The Pila-Wilkie Theorem Louise Hay Logic Seminar, UIC

Victoria Noquez

October 4, 2012

Abstract

We will go over the proof of the main theorem in Pila and Wilkie's 2006 paper *The Rational Points of a Definable Set.*

It says that for $X \subset \mathbb{R}^n$ which is definable in an o-minimal expansion of $\overline{\mathbb{R}}$, there are (in a suitable sense) very few rational points of X which do not lie on some connected semialgebraic subset of X of positive dimension.

1 Definitions and Statement of the Theorem

Definition 1. For any $X \subset \mathbb{R}^n$, the algebraic part of X, X^{alg} , is the union of all infinite connected semi-algebraic subsets of X. $X^{tr} = X \setminus X^{alg}$ is the transcendental part of X.

Note: By o-minimality, $X \subset \mathbb{R}$ definable, the "infinite" part of this definition matters, since if we also include the finite components (points), we would always get $X^{alg} = X$.

Recall: $X \subset \mathbb{R}^n$ is *semi-algebraic* if it is a finite boolean combination of $f(x_1, \ldots, x_n) = 0$ and $g(x_1, \ldots, x_n) > 0$ for $f, g \in \mathbb{R}[x_1, \ldots, x_n]$. Here are some examples:

- 1. If $X \subset \mathbb{R}$ is semi-algebraic, since \mathbb{R} is o-minimal and X is definable, $X = I_1 \cup \ldots \cup I_j \cup Y_1 \cup Y_2$ where I_1, \ldots, I_j are open intervals, $Y_1 \subset \partial(I_1) \cup \ldots \cup \partial(I_j)$, and Y_2 is a finite set of points, disjoint from $\overline{I_1 \cup \ldots \cup I_j \cup Y_1}$. Then $X^{alg} = I_1 \cup \ldots \cup I_j \cup Y_1$.
- 2. If $X \subset \mathbb{R}^n$ is open, $X^{alg} = X$.
- 3. $X = \{(x, y, z) \in \mathbb{R}^3 | x > 0, x^y = z\}$, then $X^{alg} = \{(x, q, z) | x, z \in \mathbb{R}, q \in \mathbb{Q}, x > 0, x^q = z\}$. Note that this is a countably infinite union of algebraic curves.

Definition 2. For $\frac{a}{b} \in \mathbb{Q}$, $a, b \in \mathbb{Z}$, b > 0 and gcd(a, b) = 1, $H(\frac{a}{b}) = \max\{|a|, |b|\}$ is the height of $\frac{a}{b}$. For $q_1, \ldots, q_n \in \mathbb{Q}$, $H(q_1, \ldots, q_n) = \max_{1 \le i \le n} \{H(q_i)\}$.

Definition 3. For $X \subset \mathbb{R}^n$, $X(\mathbb{Q}, T) := \{\overline{q} \in X \cap \mathbb{Q}^n | H(\overline{q}) \le T\}$.

Previously, we were interested in finding, for $X \subset \mathbb{R}^n$ and $t \in \mathbb{Z}$, the number of integer points in $\{(tx_1, \ldots, tx_n) : (x_1, \ldots, x_n) \in X\}$ (this was called the *dilation* of X by t). There were some different bounds established for when X was the graph of some $f : [0, 1] \to \mathbb{R}$ (obviously $\#(tX \cap \mathbb{Z}) \leq t + 1$ here) using various smoothness conditions on f.

Looking for the integer points in tX is like looking for the points of the form $\frac{m}{t}$ for $m \in \mathbb{Z}$ in X, so we generalize this using this notion of height.

We're interested in establishing bounds on $|X^{tr}(\mathbb{Q}, T)|$ under natural geometric conditions on X and seeing how fast it grows as we change T with the guiding idea that transcendental sets should contain few rational points.

Recall: $\overline{\mathbb{R}} := \langle \mathbb{R}; +, \cdot, -, 0, 1, < \rangle$. Structures like $\mathbb{R}_{rexp} = \langle \overline{\mathbb{R}}, exp \upharpoonright_{(0,1)} \rangle$ are o-minimal expansions of $\overline{\mathbb{R}}$.

Theorem 1 (Pila-Wilkie 2006). For $X \subset \mathbb{R}^n$ definable in an o-minimal expansion of $\overline{\mathbb{R}}$, for any $\epsilon > 0$, $\exists c(\epsilon) > 0$ such that for all $T \ge 1$, $\# X^{tr}(\mathbb{Q}, T) \le c(\epsilon)T^{\epsilon}$.

Theorem 2 (Uniform Pila-Wilkie). Let $(X_a)_{a \in A}$ be a family of subsets of \mathbb{R}^n definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For any $\epsilon > 0$ there is another definable family $(Y_a)_{a \in A}$, $Y_a \subset X_a^{alg}$ and a constant $c(\epsilon) > 0$ such that for all $T \ge 1$,

$$#(X_a \setminus Y_a)(\mathbb{Q}, T) < c(\epsilon)T^{\epsilon}.$$

2 *r*-parameterization

Let S be an o-minimal expansion of a real closed field \mathcal{M} . Ultimately, we're interested in o-minimal expansions of \mathbb{R} , but these results hold for all real closed fields.

When we say definable, we mean definable in \mathcal{S} .

Definition 4. $a \in M$ is strongly bounded if there is some $c \in \mathbb{N}$ such that $|a| \leq c$. $a = (a_1, \ldots, a_n) \in M^n$ is strongly bounded if each a_i is, and $A \subset M^n$ is strongly bounded if there is a fixed finite bound for all coordinates of all elements of A. A definable function is strongly bounded if its graph is.

Definition 5. Let $X \subset M^n$ be definable. A definable function $\phi : (0,1)^l \to X$ where $l = \dim X$ is called a *partial parameterization* of X. A finite set S of partial parameterizations of X is called a *parameterization* of X if $\bigcup_{\phi \in S} Im(\phi) = X$.

Definition 6. A parameterization S of a definable set $X \subset M^n$ is called an *r*-parameterization if every $\phi \in S$ is $C^{(r)}$ and $\phi^{(\alpha)}$ is strongly bounded for $\alpha \in \mathbb{N}^{\dim X}$, $|\alpha| \leq r$ where $|\alpha|$ is the sum of the coordinates of α .

Theorem 3. For any $r \in \mathbb{N}$ and any strongly bounded definable set X, there exists an r-parameterization of X.

Corollary 4. Let $m, r \ge 1$, $X \subset (0,1)^m$ definable. Then there exists a finite set S of functions each mapping $(0,1)^{\dim X} \to X$ and of class $C^{(r)}$ such that $\bigcup_{\phi \in S} Im(\phi) = X$ and

 $|\phi^{(\alpha)}(\overline{x})| \leq 1 \text{ for } \phi \in S, \ \alpha \in \mathbb{N}^{\dim X}, \ |\alpha| \leq r \text{ for all } \overline{x} \in (0,1)^{\dim X}.$

Proof. Let S^* be an *r*-parameterization of X, as given by the parameterization theorem. So everything holds, except that we have $|\phi^{\alpha}(\overline{x})| \leq c$ for some finite c (not necessarily 1). Cover $(0,1)^{\dim X}$ with $(2c)^{\dim X}$ cubes of side $\frac{1}{c}$. For each such cube K, let $\lambda_K : (0,1)^{\dim X} \to K$ be the obvious linear bijection. $S = \{\phi \circ \lambda_K | \phi \in S^*, K \text{ a cube}\}$ works. \Box

Corollary 5. [Uniform Version] Let $n, m, r \ge 1$ and suppose $X \subset (0, 1)^n \times M^m$ is a definable family. Then there exists $N \in \mathbb{N}$ and, for each $\overline{y} \in M^m$, a set $S_{\overline{y}}$ of N functions, each mapping $(0, 1)^{\dim X_{\overline{y}}} \to X_{\overline{y}}$ and each of class $C^{(r)}$ such that

(1) $\bigcup_{\phi \in S_{\overline{y}}} Im(\phi) = X_{\overline{y}}, and$

(2) $|\phi^{(\alpha)}(\overline{x})| \leq 1$ for each $\phi \in S_{\overline{y}}, \ \alpha \in \mathbb{N}^{\dim X_{\overline{y}}}, \ |\alpha| \leq r$ for all $\overline{x} \in (0,1)^{\dim X_{\overline{y}}}$.

Proof. Suppose not.

Let $\Gamma_N(\overline{v})$ be the set of formulas saying that for each N sized set of functions satisfying (2), the union of the images of those functions is not equal to $X_{\overline{v}}$ (that is, (1) fails). Let $\Gamma = \bigcup_{N \in \mathbb{N}} \Gamma_N(\overline{v})$. Then, for a finite subset of Γ , there is some N such that it is contained in $\Gamma_1 \cup \ldots \cup \Gamma_N$. Thus, by assumption, there must be some \overline{v} which witnesses it (or else this would be the N required for the corollary to hold). Hence, since $\Gamma(\overline{v})$ is finitely satisfiable, it is satisfiable. Let $\mathcal{N} \succeq \mathcal{M}$ be a saturated elementary extension (and thus, \mathcal{N} is a real closed field) and let $\overline{v} \in N^m$ witness $\Gamma(\overline{v})$. But then consider $X_{\overline{v}}$ in \mathcal{N} . By the previous corollary, there should be some N such that there is a set of N functions from $(0, 1)^{\dim X_{\overline{v}}} \to X_{\overline{v}}$ satisfying (1) and (2). $\Rightarrow \Leftarrow$

Note that in the previous proof, it was important that we had proved the parameterization results for arbitrary real closed fields and o-minimal expansions, not just $\overline{\mathbb{R}}$.

3 Diophantine Approximation

We now restrict our attention to S an o-minimal expansion of $\overline{\mathbb{R}}$. By definable we still mean definable in S.

The following is a result of Bombieri and Pila. First we require a few definitions.

Definition 7. A hypersurface of degree d in \mathbb{R}^n is a set of the form $\{\overline{x} \in \mathbb{R}^n | f(\overline{x}) = 0\}$, $f \in \mathbb{R}[\overline{x}]$ non-zero, deg(f) = d.

Definition 8. The *fiber dimension* of a definable family $Z \subset \mathbb{R}^n \times \mathbb{R}^m$ is the maximal dimension of a fiber of Z.

Theorem 6 (Bombieri-Pila). Let $k, n \in \mathbb{N}$, k < n. For each $d \in \mathbb{N}$, $d \ge 1$, there is r = r(k, n, d), and positive constants $\epsilon = \epsilon(k, n, d)$ and c = c(k, n, d) such that the following holds.

If $\phi : (0,1)^k \to \mathbb{R}^n$ is a function of class $C^{(r)}$ with $|\phi^{(\alpha)}(\overline{x})| \leq 1$ for $\overline{x} \in (0,1)^k$, $\alpha \in \mathbb{N}^k$, $|\alpha| \leq r$. Let $X = \phi((0,1)^k) = Im(\phi)$, and let $T \geq 1$. Then $X(\mathbb{Q},T)$ is contained in the union of at most cT^{ϵ} hypersurfaces of degree at most d. Furthermore, $\epsilon \to 0$ as $d \to \infty$.

Note that $\epsilon \to 0$ as $d \to \infty$, since as we get more complicated hypersurfaces (that is, of higher degree), we don't need as many.

4 Main Lemma

Lemma 7 (Main Lemma). Let $X \subset (0,1)^n \times M^m$ be a definable family of fiber dimension k < n. For ease of notation, we let $A = \pi_2(Z)$ and let X_a for $a \in A$ denote the fibers of X. Let $\epsilon > 0$ be given. There exists $d = d(\epsilon, k, n) \in \mathbb{N}$ and $K = K(X, \epsilon) > 0$ such that for any $a \in A, T \ge 1, X_a(\mathbb{Q}, T)$ is contained in the union of at most KT^{ϵ} hypersurfaces of degree d.

Proof. Let $\epsilon > 0$ be given. Choose d from the previous theorem such that $\epsilon(k, n, d) \leq \epsilon$ and set r = r(k, n, d) from the previous theorem. By Corollary ??, there exists N such that for every $a \in A$, there is an r-parameterization of X_a , call it S_a , of at most N maps $\phi(0, 1)^k \to \mathbb{R}^n$ of class $C^{(r)}$ with $|\phi^{(\alpha)}(\overline{x})| \leq 1$ for $\alpha \in \mathbb{N}^k$, $|\alpha| \leq r$. So for each $\phi \in S_a$, by the previous proposition, $Im(\phi)(\mathbb{Q}, T)$ is contained in at most $c(k, n, d)T^{\epsilon(k, n, d)}$ hypersurfaces of degree at most d. So let $K = N \cdot c$. Hence, since $\epsilon(k, n, d) < \epsilon$, $X_a(\mathbb{Q}, T)$ is contained in at most KT^{ϵ} hypersurfaces of degree at most d.

5 Proof of the Theorem

Note that rational points of height at most T are stable under maps of the form $x \mapsto \pm x^{\pm 1}$, since $H(\frac{a}{b}) = \max(|a|, |b|) = H(-\frac{a}{b}) = H(\frac{b}{a})$. These maps also preserve X^{alg} , so we may assume $X \subset [0, 1]^n \times \mathbb{R}^m$.

Lemma 8. If the theorem holds for definable families of the form $X \subset (0,1)^n \times \mathbb{R}^m$, then it holds for definable families of the form $X \subset [0,1]^n \times \mathbb{R}^m$.

Proof. Let $X \subset [0,1]^n \times \mathbb{R}^m$ be definable. Let $\epsilon > 0$ be given.

For $\alpha \subsetneq \{1, \ldots, n\}$, and $\gamma \in \{0, 1\}^{|\alpha|}$, let $X_{a,\alpha,\gamma}$ be X_a intersected with the set of *n*-tuples with γ in the positions specified by α , and elements of (0, 1) in the other positions.

For example, if n = 5, $\alpha = \{2, 4, 5\}$, $\gamma = (0, 0, 1)$, then if X_a is just $[0, 1]^5$ for some a, an element of $X_{a,\alpha,\gamma}$ could be something like $(\frac{1}{2}, 0, \frac{1}{4}, 0, 1)$.

So
$$X_a = \bigcup_{\substack{\alpha \subseteq \{1,...,n\}}} (\bigcup_{\gamma \in \{0,1\}^{|\alpha|}} X_{a,\alpha,\gamma}) \cup (X_a \cap (\{0,1\})^n).$$

For each $\alpha \subsetneq \{1, \ldots, n\}$ and $\gamma \in \{0, 1\}^{|\alpha|}$, consider the family $X_{\alpha,\gamma}$ where $(X_{\alpha,\gamma})_a = X_{a,\alpha,\gamma}$. We can view this as a definable family in $(0, 1)^{n-|\alpha|} \times \mathbb{R}^m$, so by assumption, there is a definable family $Y_{\alpha,\gamma}$ with $Y_{a,\alpha,\gamma} \subset X_{a,\alpha,\gamma}^{alg}$ and $c_{\alpha,\gamma}$ such that for all T, $\#(X_{a,\alpha,\gamma} \setminus Y_{a,\alpha,\gamma})(\mathbb{Q},T) \leq c_{\alpha,\gamma}T^{\epsilon}$. Note that when we are talking about the heights here, we are talking about the heights of the coordinates not equal to 0 or 1. But by including these coordinates, we do not change whether or not the tuple is counted: If the original coordinates were not rational, the new tuple is not either. If it is, then since $T \geq 1$, including 0's and 1's will not change whether or not the tuple's height is $\leq T$.

So, let
$$C = \sum_{\substack{\alpha \subseteq \{1,...,n\}}} \sum_{\gamma \in \{0,1\}^{|\alpha|}} c_{\alpha,\gamma} + 2^n.$$

Let $Y_a = \bigcup_{\alpha \subsetneq \{1,\dots,n\}} (\bigcup_{\gamma \in \{0,1\}^{|\alpha|}} Y_{a,\alpha,\gamma})$. This is definable, and $Y_a \subset X_a^{alg}$, since of $x \in Y_a$, x

is in an infinite connected component of $X_{a,\alpha,\gamma} \subset X_a$. Thus, for $a \in A$, $(X_a \setminus Y_a)(\mathbb{Q},T) \subset X_a$.

 $\bigcup_{\substack{\alpha \subseteq \{1,\dots,n\} \\ \gamma \in \{0,1\}^{|\alpha|}}} (\bigcup_{\substack{Y_{a,\alpha,\gamma} \setminus Y_{a,\alpha,\gamma} \cap (\mathbb{Q},T)}} (X_a \cap (\{0,1\})^n), \text{ and thus } \#(X_a \setminus Y_a)(\mathbb{Q},T) \leq \sum_{\substack{\alpha \subseteq \{1,\dots,n\} \\ \gamma \in \{0,1\}^{|\alpha|}}} \sum_{\substack{\gamma \in \{0,1\}^{|\alpha|}}} c_{\alpha,\gamma} T^{\epsilon} + 2^n < CT^{\epsilon}, \text{ as required.}$

So we may assume $X \subset (0,1)^n \times \mathbb{R}^m$ is definable in some o-minimal expansion of $\overline{\mathbb{R}}$. As before, let $A = \pi_2(X)$, and let $X_a \subset (0,1)^n$ denote the fibers in X for $a \in A$.

Let $k = \max \dim X_a$. We proceed by induction on k. Let $\epsilon > 0$ be given.

k = 0: Then X_a is finite by o-minimality, so by uniform bounding, there is N such that $|X_a| < N$ for all $a \in A$. Let $Y_a = \emptyset$, so $Y_a \subset X_a^{alg}$ for all $a \in A$. Let $c(\epsilon) = N$. Then, for any $T \ge 1$, $\#(X_a \setminus Y_a)(\mathbb{Q}, T) \le |X_a| \le N \le c(\epsilon)T^{\epsilon}$.

0 < k < n: Let $d(\frac{\epsilon}{2})$ be as in the Main Lemma. Let j be the number of coefficients of a polynomial of degree $\leq d$ in n variables, so each $b \in \mathbb{R}^j$ corresponds to exactly one such polynomial, and thus, one hypersurface of degree $\leq d$, call it H_b . Consider the family $Y \subset (0,1)^n \times (\mathbb{R}^m \times \mathbb{R}^j)$ where $Y_{ab} = X_a \cap H_b$. This is also definable. Since H_b is a hypersurface, dim $Y_{ab} < \dim X_a \leq k$ for all a, b. So by IH, there is a definable family $Z \subset (0,1)^n \times (\mathbb{R}^m \times \mathbb{R}^j)$ with $Z_{ab} \subset Y_{ab}^{alg}$ such that $\#(Y_{ab} \setminus Z_{ab})(\mathbb{Q},T) < c'T^{\frac{\epsilon}{2}}$ for all $T \geq 1$ (for some c' > 0 depending on $\frac{\epsilon}{2}$).

Let $Z_a = \bigcup_{b \in \mathbb{R}^j} Z_{ab}$. Note that this is still definable since if $\Phi(x, a, b)$ defines $Z, x \in Z_a \Leftrightarrow$

 $\exists b\Phi(x,a,b). \ Z_a \subset \bigcup_{b \in \mathbb{R}^j} Y_{ab}^{alg} \subset \bigcup_{b \in \mathbb{R}^j} (X_a \cap H_b)^{alg} \subset X_a^{alg}, \text{ since if } x \text{ is in an infinite connected}$

component of $X_a \cap H_b$ for some hypersurface H_b , this is contained in an infinite connected component of X_a .

Let $K = K(\frac{\epsilon}{2}, X)$ be from the Main Lemma. So $\forall a \in A, X_a(\mathbb{Q}, T)$ is contained in $KT^{\frac{\epsilon}{2}}$ many hypersurfaces of degree $\leq d$, and since it is a subset of this, $(X_a \setminus Z_a)(\mathbb{Q}, T)$ is.

Let $B' \subset \mathbb{R}^j$ be such that $|B'| \leq KT^{\frac{\epsilon}{2}}$ and $X_a(\mathbb{Q},T)$ is contained $\bigcup_{b\in B'} H_b$. Let $y \in (X_a \setminus Z_a)(\mathbb{Q},T)$ and let $b \in B'$ be such that $y \in H_b$. So $y \in (X_a \cap H_b) \setminus Z_a \subset (X_a \cap H_b) \setminus Z_{ab} = Y_{ab} \setminus Z_{ab}$. So since $y \in \mathbb{Q}^n$ and has height $\leq T$, $y \in (Y_{ab} \setminus Z_{ab})(\mathbb{Q},T)$.

Hence, $\#(X_a \setminus Z_a)(\mathbb{Q}, T) \leq cT^{\frac{\epsilon}{2}}KT^{\frac{\epsilon}{2}} = CT^{\epsilon}$, where C = cK is our required constant.

k = n: For $y \in \mathbb{R}^m$, let Z_y be the set of C^1 -smooth points of X_y . Note that this is a definable family and that if $x \in Z_y$, then there is an open neighborhood in \mathbb{R}^m and thus, an infinite connected component of X_y containing x. So $Z_y \subset X_y^{alg}$. The dimension of $X_y \setminus Z_y$ is at most dim $X_y - 1$, so we may use IH on the family $X \setminus Z$ to get the result.