exists $P \in K[T]$ such that $P \neq 0$ and $P(x)=0$. WLOG, we can choose P to be monic, so this is equivalent to saying that there exists $a_{1}, \ldots, a_{d} \in K$ such that $x^{d}+a_{1} x^{d-1}+\ldots+a_{d}=0$ (in L).

Definition 11. An extension L / K is algebraic if every $x \in L$ is algebraic over K.
A finite extension L / K is algebraic, since for $x \in L, 1, x, x^{2}, \ldots, x^{n}, \ldots$ cannot be linearly independent over K, so x is algebraic over K.

Definition 12. Let $x \in L$ be algebraic over K. The minimal polynomial of x over $K, P \in$ $K[T]$, is the unique monic polynomial such that $A n n_{K[T]}(x)=P \cdot K[T]$, where $A n n_{K[T]}(x)=$ $\{Q \in K[T] \mid Q(x)=0\}$ is an ideal of $K[T]$. Since $K[T]$ is a PID, there is a generator of $A n n_{K[T]}(x)$ which is unique up to association, so by choosing P to be monic, it is unique. In other words, $P(x)=0$ and for every $Q \in K[T]$ such that $Q(x)=0, P \mid Q$ (so when P is monic, it is unique).

Proposition 6. Let L / K be an extension. Let $x \in L$ be algebraic over K. Let $P \in K[T]$ be the minimal polynomial of X.

1. P is irreducible.
2. $K[x]=K(x) \cong K[T] / P$.

Proof. 1. If $P_{1} P_{2}(x)=0$ then $P_{1}(x) P_{2}(x)=0$ in L, so since L is a field, and thus, a domain, $P_{1}(x)=0$ or $P_{2}(x)=0$, so $P\left|P_{1} P_{2} \Rightarrow P\right| P_{1}$ or $P \mid P_{2}$. Thus, P is prime, which means that it is irreduicble since $K[T]$ is a domain.
2. The natural evaluation at $x, K[T] \rightarrow K[x]$ is surjective with kernel $A n n_{K[T]}(x)=$ $P \cdot K[T]$. So, since ring homomorphisms from fields to rings are necessarily injective, we have an isomorphism, $K[T] / P \xrightarrow{\sim} K[x]$ (since $K[T] / P$ is a field). Thus, $K[x]$ is a field, so $K[x]=K(x)$.

Definition 13. If L / K is an extension, the degree of an algebraic element $x \in L$ (over K), $[K(x): K]$ is the degree of the minimal polynomial of x over K.

Proposition 7. Let L / K be an extension and let $x \in L . x$ is algebraic over K if and only if there exists a subextension $L / M / K, M \subset L$ such that $x \in M$ and M / K is finite.

Proof. \Leftarrow : Let $x \in M / K$. Since M / K is finite, x is algebraic over K.
\Rightarrow : Let $M=K(x)$.
Proposition 8. Let L / K be an extension and let $x_{1}, \ldots, x_{n} \in L$ be algebraic over K. Then $K\left[x_{1}, \ldots, x_{n}\right]=K\left(x_{1}, \ldots, x_{n}\right)$ and $K\left(x_{1}, \ldots, x_{n}\right) / K$ is an algebraic, finite extension.

Proof. First, suppose $n=1$. Then by Proposition 6, $K\left(x_{1}\right)=K\left[x_{1}\right]$. Clearly $K\left(x_{1}\right) / K$ is algebraic and finite. Now suppose the proposition holds for some fixed arbitrary $n \geq 1$. Then $K\left(x_{1}, \ldots, x_{n+1}\right)=K\left(x_{1}, \ldots, x_{n}\right)\left(x_{n+1}\right)$. By the induction hypothesis, $K\left(x_{1}, \ldots, x_{n}\right)=$
$K\left[x_{1}, \ldots, x_{n}\right]$. Since x_{n+1} is algebraic over K, it is algebraic over $M=K\left(x_{1}, \ldots, x_{n}\right)$. Thus, $M\left[x_{n+1}\right]=M\left(x_{n+1}\right)$. So $K\left[x_{1}, \ldots, x_{n+1}\right]=K\left[x_{1}, \ldots, x_{n}\right]\left[x_{n}\right]=K\left(x_{1}, \ldots, x_{n}\right)\left(x_{n+1}\right)=$ $K\left(x_{1}, \ldots, x_{n+1}\right)$.

Finally,

is a finite tower of finite extensions, so $\left[K\left(x_{1}, \ldots, x_{n+1}\right): K\right]$ is finite. Hence, by induction, the claim holds for all n.

Corollary 9. If L / K is an extension and $x, y \in L$ are algebraic over K, then $x+y, x y$, and $\frac{x}{y}($ if $y \neq 0)$ are algebraic. Thus, $\{x \in L \mid x$ is algebraic over $K\} \subset L$ is a subfield of L.

Proposition 10. If L / K is an algebraic extension and M / L is an algebraic extension, then M / K is algebraic.

Proof. Let $x \in M$ be given. x satisfies a polynomial equation with coefficients in L, so there are $y_{1}, \ldots, y_{n} \in L$ such that x is algebraic over $K\left(y_{1}, \ldots, y_{n}\right)$ (take y_{i} 's to be the coefficients of the minimal polynomial of x in $L[T]$). Each y_{i} is algebraic over K, so $K\left(y_{1}, \ldots, y_{n}\right)=$ $K\left[y_{1}, \ldots, y_{n}\right]$ is a finite extension of K, which means that $\left[K\left(y_{1}, \ldots, y_{n}, x\right): K\left(y_{1}, \ldots, y_{n}\right)\right]$ is finite, and $\left[K\left(y_{1}, \ldots, y_{n}\right): K\right]$ is finite, and thus, x is algebraic over K.

Definition 14. Let L / K be an extension. If $x \in L$ is not algebraic over K it is transcendental over K.

Proposition 11. If L / K is an extension and $x \in L$ is transcendental over K, then if $Q \in K[T]$ is such that $Q(x)=0$, then $Q=0$. This is equivalent to saying that $K \subset K(T) \cong$ $K(x) \subset L$ where $K(T) \cong K(x)$ is a K-isomorphism.

§5.3 Remarks on ruler and compass constructions

The idea here is to take a set of "known" points in \mathbb{R}^{2}, typically we begin with \mathbb{Z}^{2}, from which we can get \mathbb{Q}^{2}, and then try to construct new points with an (unmarked) ruler and a compass.

With the ruler we are able to draw a line through two known points and with the compass we can draw a circle with a known center through a known point (or with a known radius).

Definition 15. The points of intersection of any two distinct lines or circles drawn using the ruler and compass are said to be constructible. A point $r \in \mathbb{R}^{2}$ is said to be constructible from an initial set of points P_{0} if there is a finite sequence $r_{1}, \ldots, r_{n}=r$ of points of \mathbb{R}^{2} such that for each $j=1, \ldots, n$, the point r_{j} is constructible in one step from the set $P_{0} \cup\left\{r_{0}, \ldots, r_{j-1}\right\}$.

To formalize this idea in terms of field extensions, we begin with $K_{0} \subset \mathbb{R}$ to be the field generated by the x and y coordinates of each of the points in P_{0}, then for $j>0$, $K_{j}=K_{j-1}\left(x_{j}, y_{j}\right)$ where r_{j} is the point $\left(x_{j}, y_{j}\right)$. Note that we are not adjoining the point $\left(x_{j}, y_{j}\right) \in \mathbb{R}^{2}$, we are adjoining each of the elements of \mathbb{R}, x_{j} and y_{j}.

Thus, we have a tower of subfields $K_{0} \subset K_{1} \subset \ldots \subset K_{n} \subset \mathbb{R}$.
Lemma 12. x_{j} and y_{j} are zeros in K_{j} of a quadratic polynomial in K_{j-1}.
Proof. There are three cases to consider: when a line meets a circle, when a line meets a line, and when a circle meets a circle. Let $A=(p, q), B=(r, s)$ and $C=(t, u)$ be points in K_{j-1} and draw the line $A B$ and the circle with center C and radius w where $w^{2} \in K_{j-1}$ (since we can construct this distance using the coordinates of the center and a point on the circle which are in K_{j-1} using Pythagoras). The equation of the line $A B$ is $\frac{x-p}{r-p}=\frac{y-q}{s-q}$ and the equation of the cirle is $(x-t)^{2}+(y-u)^{2}=w^{2}$. Combining these equations gives us
$(x-t)^{2}+\left(\frac{(s-q)}{(r-p)}(x-p)+q-u\right)^{2}=w^{2}$
so the x-coordinates of the intersection points X and Y are zeros of quadratic polynomials over K_{j-1}, as are the y-coordinates.

Now let $D=(v, z)$. The equation of the line $C D$ is $\frac{x-t}{v-t}=\frac{y-u}{z-u}$, so combining this with the equation of the line $A B$ gives us x and y in terms of $p, q, r, s, t, u, v, z \in K_{j-1}$, and thus, $x, y \in K_{j-1}$. So, x and y are solutions of the quadratic equations $(T-x)^{2}$ and $(T-y)^{2}$ in $K_{j-1}[T]$ respectively.

Finally, let $A=(a, b), C=(c, d)$ and consider the circles $(x-a)^{2}+(y-b)^{2}=r^{2}$ and $(x-c)^{2}+(y-d)^{2}=s^{2}$ where $a, b, c, d, s^{2}, r^{2} \in K_{j-1}$. Combining these equations gives us the line $(-2 a-2 c) x+(-2 b-2 d) y=r^{2}-s^{2}$, so intersecting this line with either of the circles gives us the points of intersection. Hence, by the first case the x and y coordinates of each of the points of intersection are solutions of quadratic polynomials over K_{j-1}.

Theorem 13. If $r=(x, y)$ is constructible from a subset P_{0} of \mathbb{R}^{2}, and K_{0} is the subfield of \mathbb{R} generated by the coordinates of the points of P_{0}, then $\left[K_{0}(x): K_{0}\right]$ and $\left[K_{0}(y): K_{0}\right]$ are powers of 2 .

Proof. We have seen that for each step in the construction, if $r_{j}=\left(x_{j}, y_{j}\right)$, then $\left[K_{j-1}\left(x_{j}\right)\right.$: $\left.K_{j-1}\right]$ and $\left[K_{j-1}\left(y_{j}\right): K_{j-1}\right]$ must be either 1 or 2 , since x_{j} and y_{j} are the solutions of quadratic polynomials, which are either irreducible, in which case the degree is 2 , or can be written as the product of linear factors, in which case the degree is 1 . Thus, $\left[K_{j-1}\left(x_{j}, y_{j}\right)\right.$:
$\left.K_{j-1}\right]=\left[K_{j-1}\left(x_{j}, y_{j}\right): K_{j-1}\left(x_{j}\right)\right]\left[K_{j-1}\left(x_{j}\right): K_{j-1}\right]$ which is 1,2 , or 4 , so it is a power of 2. Thus, $\left[K_{j}: K_{j-1}\right]$ is a power of 2.

So, since $\left[K_{n}: K_{0}\right]=\left[K_{n}: K_{n-1}\right] \ldots\left[K_{1}: K_{0}\right]$, this is also a power of 2.
Thus, since $\left[K_{n}: K_{0}(x)\right]\left[K_{0}(x): K_{0}\right]=\left[K_{n}: K_{0}\right]$, we must have that $\left[K_{0}(x): K_{0}\right]$ is a power of 2 , since it divides $\left[K_{n}: K_{0}\right]$. Similarly, $\left[K_{0}(y): K_{0}\right]$ is also a power of 2 .

Corollary 14. If $x \in \mathbb{C}$ is such that $[\mathbb{Q}(x): \mathbb{Q}]$ is not a power of 2 , then x is not constructible with a ruler and compass.

§5.4 Splitting Fields and Algebraic Closures

Definition 16. Let K be a field and $P \in K[T]$ a non-constant polynomial. A splitting field of P is an extension L / K in which P decomposes into degree 1 factors, that is, $P(T)=$ $c\left(T-\alpha_{1}\right) \ldots\left(T-\alpha_{n}\right)$ in $L[T]$ where $\alpha_{1}, \ldots, \alpha_{n} \in L$ and $c \in K . L$ is generated by the roots of P, that is, $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Note that the α_{i} 's are algebraic over K, so $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ $k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is a finite, and thus, algebraic extension of K.

Proposition 15. Any non-constant polynomial $P \in K[T]$ (where K is a field) admits a splitting field.

Proof. It is enough to show that there exists an extension M / K in which the given $P \in K[T]$ decomposes completely. First suppose P is irreducible. Let $M_{0}=K[T] / P$, and note that this is a field since P is irreducible. This is an extension, M_{0} / K, in which P has a root, namely, $\alpha=\bar{T}=T+P K[T]$, the class of T. This is because $P(\alpha)=P(\bar{T})=\overline{P(T)}=0$, since $P \in P K[T]$. Then, choose an irreduicble factor of P in $M_{0}[T]$ and construct M_{1} in the same way such that P decomposes further in M_{1}. Continue this process, and by induction on the maximal degree of polynomials which are irreduicble and divide P, in some M_{n} with $n \gg 0, P$ will be the product of linear factors.

Corollary 16. Let $p_{1}, \ldots, p_{s} \in K[T]$ be non-constant polynomials over the field K. There exists an extension L / K in which all p_{1}, \ldots, p_{s} decompose into degree 1 factors.

Proof. Apply the above to $P=p_{1} \cdot \ldots \cdot p_{s}$.
Definition 17. A field E is called algebraically closed if it admits no algebraic extension except itself. That is, L / E is algebraic $\Rightarrow L=E$.

Proposition 17. E is algebraically closed if and only if every polynomial in E decomposes as a product of degree 1 factors.

Proof. \Rightarrow : Let $P \in E[T]$ and let L / E be the splitting field of P (note that L / E is algebraic). Then $L=E$, so P decomposes as a product of degree 1 factors in $E[T]$.
\Leftarrow : Suppose L / E is an algebraic extension. The minimal polynomial of any $\alpha \in L$ must be of degree $1 \Rightarrow \alpha \in E$.

Fact 1. (From Chapter 6) If R is a non-zero commutative ring, there exists a ring homomorphism from $R \rightarrow K$ where K is a field (take m to be a maximal ideal in R and $K=R / m)$.

Theorem 18. Let K be a field. There exists an extension $E / K(K \hookrightarrow E)$ with E algebraically closed.

Proof. Let $A=K\left[x_{p}\right]_{p \in K[T] \backslash K}$. A is a big polynomial ring with infinitely many variables over K, one variable for each non-constant polynomial $p \in K[T]$. Consider the ideal $I \subset A$ defined by $I=\left\langle P\left(x_{P}\right)\right\rangle_{p \in K[T] / K} \subset K\left[x_{p}\right]_{p \in K[T] \backslash K}=A$. Let $Q=\sum_{i=1}^{n} Q_{i} P_{i}\left(x_{P_{i}}\right) \in I$ where $Q_{i} \in A$ for $1 \leq i \leq n$. Consider that $P_{1}, \ldots, P_{n} \in K[T]$. By the last corollary, there exists L / K in which the P_{i} 's all decompose completely. In particular, there are $\alpha_{1}, \ldots, \alpha_{n} \in L$ such that $P_{i}\left(\alpha_{i}\right)=0$ for $1 \leq i \leq n$. Evaluate $Q=Q\left(x_{p_{1}}, x_{p_{2}}, \ldots, x_{p_{n}}\right.$,other x_{p} 's $)$ at $x_{p_{i}}=\alpha_{i}$
and set the other x_{p} 's all to 0 . This gives us 0 in L. Thus, Q cannot be equal to 1 in A. Hence, since $Q \in I$ was arbitrary, $1 \notin I$, so $I \neq A$.

Consider $R=A / I$, a commutative, non-zero (since $I \neq A$) ring. By the above fact, there is a field E_{1} and a ring homomorphism $\bar{f}: R \rightarrow E_{1}$. This is just a ring homomorphism $f: A \rightarrow E_{1}$ such that $f(I)=0$. Since $A=K\left[x_{P}\right]_{P \in K[T] \backslash K}$, this E_{1} is an extension of K. So we have:

Where ϕ is the composition of ring homomorphisms into a field, and thus, is injective.
Consider $p \in K[T]$ non-constant. Let $\alpha_{p}=f\left(x_{p}\right) \in E_{1} . p\left(\alpha_{p}\right)=p\left(f\left(x_{p}\right)\right)=f\left(p\left(x_{p}\right)\right)=0$, since f is a homomorphism. Thus, every polynomial of K has a root in E_{1}.

Thus, repeat this process by induction, and get $K \hookrightarrow E_{1} \hookrightarrow E_{2} \hookrightarrow \ldots \hookrightarrow E_{n} \hookrightarrow$ $E_{n+1} \hookrightarrow \ldots$ such that every non-constant polynomial in E_{n} has a root in E_{n+1}. Let $E=$ $\operatorname{colim}_{n \rightarrow \infty} E_{n}=\bigcup_{n \geq 1} E_{n}$ (and since the category of fields is closed under colimits, this is a field). This E is algebraically closed, since $E(T)=\bigcup_{n \geq 1} E_{n}[T]$, so any non-constant polynomial in T exists in E_{n} for some n, and thus, has a root in $E_{n+1} \subset E$.

Definition 18. Let K be a field. An algebraic closure is an algebraic extension E / K with E algebraically closed.

Proposition 19. Any field admits an algebraic closure.
Proof. Let K be a field. By the previous theorem, there exists $K \hookrightarrow L$ with L algebraically closed. Take E to be the set of elements in L which are algebraic over $K . E=\{x \in L \mid x$ is algebraic over $K\}$. Then E / K is algebraic. Let $p \in E[T] . p$ decomposes completely in L, $P(T)=c\left(T-\alpha_{1}\right) \ldots\left(T-\alpha_{n}\right)$ for $c \in E$ and $\alpha_{1}, \ldots, \alpha_{n} \in L$. Now, each α_{i} is algebraic over E since $p\left(\alpha_{i}\right)=0 \Rightarrow E\left(\alpha_{i}\right)$ is algebraic over E, and E is algebraic over $K \Rightarrow E\left(\alpha_{i}\right)$ is algebraic over $K \Rightarrow \alpha_{i}$ is algebraic over $K \Rightarrow \alpha_{i} \in E$ by definition of E. Hence, the above complete decomposition holds in $E[T]$. Since $p \in E[T]$ was arbitrary, E is algebraically closed.

Theorem 20. Let E be algebraically closed and let $\sigma_{0}: K \hookrightarrow E$ be a homomorphism. Let L / K be an algebraic extension. Then there is $\sigma: L \rightarrow E$ such that σ is K-linear, i.e., $\left.\sigma\right|_{K}=\sigma_{0}$.

Proof. Consider $S=\left\{(M, \tau)|K \subset M \subset L, \tau: M \rightarrow E, \tau|_{K}=\sigma_{0}\right\}$ with an ordering $(M, \tau) \leq\left(M^{\prime}, \tau^{\prime}\right)$ if $M \subset M^{\prime}$ and $\left.\tau^{\prime}\right|_{M}=\tau$. This is a partial ordering, so by Zorn's lemma, there is a maximal element, (M, σ). This means that if there is $\left(M^{\prime}, \sigma^{\prime}\right)$ such that $M \subset M^{\prime}$ and $\left.\sigma^{\prime}\right|_{M}=\sigma$, then $M=M^{\prime}$.

We claim that $M=L$. Let $\sigma_{0}: K \hookrightarrow E$ be a homomorphism with E algebraically closed and let L / K be an algebraic extension. Let $x \in L$ be given. Then there exists a homomorphism $\sigma: K(x) \rightarrow E$ such that $\left.\sigma\right|_{K}=\sigma_{0}$, since if P is the minimal polynomial of x over K, then $K[T] / P \xrightarrow{\sim} K[x] \cong K(x) \subset L$, so $\sigma_{0}(P)$ is a polynomial in $E[T]$ and E is algebraically closed $\Rightarrow \exists \alpha \in E$ a root of $\sigma_{0}(P) \Rightarrow \sigma_{0} K \hookrightarrow E$ and $T \mapsto \alpha$ define the homomorphism $\tau: K[T] \rightarrow E$ by $Q \mapsto\left(\sigma_{0}(Q)\right)(\alpha)$ and $\tau(P)=\left(\sigma_{0}(P)\right)(\alpha)=0$ (by choice). Hence, τ induces a field homomorphism $\bar{\tau}: K[T] / P \hookrightarrow E$, so we have

where $K[T] / P \hookrightarrow E$ is defined by $T \mapsto$ the root of P^{n}.
By the commutativity of the diagram, $\left.\sigma\right|_{K}=\sigma_{0}$.
Corollary 21. Let E / K be an algebraic closure of K. Let $M / L / K$ be an algebraic extension and let $\sigma_{0}: L \rightarrow E$ be a K-linear homomorphism. Then there exists a K-linear homomorphism $\sigma: M \rightarrow E$ such that $\left.\sigma\right|_{L}=\sigma_{0}$.

Proof. Apply the theorem to

σ is automatically K-linear since $\left.\sigma\right|_{K}=\left.\sigma_{0}\right|_{K}$ which is the inclusion map $K \hookrightarrow E$, and thus, fixes K).

Thus, algebraic closures are unique up to (non-unique) isomorphism of fields. So when we refer to "the" algebraic closure of a field K, we are referring to some choice of algebraic closure, and we denote this \bar{K} / K.

Definition 19. Let \mathcal{F} be a family of non-constant polynomials in $K[T]$. A splitting field for \mathcal{F} is an extension L / K such that every $p \in \mathcal{F}$

1. decomposes completely in $L[T]$
2. $L=K(A)$ if $A=\{\alpha \in L \mid \alpha$ is a root of some $p \in \mathcal{F}\}$.

Proposition 22. Let K be a field and $\mathcal{F} \subset K[T]$ be a family of non-constant polynomials

1. A splitting field for \mathcal{F} exists: In \bar{K}, the algebraic closure of K, we can and must take $L=K(A) \subset \bar{K}$ where A is the set of roots of polynomials of \mathcal{F}.
2. The splitting field is unique up to K-isomorphism.

Proof. 1. In L, any $p \in \mathcal{F}$ decomposes completely and L, by construction, is generated by the roots.
2. This follows from the fact that L must be $K(A)$ where A is the set of roots of polynomials in \mathcal{F}. If L^{\prime} / K is some other splitting field, by the previous theorem there is $\sigma: L \rightarrow \bar{K}$ which is a K-homomorphism so $\left.\sigma\right|_{L}: L \xrightarrow{\cong} \sigma(L) \subset \bar{K}$, and $\sigma(L)$ is a splitting field in \bar{K}, which must be unique because of the first part.

§5.5 Normal Extensions

Definition 20. Let L / K be an algebraic extension. We say that this is normal if for any irreducible polynomial $P \in K[T]$, if P has a root in L, then it has all roots in L. That is, $P \in K[T]$ irreducible with $\alpha \in L$ such that $P(\alpha)=0 \Rightarrow P=c\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)$ in $L[T]$.
$\mathbb{Q}\left(2^{\frac{1}{4}}\right) \subset \mathbb{R}$ is not a normal extension of \mathbb{Q}, since $T^{4}-2$ does not decompose completely in $\mathbb{Q}\left(2^{\frac{1}{4}} \subset \mathbb{R}\left(\right.\right.$ since $\pm 2^{\frac{1}{4}} i$ are also roots and $\left.i \notin \mathbb{Q}\left(2^{\frac{1}{4}}\right) \subset \mathbb{R}\right)$.

Recall that if L_{1} / K and L_{2} / K are extensions of K, a K-homomorphism $\sigma: L_{1} \rightarrow L_{2}$ is just a ring homomorphism which is the identity on K. This is equivalent to saying σ is K-linear.
Proposition 23. Let L / K be an algebraic extension. Let \bar{K} / L be an algebraic closure of K and L (they have the same closure since L / K is algebraic). TFAE:

1. L / K is normal.
2. For any K-homomorphism, $L \stackrel{\sigma}{\hookrightarrow} \bar{K}$, we have $\sigma(L) \subset L$.
3. For any K-homomorphism $\bar{K} \stackrel{\sigma}{\hookrightarrow} \bar{K}$, we have $\sigma(L) \subset L$.

Proof. 1. $\Rightarrow 2$: Let $x \in L$. let $P \in K[T]$ be the minimal polynomial of x. By assumption, P decomposes completely in L. For any $\sigma: L \rightarrow \bar{K} K$-homomorphism, $0=\sigma(0)=\sigma(P(x))$ since $P(x)=0$, which is equal to $P(\sigma(x))$ since σ is a K-homomorphism, so it fixes the coefficients in P. Thus, $\sigma(x)$ is also a root of P, but all of the roots are in L, so $\sigma(x) \in L$. Thus, since $x \in L$ was arbitrary, $\sigma(L) \subset L$.
2. \Rightarrow 3.: Obvious: If $\sigma: \bar{K} \rightarrow \bar{K}$ then $\left.\sigma\right|_{L}: L \rightarrow \bar{K}$ is a K-homomorphism, so by assumption, $\left.\sigma\right|_{L}(L) \subset L$, which means that $\sigma(L) \subset L$.
3. \Rightarrow 1.: Let $P \in K[T]$ be an irreducible polynomial which has a root $\alpha \in L$. Let $\beta \in \bar{K}$ be another root. We have a K-isomorphism

So by Theorem 20, there is $\sigma: \bar{K} \rightarrow \bar{K}$ which extends $K(\alpha) \xrightarrow{\sim} K(\beta) \hookrightarrow \bar{K}$. Thus, we have this:

By hypothesis, $\sigma(L) \subset L$, and hence, $\beta=\sigma(\alpha) \in \sigma(L) \subset L$, so $\beta \in L$.

Theorem 24. Let L / K be an algebraic extension. Then L / K is normal if and only if L is the splitting field of some family of polynomials in K.

Proof. \Rightarrow : If L / K is normal, take \mathcal{F} to be the set of $p \in K[T]$ such that p is the minimal polynomial of some $x \in L$ (for all $x \in L$). Let A be the set of $\alpha \in L$ such that α is the root of some $p \in \mathcal{F}$. By Proposition $22, L=K(A)$, and any $p \in \mathcal{F}$ decomposes completely in $L[T]$ since L is normal. Hence, L is the splitting field of \mathcal{F}.
\Leftarrow : Suppose $\mathcal{F} \subset K[T]$ is a family of polynomials and let L / K be the splitting field of \mathcal{F}. Let $\sigma: \bar{K} \rightarrow \bar{K}$ be a K-homomorphism. Let A be the set of roots of $P \in \mathcal{F}$. By assumption, $L=K(A)$. For every $\alpha \in A$, there is $P \in \mathcal{F}$ such that $P(\alpha)=0$, so $0=\sigma(0)=\sigma(P(\alpha))=P(\sigma(\alpha))$ (as in the previous proposition) since σ is K-linear and $P \in K[T]$. Thus, $\sigma(\alpha)$ is a root of P, so $\sigma(\alpha) \in A \subset K(A)$. Hence, by the previous proposition, L / K is normal.

Corollary 25. Finite normal extensions are just splitting fields of finite families of polynomials, which are the same as splitting fields of one polynomial.

Remark 3. Let $M / L / K$ be an algebraic extension.

1. If M / K is normal, then M / L is normal. This is obvious from the theorem, since if $\mathcal{F} \subset K[T]$ is such that M is the splitting field of \mathcal{F} over K, then M is also the splitting field of \mathcal{F} over L.
2. If M / K is normal it does not imply that L / K is normal. For example, $\mathbb{Q}\left(2^{\frac{1}{4}}\right) / \mathbb{Q}$ is not normal, but $\mathbb{Q}\left(2^{\frac{1}{4}}, i\right) / \mathbb{Q}$ is.

Proposition 26. Let L / K be algebraic. There exists N / L algebraic such that N / K is normal (hence, N / L is as well) and which is minimal by extension. This N is unique up to K-isomorphism. Finally, if L / K is finite, so is N / L.

Proof. It is enough to produce $N \subset \bar{K}=\bar{L}$ a (fixed) algebraic extension and prove uniqueness of N in \bar{K} (since algebraic closures are isomorphic). Let $A \subset L$ be such that $L=K(A)$ and note that A is finite if L / K is finite. Let $\mathcal{F} \subset K[T]$ be the collection of minimal polynomials of $\alpha \in A(\mathcal{F}$ is finite if A is finite $)$. Then, let N be the splitting field of \mathcal{F} in \bar{K}. We have that A is a subset of the set of roots of polynomials in \mathcal{F} which is a subset of N, so $L=K(A) \subset N$, which means that N / K is normal. Any normal M / L must contain all of the roots of \mathcal{F}, and hence, must contain N.

§5.6 Separable Extensions

Definition 21. Let L / K be an extension.

1. $x \in L / K$ is separable over K if it is algebraic over K and its minimal polynomial over K has only simple roots in \bar{K}.
2. An irreduicble polynomial $p \in K[T]$ is separable if it has only simple roots in \bar{K}, that is, $p=c\left(T-\alpha_{1}\right) \ldots\left(T-\alpha_{n}\right)$ and $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$.
3. A general polynomial in $K[T]$ is separable if its irreducible factors are separable.
4. An algebraic extension L / K is separable if every $x \in L$ is separable.

Proposition 27. Let $P \in K[T]$ be irreduicble. P has multiple roots (is not separable) if and only if $P^{\prime}=0$. This can only happen in positive characeristic, say, $\operatorname{char}(K)=p>0$, in which case, $P=Q\left(T^{p}\right)$ with $Q \in K[T]$ irreducible.

Proof. Suppose P has a multiple root α. Then $P(T)=(T-\alpha)^{2} R(T)$, so $P^{\prime}(T)=2(T-$ $\alpha) R(T)+(T-\alpha)^{2} R^{\prime}(T)$. Thus, $P^{\prime}(\alpha)=0$.

So $P^{\prime} \in K[T]$ has α as a root, but P is the minimal polynomial of α over K, because P is irreduicble. Thus, $P \mid P^{\prime}$, but $\operatorname{deg} P^{\prime} \leq \operatorname{deg} P-1$, so $P^{\prime}=0$.

Now suppose $P \in K[T]$ such that $P^{\prime}=0 . \quad P=a_{d} T^{d}+\ldots+a_{1} T+a_{0}$, so $P^{\prime}=$ $d a_{d} T^{d-1}+\ldots+2 a_{2} T+a_{1}$. Thus, $P^{\prime}=0 \Rightarrow i a_{i}=0$ for $1 \leq i \leq d \Rightarrow i=0$ or $a_{i}=0$ since K is a field, and thus a domain, and since $i \neq 0, a_{i}=0$ for each $1 \leq i \leq d$. Thus, $P=a_{0}$ is constant, but this is not an irreduicble polynomial (it is a unit or 0), so this is a contradiction. Hence, $\operatorname{char}(K)=p>0$. So, the equation $i a_{i}=0$ implies that $a_{i}=0$ for i such that p does not divide i, for $1 \leq i \leq d$. Thus, $P=a_{0}+a_{p} T^{p}+a_{2 p} T^{2 p}+\ldots+a_{r p} T^{r p}=Q\left(T^{p}\right)$ for $Q(T)=$ $a_{0}+a_{p} T+\ldots+a_{r p} T^{r}$. If P is irreducible, then Q is (otherwise a factorization of Q would give a factorization of P). Finally, if P is irreduicble, $P^{\prime}=0 \Rightarrow P=Q\left(T^{p}\right), Q$ irreducible. Factor $Q(T)=c\left(T-\beta_{1}\right) \ldots\left(T-\beta_{r}\right)$ in \bar{K}. Then $P(T)=Q\left(T^{p}\right)=c\left(T^{p}-\beta_{1}\right) \ldots\left(T^{p}-\beta_{r}\right)$ in \bar{K}. In \bar{K}, there exists α_{i} such that $\alpha_{i}^{p}=\beta_{i}$ for each $1 \leq i \leq r$ (solutions to $y^{p}-\beta_{i}$), so $P(T)=c\left(T^{p}-\alpha_{1}^{p}\right) \ldots\left(T^{p}-\alpha_{r}^{p}\right)=c\left(T-\alpha_{1}\right)^{p} \ldots\left(T-\alpha_{n}\right)^{p}$ (since in characteristic p, $\left.\left(a^{p} \pm b^{p}\right)=(a \pm b)^{p}\right)$. Thus, P has multiple roots.

Definition 22. If $\operatorname{char}(K)=p>0, x \mapsto x^{p}$ defines a homomorphisms from $K \rightarrow K$. This is called the Frobenius Homomorphism.

Corollary 28. In characteristic 0 , all (irreduicble) polynomials are separable and all algebraic elements are separable. Hence, all algebraic extensions are separable.

Proposition 29. If char $(K)=p>0$ and $a \in K$ but $a \notin K^{p}=\left\{b^{p} \mid b \in K\right\}$, then $P(T)=$ $T^{p}-a \in K[T]$ is irreducible and non-separable (in fact, P only has one root).

Proof. Let $K=\mathbb{F}_{p}(x)$. Consider $a=x$ in K. Note that a does not have a $p^{t h}$ root in K, so $P(T)=T^{p}-a \in K[T]$ is irreduicble. Indeed: use $P(t)=(T-\beta)^{p}$ for β any $p^{t h}$ root of a in \bar{K}, hence, a factorization of P in $K[T]$ must be $(T-\beta)^{i}(T-\beta)^{p-i}=\left(T^{i}-\beta^{i}\right)\left(T^{p-i}-\beta^{p-i}\right)$ which means β^{i} or β^{p-i} is in K. If $i \neq 0, p$, then $i \in \mathbb{Z} / p$ is invertible $\Rightarrow \exists k$ such that $p \mid-i k+1$, so $\beta=\beta^{i k} \beta^{1-i k} \in K$ since $\beta^{i k}, \beta^{1-i k} \in K$, which is a contradiction.

Hence, P is irreducible, and $P^{\prime}=p T^{p-1}=0$, so by the previous proposition, P is not separable.

Proposition 30. Let L / K be an algebraic extension. The extension is separable if and only if for every $x \in L$ we have $x \in K\left(x^{p}\right) \subset L$.

Proof. Suppose L / K is separable. Let $x \in L$ and $M=K\left(x^{p}\right)$. Then the extension L / M is still separable (since the minimal polynomial over K divides the minimal polynomial over M, so if that has only simple roots, the other only has simple roots). So, x is separable over M. But, x is a root of $P(T)=T^{p}-x^{p} \in M[T]$. Since P is not separable, P cannot be the minimal polynomial of $x \Rightarrow P$ is irreduicble \Rightarrow (by the previous proposition) $x^{p} \in M \Rightarrow$ since the $p^{t h}$ root is unique, $x \in M$.

Conversely, suppose $x \in K\left(x^{p}\right)$ for every $x \in L$. Let $x \in L$. Suppose for the sake of contradiction that x is not separable over K. Then, let P be the minimal polynomial of x, it has the form $P(T)=Q\left(T^{p}\right)$ with Q irreduicble. Then Q is the minimal polynomial of x^{p}, since $Q\left(x^{p}\right)=P(x)=0$ and Q is irreducible. So, $K\left(x^{p}\right) / K$ has degree equal to the degree of Q, which is strictly less than the degreep of P (specifically, it is $\left.\frac{\operatorname{deg}(P)}{p}\right)$, but $x \in K\left(x^{p}\right)$, so the degree of the minimal polynomial of x is less than or equal to $\left[K\left(x^{p}\right): K\right]<\operatorname{deg}(P)$ which is a contradiction.

Remark 4. In this proof we used the fact that if L / K is separable and $L / M / K$ is an intermediate extension, then L / M and M / K are separable. This is because for $x \in L$, if $p \in K[T]$ is the minimal polynomial of x over K, and $Q \in M[T]$ is the minimal polynomial of x over M, then $Q \mid P$ in $M[T]$ since $P(x)=0$, so if P is separable, Q must be separable. And since $x \in M \subset L$ has a separable polynomial in $K[T]$. This is Corollary 35 .

Definition 23. Let L / K be an algebraic extension and let \bar{K} / K be a given algebraic closure. The separable degree is $[L: K]_{S}:=\#\left(\operatorname{Hom}_{K}(L, \bar{K})\right)$. This could be ∞. Note that it is enough to have $\sigma_{0}: K \hookrightarrow \bar{K}$ and define $\operatorname{Hom}_{K}(L, \bar{K})=\left\{\sigma: L \rightarrow \bar{K}|\sigma|_{K}=\sigma_{0}\right\}$. This does not depend on σ_{0}.

If E_{1} / L and E_{2} / L are algebraic extensions of L, and thus, of K, and E_{1}, E_{2} are both algebraically closed, then $\#\left(\operatorname{Hom}_{K}\left(L, E_{1}\right)\right)=\#\left(\operatorname{Hom}_{K}\left(L, E_{2}\right)\right)$ where $\operatorname{Hom}_{K}(L, E)$ is the set of K homomorpshisms from $L \hookrightarrow E$. To see this it is enough to show that $\#\left(\operatorname{Hom}_{K}\left(L, E_{1}\right)\right)=$ $\#\left(\operatorname{Hom}_{K}(L, \bar{K})\right)$ for any algebraic closure \bar{K} of K. By Theorem 20 there is $\tau: \bar{K} \hookrightarrow E_{1}$ which is K-linear and since $\tau(\bar{K})$ is algebraic over K, it is contained in the algebraic closure of K in E_{1}, so $\tau(\bar{K})$ is an algebraic closed algebraic extension of K in E (so it is an algebraic closure of K in E). Thus, $\operatorname{Hom}_{K}\left(L, E_{1}\right) \xrightarrow{\cong} \operatorname{Hom}_{K}(L, \bar{K})$ via $\sigma \mapsto \tau^{-1} \circ \sigma$ and $\sigma^{\prime} \mapsto \tau \circ \sigma^{\prime}$.

Proposition 31. If $M / L / K$ is algebraic, then $[M: L]_{S}[L: K]_{S}=[M: K]_{S}$.
Proof. Suppose $M / L / K$ is algebraic and let \bar{K} be an algebraic closure of K. Note that $\bar{K}=\bar{M}=\bar{L}$. Fix $\sigma_{0}: K \hookrightarrow \bar{K}$. It admits $[L: K]_{S}$ extensions, that is, $\sigma_{1}: L \rightarrow \bar{K}$ such that
$\left.\sigma_{1}\right|_{K}=\sigma_{0}$. Each $\sigma_{1}: L \rightarrow \bar{K}$ admits $[M: L]_{S}$ extensions $\sigma_{2}: M \rightarrow \bar{K}$ such that $\left.\sigma_{2}\right|_{L}=\sigma_{1}$. We have a partition (just by restricting from M to L),

$$
\left\{\sigma_{2}: M \rightarrow \bar{K}\left|\sigma_{2}\right|_{K}=\sigma_{0}\right\}=\bigsqcup_{\substack{\sigma_{i}: L \rightarrow \bar{K} \\ \text { s.t. } \sigma_{1} \mid K=\sigma_{0}}}\left\{\sigma_{2}: M \rightarrow \bar{K}\left|\sigma_{2}\right|_{L}=\sigma_{i}\right\}
$$

Since there are $[L: K]_{S}$ many $\sigma_{i}: L \rightarrow \bar{K}$ such that $\left.\sigma_{i}\right|_{K}=\sigma_{0}$ and for each such σ_{i} there are $[M: L]_{S}$ many $\sigma_{2}: M \rightarrow \bar{K}\left|\sigma_{2}\right|_{L}=\sigma_{i}$, we see that $[M: K]_{S}=\#\left\{\sigma_{2}: M \rightarrow \bar{K}\left|\sigma_{2}\right|_{K}=\right.$ $\left.\sigma_{0}\right\}=[M: L]_{S}[L: K]_{S}$.

Definition 24. An algebraic extension L / K is simple if there exists $x \in L$ such that $L=K(x)$. Such an x is called a primitive element. In this case, $L \cong K[T] / p$ where $p \in K[T]$ is the minimal polynomial of x, via $T \mapsto x$.

Proposition 32. Let $P \in K[T]$ be irreducible and let $L=K[T] / P$. Then the separable degree of $[L: K]_{S}$ is the number of distinct roots of P in \bar{K}. Hence, $[L: K]_{S} \leq \operatorname{deg}(P)=$ $[L: K]$.

Proof. $\operatorname{Hom}_{K}(K[T] / P,[K])$ is in bijective correspondence with the set of roots of P via $\alpha \mapsto(\phi: K[T] / P \rightarrow \bar{K})$ defined by $\bar{Q} \mapsto \bar{Q}(\alpha)$ and $f \mapsto f(t)$ where $t=\bar{T} \in L$.

Proposition 33. If L / K is finite then $[L: K]_{S} \leq[L: K]$.
Proof. This follows from induction from the previous proposition, since we know that [L : $K]_{S} \leq[L: K]$ when $L=K(x)$, and thus, is also true when $L=K\left(x_{1}, \ldots, x_{n+1}\right)=$ $K\left(x_{1}, \ldots, x_{n}\right)\left(x_{n+1}\right)$ and since $[L: K]_{S}$ and $[L: K]$ are both multiplicative.

Remark 5. 1. If $L=K(x)$ is a simple extension with x separable, then $[L: K]_{S}=[L:$ $K]$ since both are equal to the degree of the minimal polynomial of x over K.
2. If char $K=p>0, L=K(x)$ with $x^{p} \in L$ (not separable), if $a:=x^{p} \in L$, if $x \in K$, then $L=K$. So if $x \notin K, L \neq K$, so the minimal polynomial of x is $T^{P}-a \in K[T]$ which is equal to $(T-x)^{p} \in L[T]$ where $x^{p}=a$. We have seen previously that this is irreducible, so $[L: K]_{S}$ is equal to the number of roots of P, which is 1 (P has only one root).

Theorem 34. Let L / K be a finite extension. Then L / K is separable if and only if $[L$: $K]_{S}=[L: K]$. That is, for every $\sigma_{0}: K \hookrightarrow \bar{K}$, there is exactly $[L: K]$ many $\sigma_{1}: L \rightarrow K$ such that $\left.\sigma_{1}\right|_{K}=\sigma_{0}$.

Proof. \Rightarrow : By induction on $[L: K]$: Let $x \in L$ and M be such that $L=M(x), x \notin M$. Then by the first remark, $[L: M(x)]_{S}=[L: M(x)]$. Then, we will assume that $[M: K]_{S}=[M:$ $K]$ for $L / M / K$ and we see that $[L: K]_{S}=[L: M]_{S}[M: K]_{S}=[L: M][M: K]=[L: K]$.
\Leftarrow : Suppose L / K is not separable. By Proposition 30 there exists $x \in L$ such that $x \notin K\left(x^{p}\right)$ where $p=\operatorname{char}(K)>0$. Consider

The middle extension $(K(x) / K)$ is like the extension in teh second remark, so $[K(x)$: $K]_{S}=1<[K(x): K]$.
$[L: K]_{S}=[L: K(x)]_{S}\left[K(x): K\left(x^{p}\right)\right]_{S}\left[K\left(x^{p}\right): K\right]_{S}<[L: K(x)]\left[K(x): K\left(x^{p}\right)\right]\left[K\left(x^{p}\right):\right.$ $K]=[L: K]$.

Corollary 35. Suppose $M / L / K$ is algebraic. M / L and L / K are both separable if and only if M / K is separable.

Proof. \Rightarrow : If M / L and L / K are both separable, then $[M: L]_{S}=[M: L]$ and $[L: K]_{S}=$ $[L: K]$, so $[M: K]_{S}=[M: L]_{S}[L: K]_{S}=[M: L][L: K]=[M: K]$.
$\Leftarrow:[M: K]_{S}=[M: K]=[M: L][L: K] \geq[M: L]_{S}[L: K]_{S}=[M: K]_{S}$. Thus, we must have $[M: L]_{S}=[M: L]$ and $[L: K]_{S}=[L: K]$, so they are both separable.

Theorem 36. Let L / K be an extension. Let $x_{i} \in L, i \in I$, be a collectoin of (algebraic and) separable elements. Then the K-field generated by $K\left(\left\{x_{i}\right\}_{i \in I}\right) \subset L$ is a separable extension of K.

Proof. It is enough to show that $K\left(x_{1}, \ldots, x_{n}\right) / K$ is separable if x_{1}, \ldots, x_{n} are separable (since the infinite case is just a union of these). Then, it is enough to show that $K(x) / K$ is separable if x is separable over K, then the rest follows by induction on n. We have seen though (Remark 5.1) that if $[K(x): K]_{S}$ is the degree of the minimal polynomial of x, which is $[K(x): K]$, then $K(x) / K$ is separable.

Definition 25. If L / K is an algebraic extension, $M=\{x \in K \mid x$ is separable over $K\}$ is called the separable closure of K in L. If L is not specified, we mean in \bar{K}. We use $K^{\text {sep }} \subset \bar{K}$ to denote hte separable closure of K in \bar{K}.

Corollary 37. Let L / K be algebraic. Then, $M=\{x \in K \mid x$ is separable over $K\}$ is a subfield of L and M / K is separable.

Proof. Pick $x, y \in M$. By the previous theorem, $K(x, y)$ is separable over K, and this contains $x+y, x y$ and x^{-1} if $x \neq 0$.

Theorem 38. Let L / K be a finite extension. There exists an element $\alpha \in L$ such that $L=K(\alpha)$ (that is, L is a simple extension of K) if and only if there exist only a finite number of fields M such that $K \subset M \subset L$.

Proof. Let L / K be a finite extension. If K is finite, the multiplicative group of L is cyclic, and thus, is generated by one element α. So, since $0 \in K, L=K(\alpha)$.

Also, there can only be finitely many fields between K and L, if $\operatorname{char}(K)=p>0$, there can only be as many $K \subset M \subset L$ as there are powers of p between $|K|$ and $|L|$.

Hence, the claim holds for finite fields. Assume K is infinite.
\Leftarrow : Suppose there are onyl finitely many fields M such that $K \subset M \subset L$. Let $\alpha, \beta \in L$ be givein. Since there are onyl finitely many fields between K and L, there are finitely many $c \in K$ such that $K(\alpha+c \beta)$ are distinct. Thus, since K is infinite, we can choose $c_{1}, c_{2} \in K$, $c_{1} \neq c_{2}$, such that $K\left(\alpha+c_{1} \beta\right)=K\left(\alpha+c_{2} \beta\right)=: M$. So, since $\alpha+c_{1} \beta$ and $\alpha+c_{2} \beta$ are both in $M,\left(c_{2}-c_{1}\right) \beta \in M$, and since $c_{2}-c_{1} \neq 0, \beta \in M$. Thus, $c_{1} \beta \in M$, so $\alpha \in M$.

Hence, $K(\alpha, \beta)$ can be generated by one element. So, by induction, if $M=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, there is $z \in M$ such that $M=K(z)$. Thus, since L / K is finite, there is $\alpha \in L$ such that $L=K(\alpha)$.
\Rightarrow : Now assume $L=K(\alpha)$ for some $\alpha \in L$. Let f be the minimal polynomial of α over K. Let \bar{L} be a fixed algebraic closure of L (and thus, of K). We see that since f is monic, it factors uniquely into linear terms in $\bar{L}[T]$. Thus, since any $g \in L[T]$ which divides f will also factor into linear terms in $\bar{L}[T]$, and these must be among the terms in the factorization of f. Hence, there are only finitely many monic polynomials in $L[T]$ which divide f.

Let M be a field between K and L. Then there is a monic polynomial $g \in M[T] \subset L[T]$ which is the minimal polynomial of α over M. This clearly divides f. So in this way we can associate each intermediate field of L / K with a polynomial in $L[T]$ which divides f.

Now let $K \subset M \subset L$ be given and let g be the corresponding divisor of f. Let N be the subfield of M generated by the coefficients of g over K. Thus, $g \in M[T]$, and since g is irreducible in $M \supset N, g$ is irreducible in $N[T]$, and since $g(\alpha)=0, g$ must be the minimal polynomial of α over N. But then, we know that $[M: N]=\frac{[L: N]}{[L: M]}=1$ since the degree of the minimal polynomial of α over M and N is the same. Thus, $M=N$. So, for any field E with the same minimal polynomial over α as that in $M, E=N=M$.

Hence, we see that associating each intermediate field of L / K with a polynomial in $L[T]$ in this way gives us a bijective correspondence, and thus, since there are only finitely many such polynomials, there can only be finitely many intermediate fields.

Theorem 39 (Primitive Element Theorem). Let L / K be finite and separable. Then L is simple.

Proof. First suppose K (and hence, L) is finite. Then, by Corollary $45, L^{\times}$is a cyclic group, so $L^{\times}=\langle x\rangle$ for some $x \in L$, and thus, since $0 \in K$ and $L \backslash\{0\}=L^{\times}, L=K(x)$.

Now suppose K is infinite (note that this does not imply $\operatorname{char}(K)=0$, for example, $\overline{\mathbb{F}_{p}(T)}$ is infinite and has characteristic $p>0$).

Suppose $L=K(x, y)$ is separable over K. Let $n=[K(x, y): K]=[K(x, y): K]_{S}$ (by assumption). Thus, there are n distinct K-homomorphisms $\sigma_{1}, \ldots, \sigma_{n}: K(x, y) \rightarrow \bar{K}$ (where \bar{K} is a fixed algebraic closure of K, and thus, of $K(x, y))$. Consider $P(T) \in \bar{K}[T]$ defined by $P(T)=\prod_{i \neq j}\left(\left(\sigma_{i}(x)+T \sigma_{i}(y)\right)-\left(\sigma_{j}(x)+T \sigma_{j}(y)\right)\right)$. This $P(T)$ is non-zero, or else there would be $i \neq j$ such that $\sigma_{i}(x)=\sigma_{j}(x)$ and $\sigma_{i}(y)=\sigma_{j}(y)$, but since $\left.\sigma_{i}\right|_{K}=\left.\sigma_{j}\right|_{K}=i d_{K}$, this implies that $\sigma_{i}=\sigma_{j}$, which contradicts our assumption that $\sigma_{1}, \ldots, \sigma_{n}$ are distinct.
P has finitely many roots, which means that since K is infinite, we can choose $t \in K$ such that $P(t) \neq 0$. Let $z=x+t y \in K(x, y)$. Then, for each $1 \leq i \leq n, \sigma_{i}(z)=$ $\sigma_{i}(x+t y)=\sigma_{i}(x)+t \sigma_{i}(y)$ since $t \in K$. Thus, since $P(t) \neq 0$, we know that for every $i \neq j, \sigma_{i}(x)+t \sigma_{i}(y) \neq \sigma_{j}(x)+t \sigma_{j}(y)$, and hence, $\sigma_{i}(z) \neq \sigma_{j}(z)$. Thus, for each $i \neq j$, $\left.\sigma_{i}\right|_{K(z)} \neq\left.\sigma_{j}\right|_{K(z)}$ and $\left\{\left.\sigma_{1}\right|_{K(z)}, \ldots,\left.\sigma_{n}\right|_{K(z)}\right\} \subset \operatorname{Hom}_{K}(K(z), \bar{K})$, so $\# \operatorname{Hom}_{K}(K(z), \bar{K}) \geq n$.

Since $K(z) \subset K(x, y),[K(z): K] \leq[K(x, y): K]$, so $n \leq[K(z): K]_{S} \leq[K(z):$ $K] \leq[K(x, y): K]=[K(x, y): K]_{S}=n$. Thus, $[K(z): K]=[K(x, y): K]=n \Rightarrow$ $[K(x, y): K(z)]=\frac{n}{n}=1 \Rightarrow K(z)=K(x, y)$.

Then, assume that for some fixed arbitrary $n \geq 2$, if $m \leq n$ and $L=K\left(x_{1}, \ldots, x_{m}\right) / K$ is separable, then there is $z \in L$ such that $L=K(z)$.

Let $L=K\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) / K$ be a separable extension. Then, $K\left(x_{1}, \ldots, x_{n}\right) / K$ is separable, so by the induction hypothesis, $\exists y \in K\left(x_{1}, \ldots, x_{n}\right)$ such that $K\left(x_{1}, \ldots, x_{n}\right)=$ $K(y)$. So, since $K\left(x_{1}, \ldots, x_{n}\right)\left(x_{n+1}\right) / K$ is separable, that is, $K\left(y, x_{n+1}\right) / K$ is separable, there is $z \in K\left(y, x_{n+1}\right)$ such that $K(z)=K\left(y, x_{n+1}\right)=K\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$.

Thus, by induction, we see that for any finite separable extension L / K, there is $z \in L$ such that $L=K(z)$.

Corollary 40. In characteristic 0 , any finite extension is simple.
Proof. In characteristic 0, all extensions are separable.
Remark 6. If L / K is separable and finite, then $L \cong K[T] / P$ for some $P \in K[T]$ which is irreducible and separable.

Definition 26. A field is perfect if any algebraic extension is separable. So all fields of characteristic 0 are perfect.

Proposition 41. Any algebraic extension of a perfect field is perfect.
Proof. Let K be perfect and let L / K be algebraic. Let M / L be an algebraic extension of L. Then M / K is lagebraic, so since K is perfect, M / K is separable. Thus, since $M / L / K$, M / L is separable by Corollary 35. Hence, since the algebraic extension M / L was arbitrary, L is perfect.

Definition 27. In characteristic $p>0$, if E / F is a finite extension, $a \in E$ is purely inseparable over F if $a^{p^{n}} \in F$ for some $n \geq 0 . E / F$ is purely inseparable if every element in E is purely inseparable over F.

Proposition 42. If E / F is a finite extension and L is the separable closure of F in E, then L / F is separable and E / L is purely inseparable.

Proof. Let L be the separable closure of F in E. We have seen that L / F is separable (by definition). Since E / F is finite, it is algebraic. Let $x \in E$ be given and let $G \in F[T]$ be the minimal polynomial of x over F. If x is separable over F, then $x^{p^{0}}=x \in L$ (by definition). If not, then $G(T)=H_{1}\left(T^{p}\right)$ for some irreducible $H_{1} \in F[T]$, so $g=\operatorname{deg}(G)=p n_{1}$ where $n_{1}=\operatorname{deg}\left(H_{1}\right)$, so $n_{1}=\frac{g}{p}$. Then, since H_{1} is irreducible (and monic, since G is monic), it is the minimal polynomial of x^{p}. So, if H_{1} is separable, $x^{p} \in L$ (by definition). If not, there is $H_{2} \in F[T]$ irreducible (and monic) such that $H_{1}(T)=H_{2}\left(T^{P}\right)$, so $G(T)=H_{1}\left(T^{p}\right)=$ $H_{2}\left(T^{p^{2}}\right)$. Thus, $n_{2}=\operatorname{deg}\left(H_{2}\right)=\frac{n_{1}}{p}=\frac{g}{p^{2}}$. Again, if $H-2$ is separable, then since it is the minimal polynomial of $x^{p^{2}}, x^{p^{2}} \in L$. If not, we repeat this process.

Let m be such that $p^{m+1} \geq g$ (such an m exists since g is finite). So, for $i<m$, if H_{i} is separable, $x^{p^{i}} \in L$. If not, choose $H_{i+1} \in F[T]$ irreducible (and monic) such that $H_{i}(T)=H_{i+1}\left(T^{P}\right)$, so $G(T)=H_{i}\left(T^{p^{i}}\right)=H_{i+1}\left(T^{p^{i+1}}\right)$. Thus, $\operatorname{deg}\left(H_{i+1}\right)=\frac{\operatorname{deg}\left(H_{i}\right)}{p}=\frac{\frac{g}{p_{i}}}{p}=\frac{g}{p^{i}}$.

Then, suppose we have continued this process until we get a monic irreducibile polynomial $H_{m} \in F[T]$ with degree $\frac{g}{p^{m}}$ which is not separable. $\operatorname{deg}\left(H_{m}\right) \leq p$ since $g \leq p^{m+1}$. Again, we see that H_{m} is the minimal polynomial of $x^{p^{m}}$. Then, we see that for any irreducible $Q \in F[T], \operatorname{deg}\left(Q\left(T^{p}\right)\right)=\operatorname{deg}(Q) p \geq p \geq \frac{g}{p^{m}}=\operatorname{deg}\left(H_{m}\right)$ and equality can only hold if $\operatorname{deg}(Q)=1$ and $\operatorname{deg}\left(H_{m}\right)=p$, in which case $H_{m}(T)=T^{p}-a$ for some $a \in F$, so $0=H_{m}\left(x^{p^{m}}\right)=x^{p^{m+1}}-a \Rightarrow x^{p^{m+1}}=a \in F \subset L$.

Otherwise, there is no irreducible Q such that $Q\left(T^{p}\right)=H_{m}(T)$, and thus, H_{m} is separable, which means that $x^{p^{m}} \in L$.

Thus, since $x \in E$ was arbitrary, E / L is purely inseparable.
Proposition 43. If char $(K)=p>0, K$ is perfect if and only if for every $a \in K$, there is $x \in K$ such that $x^{p}=a$.

Proof. \Rightarrow : Suppose K is perfect. Let $a \in K$ be given and let L / K be the splitting field of $T^{p}-a \in K[T]$. Let $x \in L$ be a zero of $T^{p}-a$. Then, $x^{p}-a=0 \Rightarrow x^{p}=a$, so we can write this as $T^{p}-x^{p}=(T-x)^{p}$ (since $\left.\operatorname{char}(L)=p\right)$. Since K is perfect and L / K is algebraic, the minimal polynomial of x has simple roots and divides $(T-x)^{p}$, so it must be $T-x \Rightarrow$ $x \in K$.
\Leftarrow : First of all, from Proposition 27, a polynomial f is separable if and only if $f^{\prime} \neq 0$. Let $f \in K[T]$ be irreducible. Since we have assumed $K=K^{p}$ and $\operatorname{char}(K)=p, f^{\prime}=0$ if and only if f is a power of p. To see this, if $f(T)=(g(T))^{p}, f^{\prime}(T)=p(g(T))^{p-1}-0$, and if $f^{\prime}=0$, then for $f=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}, a_{i} i=0$ for every a_{i}, which, if $f \neq 0$, is only possible if each i is a multiple of p. Thus, $f(T)=g\left(T^{p}\right)$, and hence, since $K^{p}=K$, $f(T)=(g(T))^{p}$. But if this is the case, then f is not irreducible. Thus, every irreducible polynomial over K must be separable.

Let L / K be an algebraic extension and let $x \in L$. Then the minimal polynomial of x over K is irreducible, and thus separable, and hence, x is separable. Thus, since this is true for every $x \in L, L / K$ is separable, and since L was arbitrary, K is perfect.

§5.7 Finite Fields

We have seen that a finite field K must have p^{n} elements where $p=\operatorname{char}(K)$ is prime and $n \geq 1$. Conversely, for any $q \in \mathbb{N}$ of the form $q=p^{n}$ for p-prime and $n \geq 1$, there exists exactly one field with q elements denoted by \mathbb{F}_{q}. Explicitly, it is $\left\{x \in \overline{\mathbb{F}_{p}} \mid x^{q}=x\right\}$ where $\overline{\mathbb{F}_{p}}$ is any algebraic closure of $\mathbb{F}_{p}=\mathbb{Z} / p$.

Recall that if K is a field and char $(K)=p>0$, the Frobenius Homomorphism $F_{p}: K \rightarrow$ K is given by $x \mapsto x^{p}$. It is additive since $\binom{p}{j}=\frac{p!}{j!(p-j)!}$ is divisible by p for every $0<j<p$, so $(x+y)^{p}=\sum_{j=0}^{p}\binom{p}{j} x^{j} y^{p-j}=x^{p}+y^{p}$ (since all of the terms are 0 except when $j=0$ and $j=p$.

Theorem 44 (Kronecker). Let K be a field and let $G \subset K^{\times}$be a finite subgroup of the units of K (with respect to multiplication). Then G is cyclic.

Proof. G is a finite abelian group, so by the results on finitely generated modules over PIDs, we know that $G \cong \mathbb{Z} / a_{1} \oplus \ldots \oplus \mathbb{Z} / a_{s}$ with $a_{1}\left|a_{2}\right| \ldots \mid a_{s}$. We will write this as $G \cong C_{a_{1}} \times \ldots C_{a_{s}}$ where $C_{r}=\left\langle\sigma \mid \sigma^{r}=0\right\rangle$ is the cyclic gorup with r elements. For any $x \in G$, we have $x^{a_{s}}=1$ (since a_{s} is the lowest common multiple of the a_{i} 's). In $K, G \subset\left\{x \in K \mid x^{a_{s}}=1\right\}$ which is the set of roots of $T^{a_{s}}-1$, and there are at most a_{s} many elements. SO, $|G| \leq a_{s}$, but $|G|=a_{1} \ldots a_{s} \Rightarrow a_{1}=\ldots a_{n-1}=1$, so $s=1 \Rightarrow G$ is cyclic. Specifically, $G=C_{a_{s}}$.

Corollary 45. If K is finite with q elements, then $x^{q}=x$ for every $x \in K$.
Proof. K^{\times}is a finite subgroup of itself, and thus, is cyclic with $q-1$ elements, so for every $x \neq 0, x^{q-1}=1$.

Proposition 46. There is exactly one finite field with q elements where $q=p^{n}$ for some prime p and some $n \geq 1$.

Proof. Let \mathbb{F}_{q} be the set of roots of $T^{q}-T$ in $\overline{\mathbb{F}_{p}}$
The derivative of $T^{q}-T$ is $q T^{q-1}-1=-1 \neq 0$, so this polynomial is separable over \mathbb{F}_{p}. Thus, it has q distinct roots, so $\left|\mathbb{F}_{q}\right|=q$.

Then, for $x, y \in \mathbb{F}_{q},(x+y)^{p^{n}}-(x+y)=x^{p^{n}}+y^{p^{n}}-(x+y)$ since the characteristic is p, which is equal to $\left(x^{p^{n}}-x\right)+\left(y^{p^{n}}-y\right)=0$ since x, y are solutions of $T^{p^{n}}-T$.

Let F_{p} denote the Frobenius homomorphism. Then, since $x^{p^{n}}=x$ for all $x \in \mathbb{F}_{q}, x=$ $F_{p}^{n}(x)$, where F^{n} denotes n applications of the homomorphism. So, $F^{n}(x y)=F^{n}(x) F^{n}(y)=$ $x y$, and since $F^{n}(x y)=(x y)^{p^{n}},(x y)^{p^{n}}-(x y)=0$, so $x y \in \mathbb{F}_{q}$.

Let $x \neq 0$. Then, $x^{p^{n}}-x=0$, so $x\left(x^{q-1}-1\right)=0$, and since $x \neq 0, x^{q-1}-1=0$, so $x^{q-1}=1$. So, since $q \geq 2, x^{q-2}$ is x^{-1}. Then, $\left(x^{q-2}\right)^{q}=F^{n}\left(x^{q-2}\right)=\left(F^{n}(x)\right)^{q-2}=x^{q-2}$, so $x^{q-2} \in \mathbb{F}_{q}$.

And clearly, $\mathbb{F}_{q} \subset \overline{\mathbb{F}_{p}}$ since each element of q is the solution of $T^{q}-T \in \mathbb{F}_{p}[T]$. Thus, \mathbb{F}_{q} is a subfield of $\overline{\mathbb{F}_{p}}$.

Finally, let K be a field of order $q=p^{n}$. Then, let $x \in K$ be such that $K^{\times}=\langle x\rangle$ (this exists by Corollary 45). Then, we can define an isomorphism to \mathbb{Z} / p^{n} via $0 \mapsto 0$ and 1 mapping to the generator of $(\mathbb{Z} / q)^{\times}$(which is a cyclic group). Hence, since this is clearly an isomorphism (since $0 \mapsto 0$, the generator of K^{x} maps to the generator of $(\mathbb{Z} / q)^{\times}$, and $\left.\left|K^{\times}\right|=\left|(\mathbb{Z} / p)^{\times}\right|\right)$, we see that fields with q elements are unique up to isomorphism.

Proposition 47. Any finite extension of a finite field is normal.
Proof. First note that it is enough to show that for any prime p, if $q=p^{n}$ for some $n \geq 1$, then $\mathbb{F}_{q} / \mathbb{F}_{p}$ is normal since for $v=p^{m}$ with $m \leq n$, this implies that $\mathbb{F}_{q} / \mathbb{F}_{v}$ is normal.

Let $\sigma: \mathbb{F}_{q} \rightarrow \overline{\mathbb{F}_{p}}$ which is \mathbb{F}_{p}-linear be given. Let $x \in \mathbb{F}_{q}$. Then x is a solution to $T^{q}-T$ (from the previous problem).
$0=\sigma\left(x^{q}-x\right)=(\sigma(x))^{q}-(\sigma(x))$, and thus, $\sigma(x) \in \mathbb{F}_{q}$. Hence, since $x \in \mathbb{F}_{q}$ was arbitrary, $\sigma\left(\mathbb{F}_{q}\right) \subset \mathbb{F}_{q}$. Thus, the extension is normal.

Proposition 48. Any finite extension of a finite field is separable.
Proof. Again, we need only consider the case $\mathbb{F}_{q} / \mathbb{F}_{p}$ where $q=p^{n}$ for some $n \geq 1$ and p is prime, since this being separable implies that $\mathbb{F}_{q} / \mathbb{F}_{v}$ where $v=p^{m}$ for $m \leq n$ is separable.

Let $x \in \mathbb{F}_{q}$ be given. Then, by definition we know that $x=x^{q}=x^{p^{n}}$. And we know that $x^{p^{n}} \in \mathbb{F}_{p}\left(x^{p}\right)$, since $\left(x^{p^{n}}\right)=\left(x^{p}\right)^{p^{n-1}}$ (and $n \geq 1$). Thus, $x \in \mathbb{F}_{p}\left(x^{p}\right)$ for all $x \in \mathbb{F}_{q}$, so $\mathbb{F}_{q} / \mathbb{F}_{p}$ is separable.

§5.8 Galois Theory

Definition 28. An algebraic extension L / K is Galois if it is normal and separable. The Galois Group of the extension $\operatorname{Gal}(L / K)=\operatorname{Gal}_{K}(L)=A u t_{K}(L)$ is the group of K automorphisms of L, i.e., the group (for composition) of $\sigma: L \xrightarrow{\sim} L$ which are isomorphisms of rings (or fields) such that $\left.\sigma\right|_{K}=i d_{K}$ (that is, σ is K-linear).

For example, K / K is Galois, with $\operatorname{Gal}(K / K)=1 . \mathbb{C} / \mathbb{R}$ is galois since it is normal (and separable since the characteristic is 0), and $\operatorname{Gal}(\mathbb{C} / \mathbb{R})=\mathbb{Z} / 2=\{1, \sigma\}$ where $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ is defined by conjugation, $z \mapsto \bar{z}$. In general, in characteristic $0, \bar{K} / K$ is Galois. Even more generally, $K^{\text {sep }} / K$ is Galois. In fact, $K^{\text {sep }}$ is the union of all L / K with $K \subset L \subset \bar{K}$ and L / K Galois.

Definition 29. The absolute Galois group of K refers to $G a l\left(\bar{K}^{\text {sep }} / K\right)$. If K is perfect, this is just $\operatorname{Gal}(\bar{K} / K)$ (this is the case when $\operatorname{char}(K)=0$).

Theorem 49. Any extension of a finite field is Galois.
Proof. By Proposition 47, any finite extension of a finite field is normal and by Proposition 48, any finite extension of a finite field is separable. Thus, any finite extension of a finite field is Galois.

Let L / K be an extension of a finite field K, and let \bar{K} be a fixed algebraic closure of K. Then, $L=\bigcup_{\substack{L \subset M \subset \bar{K} \\ M \text { finite }}} M$. As we have seen, each M / K is both separable and normal, and thus, L / K is separable and normal, and hence, is Galois.

Theorem 50. Let L / K be finite (and thus, algebraic). The following are equivalent:

1. L / K is Galois.
2. L is the splitting field of some irreducible $P \in K[T]$ such that P is separable (and hence, $L \cong K[T] / P$ with P separable (and thus, simple)).
3. The group $A u t_{K}(L)$ has exactly $[L: K]$ elements.

Proof. 1. \Rightarrow 2.: By Theorem 39, $L=K(x)$ since L / K is separable and finite. let P be the minimal polynomial of x over K. Since L / K is normal, P decomposes completely in L, so since x is a root of P and $x \in L, L$ is the splitting field of P (which is separable since x is), so $L \cong K[T] / P$.
2 . $\Rightarrow 1 .:$ If L is the splitting field of a separable polynomial P, then $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where the α_{i} 's are the roots of P, which are separable. Thus, L / K is separable, since $K\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subset K^{\text {sep }}$ and $K^{\text {sep }} / K$ is seaprable, so by Corollary $35, K\left(\alpha_{1}, \ldots, \alpha_{n}\right) / K$ is separable. Since L is a splitting field, it is normal. Hence, L / K is Galois.

1. \Rightarrow 3.: Fix $\sigma L \hookrightarrow \bar{K}$. Then, $\operatorname{Gal}(L / K)=\operatorname{Aut}_{K}(L) \hookrightarrow \operatorname{Hom}_{K}(L, \bar{K})$ via $\tau \mapsto \sigma \circ \tau$. By definition, $\operatorname{Hom}_{K}(L, \bar{K})$ has $[L: K]_{S}$ elements, so $\left|A u t_{K}(L)\right| \leq[L: K]_{S}=[L: K]$ since L / K is separable.

Conversely, for any $\rho \in \operatorname{Hom}_{K}(L, \bar{K}), \rho(L) \subset L$ since L is normal (by Proposition 23). That is, $\left.\rho\right|_{L}: L \rightarrow L$ is an automorphism of L. In other words, the inclusion $A u t_{K}(L) \subset$ $\operatorname{Hom}_{K}(L, \bar{K})$ is an equality. Hence, $\left|A u t_{K}(L)\right|=[L: K]$.
3. \Rightarrow 1.: Fix $\sigma: L \hookrightarrow \bar{K}$, and consider $\operatorname{Aut}_{K}(L) \subset \operatorname{Hom}_{K}(L, \bar{K})$. By hypothesis, $[L:$ $K]=\left|A^{\prime} t_{K}(L)\right| \leq\left|\operatorname{Hom}_{K}(L, \bar{K})\right|:=[L: K]_{S} \leq[L: K]$. Thus, $[L: K]_{S}=[L: K]$, so L / K is separable, and $\operatorname{Hom}_{K}(L, \bar{K})=A u t_{K}(L)$, so for every $\rho: L \rightarrow \bar{K}$ which is K-linear, $\rho \in A u t_{K}(L)$, so $\rho(L) \subset L$, which by Proposition 23 means that L / K is normal. Hence, L / K is Galois.

Corollary 51. If L / K is finite and Galois, then $|G a l(L / K)|=[L: K]$.
Theorem 52. Let L be a field, let G be a finite subgroupe of the group of field automorphisms of L. Then let $L^{G}=\{x \in L \mid \sigma(x)=x \forall \sigma \in G\} \subset L$. The extension L / L^{G} is finite and Galois with Galois group G.

Proof. Let G be a finite subgroup of the group of field automorphisms of L and let $K=L^{G}$.
Let $x \in L$ be given and consider the finite set $G x=\{\sigma(x) \mid \sigma \in G\}$, that is, the orbit of x under G.

Let $P_{x}=\prod_{y \in G x}(T-y) \in L[T]$. By construction, P_{X} has only simple roots, and $P_{x}(X)=0$ since $x \in G_{x}$ (because $x=i d(x)$). Since G acts on L, it acts on $L[T]$ by coefficients. The action of G on $L[T]$ is by ring homomorphisms.

Then, for every $\sigma \in G, \sigma P_{x}=\prod_{y \in G x}(T-\sigma y)=P_{x}$ since $y \in G x$, thus the coefficients fo P_{x} are fixed by σ for every $\sigma \in G$, which means that $P_{x} \in L^{G}[T]=K[T]$.

Since $P_{x}(x)=0$, the minimal polynomial of x over K divides P_{x}, so sinc e P_{x} has only simple roots, the minimal polynomail of x can only have simple roots, and thus is separable. Hence, x is separable over K, and since $x \in L$ was arbitrary, L / K is separable.

Also, L is the splitting field of the family $\left\{P_{x} \mid x \in L\right\}$, which means that L is normal.
Hence, L / K is Galois.
Now let $n=|G|$, and for the sake of contradiction, suppose there are m linearly indepdent (over K) elements $x_{1}, \ldots, x_{m} \in L$ with $m>n$. Let $G=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Consider the matrix $A=\left(\sigma_{i}\left(x_{j}\right)\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \in M_{n \times n}(L)$.

Thus, we have a linear map from $L^{m} \xrightarrow{A} L^{n}$.
Since $m>n, \operatorname{ker}(A) \neq 0$. Let λ be

$$
\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right)
$$

in $\operatorname{ker}(A) \backslash 0$ with the least number of non-zero entries.
We may assume without loss of generality that $\lambda_{1} \neq 0$, so $\lambda_{1}^{-1} \lambda$ is

$$
\left(\begin{array}{c}
1 \\
\lambda_{2} / \lambda_{1} \\
\vdots \\
\lambda_{m} / \lambda_{1}
\end{array}\right)
$$

and this has the same properties as λ, so without loss of generality we may assume $\lambda_{1}=1$.

We have $A \cdot \lambda=0$, so for every $1 \leq i \leq n,(A \cdot \lambda)_{i}=\sum_{j=1}^{m} \sigma_{i}\left(x_{j}\right) \lambda_{j}=0$.
Suppose that $\lambda_{j} \in K=L^{G}$ for all j. Then $0=\sum_{j=1}^{m} \sigma_{i}\left(x_{j}\right) \lambda_{j}=\sum_{j=1}^{m} \sigma_{i}\left(x_{j}\right) \sigma_{i}\left(\lambda_{j}\right)=$ $\sigma_{i}\left(\sum_{j=1}^{m} x_{j} \lambda_{j}\right) \Rightarrow \sum_{j=1}^{m} x_{j} \lambda_{j}=0$, which would contradict the hypothesis that the x_{j} 's are linearly independent.

So one of the λ_{j} 's must be in $L \backslash K$. Without loss of generality, we may assume that it is $\lambda_{2} . \lambda_{2} \notin K=L^{G}$ means that for some $1 \leq k \leq n, \sigma_{k}\left(\lambda_{2}\right) \neq \lambda_{2}$. Consider $\sigma_{k}(\lambda)$. This is just

$$
\left(\begin{array}{c}
\sigma_{k}(1)=1 \\
\sigma_{k}\left(\lambda_{2}\right) \\
\vdots \\
\sigma_{k}\left(\lambda_{m}\right)
\end{array}\right)
$$

Then, for $1 \leq i \leq n$, to compute $\sum_{j=1}^{m} \sigma_{i}\left(x_{i}\right) \cdot \sigma_{k}\left(\lambda_{j}\right)$, not that for some $l, \sigma_{i}=\sigma_{k} \sigma_{l}$ (in particular, $\left.\sigma_{l}=\sigma_{k}^{-1} \sigma_{i}\right)$, so this sum is just $\sum_{j=1}^{m} \sigma_{k} \sigma_{l}\left(x_{i}\right) \cdot \sigma_{k}\left(\lambda_{j}\right)=\sigma_{k}\left(\sum_{j=1}^{m} \sigma_{l}\left(x_{i}\right) \lambda_{j}\right)=0$ since $\sum_{j=1}^{m} \sigma_{l}\left(x_{i}\right) \lambda_{j}=0$. Thus, $\sigma_{k}(\lambda) \in \operatorname{ker}(A)$.

Hence, $\lambda-\sigma_{k}(\lambda) \in \operatorname{ker}(A)$ (since $\operatorname{ker}(A)$ is a subspace), and we can write $\lambda-\sigma_{k}(\lambda)$ as

$$
\left(\begin{array}{c}
1-1=0 \\
\lambda_{2}-\sigma_{k}\left(\lambda_{2}\right) \neq 0 \\
\vdots \\
\lambda_{m}-\sigma_{k}\left(\lambda_{m}\right)
\end{array}\right)
$$

Then, for every $1 \leq j \leq m$ such that $\lambda_{j}=0$, we have $\lambda_{j}-\sigma_{k}\left(\lambda_{j}\right)=0$. Thus, $\lambda-\sigma_{k}\left(\lambda_{j}\right) \in$ $\operatorname{ker}(A)$ and has strictly fewer non-zero entries than λ, which contradicts our selection of λ.

Thus, we must have that $[L: K] \leq|G|$.
Then, since $G \subset A u t_{K}(L),|G| \leq\left|A u t_{K}(L)\right|=|G a l(L / K)|=[L: K]$.
Thus, $|G|=[L: K]$, and since $G \subset G a l(L / K)$, and they have the same number of elements, $G=\operatorname{Gal}(L / K)$.

Corollary 53. If L / K is Galois and finite with $G a l(L / K)=G$, then $K=L^{G}$.
Proof. We have $K \subset L^{G}$ and $\left[L: L^{G}\right]=|G|=[L: K] \Rightarrow\left[L^{G}: K\right]=1$.
Definition 30. For $G \subset \operatorname{Aut}(L)$, the subfield $L^{G}=\{x \in L \mid \sigma(x)=x \forall \sigma \in G\}$ is called the fixed field of G.

Theorem 54 (Fundamental Theorem for Finite Galois Extensions). Let L / K be a finite Galois extension. Let $G=\operatorname{Gal}(L / K)=$ Aut $_{K}(L)$. Then, there is a bijection of sets between
$\{M \mid L / M / K\}$ and $\{H \mid H \leq G\}$. That is, between intermediate extension of L / K and subgroups of G, defined by $M \mapsto G a l(L / M) \leq G$ and $H \leq G \mapsto L^{H}$. Note that this bijection reverses inclusions.

Also, M / K is Galois if and only if M / K is normal and separable, and M / K is normal if and only if $H=\operatorname{Gal}(L / M)$ is normal is G. Thus, there is a natural isomorphism $\operatorname{Gal}(M / K) \cong G / H$.

Proof. Let M be an intermediate extension of L / K. We konw that L / M is Galois and $H=\operatorname{Gal}(L / M) \leq \operatorname{Gal}(L / K)=G$ since $\left.\sigma\right|_{M}=\left.i d_{M} \rightarrow \sigma\right|_{K}=i d_{K}$. By the previous corollary applied to L / M, we have $L=M$.

Let $H \leq G$. By the previous theorem, applied to L and the group H, we have L / L^{H} is Galois and $\operatorname{Gal}\left(L / L^{H}\right)=H$. Of course, $K \subset L^{H}$ since $H \leq G=A u t_{K}(L)$.

Hence, we have the required bijection. Reversing inclusion is obvious, since if $H \leq H^{\prime}$, then $L^{H^{\prime}} \subset L^{H}$.

Let $L / M / K$ be given. We will show that M / K is normal if and only if $H \triangleleft G$. Note that $\operatorname{Hom}_{K}(L, \bar{K}) \cong A u t_{K}(L)$ (using the fact that L is normal), and moreover, that any $\sigma \in$ $\operatorname{Hom}_{K}(M, \bar{K})$ is the restriction of some $\sigma \in \operatorname{Hom}_{K}(L, \bar{K})$, and hence, of $\sigma \in G a l(L / K)=G$. Thus, we have $\sigma(M) \subset L$. By the bijection, $\sigma(M)$ corresponds to some subgroup. We see that this must be $\sigma H \sigma^{-1}$. Thus, M is normal if and only if $\sigma(M) \subset M$ for every $\sigma \Leftrightarrow$ $\sigma(M)=M$ for every $\sigma \Leftrightarrow \sigma H \sigma^{-1}=H$ for every $\sigma \Leftrightarrow H \triangleleft G$.

The restriction $G=G a l(L / K) \rightarrow G a l(M / K)$ is surjective by the discussion above and has kernel $\operatorname{Gal}(L / M)=H$. Hence, $G / H \stackrel{\simeq}{\leftrightharpoons} \operatorname{Gal}(M / K)$.

Thus, we see that Galois theory connects fields to groups, and thus we have the following terminology.

Definition 31. An extension L / K is called abelian if it is Galois with an abelian Galois group, $G=G a l(L / K)$. It is called cyclic if G is cyclic.

$\S 5.9$ Galois Groups and Polynomials

Definition 32. Let $P \in K[T]$ be a polynomial of degree d and $\alpha_{1}, \ldots, \alpha_{d}$ be the roots of P is \bar{K} (repitition in roots is okay). Then the discriminant of P is the following number:
$\Delta(P)=\Delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}$.
P has multiple roots if and only if $\Delta P=0$.
Consider $\delta=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)$. If $\sigma \in S_{d}, \sigma$ acts on δ by permuting the α_{i} 's, so $\sigma(\delta)=\operatorname{sgn}(\sigma) \delta$.
Hence, $\sigma(\Delta)=\operatorname{sgn}(\sigma)^{2} \Delta=\Delta$. So Δ does not depend on the order of the roots.
Since Δ is a symmetric polynomial in the roots of P, it must be a polynomial of the coefficients of P.

Definition 33. Let $P \in K[T]$ be a separable polynomial (a product of irreducible separable polynomials). Its Galois group is $G a l(L / K)$ where L is the splitting field of P over K (which is a Galois extension).

Remark 7. If $P=\left(T-\alpha_{1}\right) \ldots\left(T-\alpha_{n}\right) \in \bar{K}$, then for any $\sigma \in G=G a l(L / K)$ (where L is the splitting field of P), $\sigma\left(\alpha_{i}\right)=\alpha_{j}$ for some j. That is, σ permutes the roots, so $G \hookrightarrow S_{n}$. This is a monomorphism of groups, injectivity comes from the fact that $L=K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ In particular, $[L: K]=|G|$, and $|G|$ divides $\left|S_{n}\right|=n$!. If P is also irreducible, $K\left(\alpha_{i}\right)=K[T] / P$ is a subfield of L of degree n, so $n|[L: K]| n$!.

Remark 8. Since $\sigma(\Delta)=\Delta$ for all $\sigma \in G \subset S_{n}, \Delta \in L^{G}=K$. Also, $K(\delta) \subset L$ corresponds to the subgroup $G \cap A_{n}$ of G (with $G \hookrightarrow S_{n}$ as above), since if $\sigma \in A_{n}, \operatorname{sgn}(\sigma)=1$, so $\sigma(\delta)=\operatorname{sgn}(\sigma) \delta=\delta$.

Corollary 55. If $P \in K[T]$, char $(K) \neq 2, P$ is degree 3 , irreducible, and separable, and L is the splitting field of P, then $[L: K]=3$ if and only if $\Delta \in K^{2}$ (i.e., $\delta \in K$), in which case $\operatorname{Gal}(L / K)=\mathbb{Z} / 3 \mathbb{Z}$. Otherwise, if $\Delta \notin K^{2}$, then $[L: K]=6$ and $\operatorname{Gal}(L / K)=S_{3}$.

Remark 9. Let $P \in K[T]$ be separable and irreducible. Let $L=\operatorname{Split}_{K}(P)$. The extension L / K is Galois. Let $\alpha_{1}, \ldots, \alpha_{n} \in L$ be the roots of P. The α_{i} 's are called conjugates, i.e., the conjugate of α means another root of $m_{\alpha}(x)$. The point is that the α_{i} 's are permuted by $\operatorname{Gal}(L / K)$, in fact, they are permuted transitively.

§5.10 Cyclotomic Extensions and Cyclic Extensions

Definition 34. Let $n \in \mathbb{N}$. An $n^{t h}$ root of unity in a field K is an $x \in K$ such that $x^{n}=1$. By Kronecker, they form a cyclic subgroup of K^{\times}. A primitive $n^{\text {th }}$ root of unity is an $x \in K$ such that $x^{n}=1$ and $x^{m} \neq 1$ for every $m<n$.

For example, if $\operatorname{char}(K)=p>0$, then $T^{p}-1=(T-1)^{p}$, so there is only one $p^{t h}$ root of unity, namely, 1.

As such, when considered $n^{\text {th }}$ roots of unity, we usually assume $\operatorname{char}(K)$ does not divide n. In this case there are exactly $n n^{t h}$ roots of unity in \bar{K}. These roots form a subgroup of $K^{\text {times }}$, generated by any primitive $n^{\text {th }}$ root.

In $\mathbb{Q}, \zeta=e^{2 \pi i / n} \in \overline{\mathbb{Q}} \subset \mathbb{C}$ is a primitive $n^{t h}$ root of unity.
Definition 35. The polynomial $\Phi_{n}(T)$ given by $\Phi_{n}(T):=\prod_{g c d(j, n)=1}\left(T-\zeta^{i}\right)$ is the $n^{\text {th }}$ cyclotomic polynomial. $\Phi_{n} \in \mathbb{Z}[T]$ is irreducible, and $T^{n}-1:=\prod_{d \mid n} \Phi_{d}(T)$.

For a prime $p, \Phi_{p}(T)=\frac{T^{p}-1}{T-1}=T^{p-1}+\ldots+T+1$. This is irreducible.
Remark 10. For any $n \in \mathbb{N}, \operatorname{deg}\left(\Phi_{n}\right)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}=\phi(n)$ where $\phi(m n)=\phi(m) \phi(n)$ if $(m, n)=1$ and $\phi\left(p^{l}\right)=(p-1) p^{l-1}$.

Theorem 56. The so-called cyclotomic extension $\mathbb{Q}(\zeta) / \mathbb{Q}$ where $\zeta=e^{\frac{2 \pi i}{n}}$ (or any primitive $n^{\text {th }}$ root of unity) is Galois of degree $\phi(n)$. Moreover, $G a l(\mathbb{Q}(\zeta) / \mathbb{Q}) \xrightarrow{\cong}(\mathbb{Z} / n \mathbb{Z})^{\times}$via $\sigma \mapsto j$ such that $\sigma(\zeta)=\zeta^{j}$ and $j \mapsto\left(\zeta \mapsto \zeta^{j}\right)$.

Proof. Let $L=\mathbb{Q}(\zeta)$. This containes ζ^{j} for every j, and thus, it is the splitting field of $\Phi_{n}(x)$ which has degree $\phi(n)$. For $\sigma \in \operatorname{Gal}(L / \mathbb{Q}), \sigma(\zeta)$ is another primitive $n^{t h}$ root of unity, and hence, $\sigma(\zeta)=\zeta^{j}$ for some $j \in(\mathbb{Z} / n \mathbb{Z})^{\times}$. Thus, the $\operatorname{map} \operatorname{Gal}(L / \mathbb{Q}) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$which is clearly injcetive (since $L=\mathbb{Q}(\zeta)$) is a group homomorphism. Hence, it is an isomorphism since they have the same number of elements.

Theorem 57. Let K be a field and $n \in \mathbb{Z}$ such that char (K) does not divide n and K contains all $n^{t} h$ roots of unity (i.e., contains a primitive $n^{\text {th }}$ root). Let $a \in K$ and consider $T^{n}-a \in K[T], a \neq 0$. Let L^{\prime} be a splitting field of $T^{n}-a$. Let $\alpha \in L^{\prime}$ such that $\alpha^{n}=a$. Now, let $L=K(\alpha)$. Then, L is cyclic of order $d \mid n$, and $\alpha^{d} \in K$.

Proof. First we have the decomposition $T^{n}-a=\prod_{0 \leq j \leq n-1}\left(T-\zeta^{i} \alpha\right)$. For $\sigma \in G a l(L / K)$, we have $\sigma(\alpha)$ is some othe rroot of $T^{n}-a$, hence, $\sigma(\alpha)=\zeta^{j} \alpha$ for $j \in \mathbb{Z} / n \mathbb{Z}$. As before, this gives an embedding of $\operatorname{Gal}(L / k) \hookrightarrow \mathbb{Z}_{n}$. Then, $G:=\operatorname{Gal}(L / K)$ is a subgroup of \mathbb{Z}_{n}, which implies $G \cong(\mathbb{Z} / d \mathbb{Z})$ for some $d \mid n$. Finally, $N(\alpha)=\prod_{\sigma \in G} \sigma(\alpha)$ is fixed by G, hence, belongs in K. So, $\alpha^{d} \zeta^{k} \in K$, which implies that $\alpha^{d} \in K$.

