The Pila-Wilkie Theorem Louise Hay Logic Seminar, UIC

Victoria Noquez

October 4, 2012

Abstract

We will go over the proof of the main theorem in Pila and Wilkie's 2006 paper The Rational Points of a Definable Set.

It says that for $X \subset \mathbb{R}^{n}$ which is definable in an o-minimal expansion of $\overline{\mathbb{R}}$, there are (in a suitable sense) very few rational points of X which do not lie on some connected semialgebraic subset of X of positive dimension.

1 Definitions and Statement of the Theorem

Definition 1. For any $X \subset \mathbb{R}^{n}$, the algebraic part of $X, X^{\text {alg }}$, is the union of all infinite connected semi algebraic subsets of $X . X^{t r}=X \backslash X^{\text {alg }}$ is the transcendental part of X.

Note: By o-minimality, $X \subset \mathbb{R}$ definable, the "infinite" part of this definition matters, since if we also include the finite components (points), we would always get $X^{\text {alg }}=X$.

Recall: $X \subset \mathbb{R}^{n}$ is semi-algebraic if it is a finite boolean combination of $f\left(x_{1}, \ldots, x_{n}\right)=0$ and $g\left(x_{1}, \ldots, x_{n}\right)>0$ for $f, g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
Here are some examples:

1. If $X \subset \mathbb{R}$ is semi-algebraic, since \mathbb{R} is o-minimal and X is definable, $X=I_{1} \cup \ldots \cup I_{j} \cup$ $Y_{1} \cup Y_{2}$ where I_{1}, \ldots, I_{j} are open intervals, $Y_{1} \subset \partial\left(I_{1}\right) \cup \ldots \cup \partial\left(I_{j}\right)$, and Y_{2} is a finite set of points, disjoint from $\overline{I_{1} \cup \ldots \cup I_{j} \cup Y_{1}}$. Then $X^{a l g}=I_{1} \cup \ldots I_{j} \cup Y_{1}$.
2. If $X \subset \mathbb{R}^{n}$ is open, $X^{\text {alg }}=X$.
3. $X=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x>0, x^{y}=z\right\}$, then $X^{\text {alg }}=\left\{(x, q, z) \mid x, z \in \mathbb{R}, q \in \mathbb{Q}, x>0, x^{q}=\right.$ $z\}$. Note that this is a countably infinite union of algebraic curves.

Definition 2. For $\frac{a}{b} \in \mathbb{Q}, a, b \in \mathbb{Z}, b>0$ and $\operatorname{gcd}(a, b)=1, H\left(\frac{a}{b}\right)=\max \{|a|,|b|\}$ is the height of $\frac{a}{b}$. For $q_{1}, \ldots, q_{n} \in \mathbb{Q}, H\left(q_{1}, \ldots, q_{n}\right)=\max _{1 \leq i \leq n}\left\{H\left(q_{i}\right)\right\}$.

Definition 3. For $X \subset \mathbb{R}^{n}, X(\mathbb{Q}, T):=\left\{\bar{q} \in X \cap \mathbb{Q}^{n} \mid H(\bar{q}) \leq T\right\}$.

Previously, we were interested in finding, for $X \subset \mathbb{R}^{n}$ and $t \in \mathbb{Z}$, the number of integer points in $\left\{\left(t x_{1}, \ldots, t x_{n}\right):\left(x_{1}, \ldots, x_{n}\right) \in X\right\}$ (this was called the dilation of X by t). There were some different bounds established for when X was the graph of some $f:[0,1] \rightarrow \mathbb{R}$ (obviously $\#(t X \cap \mathbb{Z}) \leq t+1$ here) using various smoothness conditions on f.

Looking for the integer points in $t X$ is like looking for the points of the form $\frac{m}{t}$ for $m \in \mathbb{Z}$ in X, so we generalize this using this notion of height.

We're interested in establishing bounds on $\left|X^{t r}(\mathbb{Q}, T)\right|$ under natural geometric conditions on X and seeing how fast it grows as we change T with the guiding idea that transcendental sets should contain few rational points.

Recall: $\overline{\mathbb{R}}:=\langle\mathbb{R} ;+, \cdot,-, 0,1,<\rangle$. Structures like $\mathbb{R}_{\text {rexp }}=\left\langle\overline{\mathbb{R}}, \exp \upharpoonright_{(0,1)}\right\rangle$ are o-minimal expansions of $\overline{\mathbb{R}}$.

Theorem 1 (Pila-Wilkie 2006). For $X \subset \mathbb{R}^{n}$ definable in an o-minimal expansion of $\overline{\mathbb{R}}$, for any $\epsilon>0, \exists c(\epsilon)>0$ such that for all $T \geq 1, \# X^{\operatorname{tr}}(\mathbb{Q}, T) \leq c(\epsilon) T^{\epsilon}$.

Theorem 2 (Uniform Pila-Wilkie). Let $\left(X_{a}\right)_{a \in A}$ be a family of subsets of \mathbb{R}^{n} definable in an o-minimal expansion of $\overline{\mathbb{R}}$. For any $\epsilon>0$ there is another definable family $\left(Y_{a}\right)_{a \in A}$, $Y_{a} \subset X_{a}^{\text {alg }}$ and a constant $c(\epsilon)>0$ such that for all $T \geq 1$,

$$
\#\left(X_{a} \backslash Y_{a}\right)(\mathbb{Q}, T)<c(\epsilon) T^{\epsilon}
$$

$2 r$-parameterization

Let \mathcal{S} be an o-minimal expansion of a real closed field \mathcal{M}. Ultimately, we're interested in o-minimal expansions of \mathbb{R}, but these results hold for all real closed fields.

When we say definable, we mean definable in \mathcal{S}.
Definition 4. $a \in M$ is strongly bounded if there is some $c \in \mathbb{N}$ such that $|a| \leq c$. $a=$ $\left(a_{1}, \ldots, a_{n}\right) \in M^{n}$ is strongly bounded if each a_{i} is, and $A \subset M^{n}$ is strongly bounded if there is a fixed finite bound for all coordinates of all elements of A. A definable function is strongly bounded if its graph is.

Definition 5. Let $X \subset M^{n}$ be definable. A definable function $\phi:(0,1)^{l} \rightarrow X$ where $l=\operatorname{dim} X$ is called a partial parameterization of X. A finite set S of partial parameterizations of X is called a parameterization of X if $\bigcup_{\phi \in S} I m(\phi)=X$.

Definition 6. A parameterization S of a definable set $X \subset M^{n}$ is called an r-parameterization if every $\phi \in S$ is $C^{(r)}$ and $\phi^{(\alpha)}$ is strongly bounded for $\alpha \in \mathbb{N}^{\operatorname{dim} X},|\alpha| \leq r$ where $|\alpha|$ is the sum of the coordinates of α.

Theorem 3. For any $r \in \mathbb{N}$ and any strongly bounded definable set X, there exists an r-parameterization of X.

Corollary 4. Let $m, r \geq 1, X \subset(0,1)^{m}$ definable. Then there exists a finite set S of functions each mapping $(0,1)^{\operatorname{dim} X} \rightarrow X$ and of class $C^{(r)}$ such that $\bigcup_{\phi \in S} \operatorname{Im}(\phi)=X$ and $\left|\phi^{(\alpha)}(\bar{x})\right| \leq 1$ for $\phi \in S, \alpha \in \mathbb{N}^{\operatorname{dim} X},|\alpha| \leq r$ for all $\bar{x} \in(0,1)^{\operatorname{dim} X}$.

Proof. Let S^{*} be an r-parameterization of X, as given by the parameterization theorem. So everything holds, except that we have $\left|\phi^{\alpha}(\bar{x})\right| \leq c$ for some finite c (not necessarily 1). Cover $(0,1)^{\operatorname{dim} X}$ with $(2 c)^{\operatorname{dim} X}$ cubes of side $\frac{1}{c}$. For each such cube K, let $\lambda_{K}:(0,1)^{\operatorname{dim} X} \rightarrow K$ be the obvious linear bijection. $S=\left\{\phi \circ \lambda_{K} \mid \phi \in S^{*}, K\right.$ a cube $\}$ works.

Corollary 5. [Uniform Version] Let $n, m, r \geq 1$ and suppose $X \subset(0,1)^{n} \times M^{m}$ is a definable family. Then there exists $N \in \mathbb{N}$ and, for each $\bar{y} \in M^{m}$, a set $S_{\bar{y}}$ of N functions, each mapping $(0,1)^{\operatorname{dim} X_{\bar{y}}} \rightarrow X_{\bar{y}}$ and each of class $C^{(r)}$ such that
(1) $\bigcup_{\phi \in S_{\bar{y}}} \operatorname{Im}(\phi)=X_{\bar{y}}$, and
(2) $\left|\phi^{(\alpha)}(\bar{x})\right| \leq 1$ for each $\phi \in S_{\bar{y}}, \alpha \in \mathbb{N}^{\operatorname{dim} X_{\bar{y}}},|\alpha| \leq r$ for all $\bar{x} \in(0,1)^{\operatorname{dim} X_{\bar{y}}}$.

Proof. Suppose not.
Let $\Gamma_{N}(\bar{v})$ be the set of formulas saying that for each N sized set of functions satisfying (2), the union of the images of those functions is not equal to $X_{\bar{v}}$ (that is, (1) fails). Let $\Gamma=\bigcup_{N \in \mathbb{N}} \Gamma_{N}(\bar{v})$. Then, for a finite subset of Γ, there is some N such that it is contained in $\Gamma_{1} \cup \ldots \cup \Gamma_{N}$. Thus, by assumption, there must be some \bar{v} which witnesses it (or else this would be the N required for the corollary to hold). Hence, since $\Gamma(\bar{v})$ is finitely satisfiable, it is satisfiable. Let $\mathcal{N} \succeq \mathcal{M}$ be a saturated elementary extension (and thus, \mathcal{N} is a real closed field) and let $\bar{v} \in N^{m}$ witness $\Gamma(\bar{v})$. But then consider $X_{\bar{v}}$ in \mathcal{N}. By the previous corollary, there should be some N such that there is a set of N functions from $(0,1)^{\operatorname{dim} X_{\bar{v}}} \rightarrow X_{\bar{v}}$ satisfying (1) and (2). $\Rightarrow \Leftarrow$

Note that in the previous proof, it was important that we had proved the parameterization results for arbitrary real closed fields and o-minimal expansions, not just $\overline{\mathbb{R}}$.

3 Diophantine Approximation

We now restrict our attention to \mathcal{S} an o-minimal expansion of $\overline{\mathbb{R}}$. By definable we still mean definable in \mathcal{S}.

The following is a result of Bombieri and Pila. First we require a few definitions.
Definition 7. A hypersurface of degree d in \mathbb{R}^{n} is a set of the form $\left\{\bar{x} \in \mathbb{R}^{n} \mid f(\bar{x})=0\right\}$, $f \in \mathbb{R}[\bar{x}]$ non-zero, $\operatorname{deg}(f)=d$.

Definition 8. The fiber dimension of a definable family $Z \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ is the maximal dimension of a fiber of Z.

Theorem 6 (Bombieri-Pila). Let $k, n \in \mathbb{N}, k<n$. For each $d \in \mathbb{N}, d \geq 1$, there is $r=r(k, n, d)$, and positive constants $\epsilon=\epsilon(k, n, d)$ and $c=c(k, n, d)$ such that the following holds.

If $\phi:(0,1)^{k} \rightarrow \mathbb{R}^{n}$ is a function of class $C^{(r)}$ with $\left|\phi^{(\alpha)}(\bar{x})\right| \leq 1$ for $\bar{x} \in(0,1)^{k}, \alpha \in \mathbb{N}^{k}$, $|\alpha| \leq r$. Let $X=\phi\left((0,1)^{k}\right)=\operatorname{Im}(\phi)$, and let $T \geq 1$. Then $X(\mathbb{Q}, T)$ is contained in the union of at most $c T^{\epsilon}$ hypersurfaces of degree at most d. Furthermore, $\epsilon \rightarrow 0$ as $d \rightarrow \infty$.

Note that $\epsilon \rightarrow 0$ as $d \rightarrow \infty$, since as we get more complicated hypersurfaces (that is, of higher degree), we don't need as many.

4 Main Lemma

Lemma 7 (Main Lemma). Let $X \subset(0,1)^{n} \times M^{m}$ be a definable family of fiber dimension $k<n$. For ease of notation, we let $A=\pi_{2}(Z)$ and let X_{a} for $a \in A$ denote the fibers of X. Let $\epsilon>0$ be given. There exists $d=d(\epsilon, k, n) \in \mathbb{N}$ and $K=K(X, \epsilon)>0$ such that for any $a \in A, T \geq 1, X_{a}(\mathbb{Q}, T)$ is contained in the union of at most $K T^{\epsilon}$ hypersurfaces of degree d.

Proof. Let $\epsilon>0$ be given. Choose d from the previous theorem such that $\epsilon(k, n, d) \leq \epsilon$ and set $r=r(k, n, d)$ from the previous theorem. By Corollary ??, there exists N such that for every $a \in A$, there is an r-parameterization of X_{a}, call it S_{a}, of at most N maps $\phi(0,1)^{k} \rightarrow \mathbb{R}^{n}$ of class $C^{(r)}$ with $\left|\phi^{(\alpha)}(\bar{x})\right| \leq 1$ for $\alpha \in \mathbb{N}^{k},|\alpha| \leq r$. So for each $\phi \in S_{a}$, by the previous proposition, $\operatorname{Im}(\phi)(\mathbb{Q}, T)$ is contained in at most $c(k, n, d) T^{\epsilon(k, n, d)}$ hypersurfaces of degree at most d. So let $K=N \cdot c$. Hence, since $\epsilon(k, n, d)<\epsilon, X_{a}(\mathbb{Q}, T)$ is contained in at most $K T^{\epsilon}$ hypersurfaces of degree at most d.

5 Proof of the Theorem

Note that rational points of height at most T are stable under maps of the form $x \mapsto \pm x^{ \pm 1}$, since $H\left(\frac{a}{b}\right)=\max (|a|,|b|)=H\left(-\frac{a}{b}\right)=H\left(\frac{b}{a}\right)$. These maps also preserve $X^{\text {alg }}$, so we may assume $X \subset[0,1]^{n} \times \mathbb{R}^{m}$.

Lemma 8. If the theorem holds for definable families of the form $X \subset(0,1)^{n} \times \mathbb{R}^{m}$, then it holds for definable families of the form $X \subset[0,1]^{n} \times \mathbb{R}^{m}$.

Proof. Let $X \subset[0,1]^{n} \times \mathbb{R}^{m}$ be definable. Let $\epsilon>0$ be given.
For $\alpha \varsubsetneqq\{1, \ldots, n\}$, and $\gamma \in\{0,1\}^{|\alpha|}$, let $X_{a, \alpha, \gamma}$ be X_{a} intersected with the set of n-tuples with γ in the positions specified by α, and elements of $(0,1)$ in the other positions.

For example, if $n=5, \alpha=\{2,4,5\}, \gamma=(0,0,1)$, then if X_{a} is just $[0,1]^{5}$ for some a, an element of $X_{a, \alpha, \gamma}$ could be something like $\left(\frac{1}{2}, 0, \frac{1}{4}, 0,1\right)$.

$$
\text { So } X_{a}=\bigcup_{\substack{\propto\{\{1, \ldots, n\}}}\left(\bigcup_{\gamma \in\{0,1\}^{|a|}} X_{a, \alpha, \gamma}\right) \cup\left(X_{a} \cap(\{0,1\})^{n}\right) \text {. }
$$

For each $\alpha \varsubsetneqq\{1, \ldots, n\}$ and $\gamma \in\{0,1\}^{|\alpha|}$, consider the family $X_{\alpha, \gamma}$ where $\left(X_{\alpha, \gamma}\right)_{a}=$ $X_{a, \alpha, \gamma}$. We can view this as a definable family in $(0,1)^{n-|\alpha|} \times \mathbb{R}^{m}$, so by assumption, there is a definable family $Y_{\alpha, \gamma}$ with $Y_{a, \alpha, \gamma} \subset X_{a, \alpha, \gamma}^{\text {alg }}$ and $c_{\alpha, \gamma}$ such that for all T, $\#\left(X_{a, \alpha, \gamma} \backslash\right.$ $\left.Y_{a, \alpha, \gamma}\right)(\mathbb{Q}, T) \leq c_{\alpha, \gamma} T^{\epsilon}$. Note that when we are talking about the heights here, we are talking about the heights of the coordinates not equal to 0 or 1 . But by including these coordinates, we do not change whether or not the tuple is counted: If the original coordinates were not rational, the new tuple is not either. If it is, then since $T \geq 1$, including 0 's and 1 's will not change whether or not the tuple's height is $\leq T$.

So, let $C=\sum_{\alpha \nsubseteq\{1, \ldots, n\}} \sum_{\gamma \in\{0,1\}^{|\alpha|}} c_{\alpha, \gamma}+2^{n}$.
Let $Y_{a}=\bigcup_{\alpha \nsubseteq\{1, \ldots, n\}}\left(\bigcup_{\gamma \in\{0,1\}|\alpha|} Y_{a, \alpha, \gamma}\right)$. This is definable, and $Y_{a} \subset X_{a}^{\text {alg }}$, since of $x \in Y_{a}, x$ is in an infinite connected component of $X_{a, \alpha, \gamma} \subset X_{a}$. Thus, for $a \in A,\left(X_{a} \backslash Y_{a}\right)(\mathbb{Q}, T) \subset$
$\bigcup_{\alpha \nsubseteq\{1, \ldots, n\}}\left(\bigcup_{\gamma \in\{0,1\}|\alpha|}\left(X_{a, \alpha, \gamma} \backslash Y_{a, \alpha, \gamma}\right)(\mathbb{Q}, T)\right) \cup\left(X_{a} \cap(\{0,1\})^{n}\right)$, and thus $\#\left(X_{a} \backslash Y_{a}\right)(\mathbb{Q}, T) \leq$ $\sum_{\alpha \nsubseteq\{1, \ldots, n\}} \sum_{\gamma \in\{0,1\}^{|\alpha|}} c_{\alpha, \gamma} T^{\epsilon}+2^{n}<C T^{\epsilon}$, as required.

So we may assume $X \subset(0,1)^{n} \times \mathbb{R}^{m}$ is definable in some o-minimal expansion of $\overline{\mathbb{R}}$. As before, let $A=\pi_{2}(X)$, and let $X_{a} \subset(0,1)^{n}$ denote the fibers in X for $a \in A$.

Let $k=\max _{a \in A} \operatorname{dim} X_{a}$. We proceed by induction on k. Let $\epsilon>0$ be given.
$k=0$: Then X_{a} is finite by o-minimality, so by uniform bounding, there is N such that $\left|X_{a}\right|<N$ for all $a \in A$. Let $Y_{a}=\emptyset$, so $Y_{a} \subset X_{a}^{a l g}$ for all $a \in A$. Let $c(\epsilon)=N$. Then, for any $T \geq 1, \#\left(X_{a} \backslash Y_{a}\right)(\mathbb{Q}, T) \leq\left|X_{a}\right| \leq N \leq c(\epsilon) T^{\epsilon}$.
$0<k<n$: Let $d\left(\frac{\epsilon}{2}\right)$ be as in the Main Lemma. Let j be the number of coefficients of a polynomial of degree $\leq d$ in n variables, so each $b \in \mathbb{R}^{j}$ corresponds to exactly one such polynomial, and thus, one hypersurface of degree $\leq d$, call it H_{b}. Consider the family $Y \subset(0,1)^{n} \times\left(\mathbb{R}^{m} \times \mathbb{R}^{j}\right)$ where $Y_{a b}=X_{a} \cap H_{b}$. This is also definable. Since H_{b} is a hypersurface, $\operatorname{dim} Y_{a b}<\operatorname{dim} X_{a} \leq k$ for all a, b. So by IH, there is a definable family $Z \subset(0,1)^{n} \times\left(\mathbb{R}^{m} \times \mathbb{R}^{j}\right)$ with $Z_{a b} \subset Y_{a b}^{a l g}$ such that $\#\left(Y_{a b} \backslash Z_{a b}\right)(\mathbb{Q}, T)<c^{\prime} T^{\frac{\epsilon}{2}}$ for all $T \geq 1$ (for some $c^{\prime}>0$ depending on $\frac{\epsilon}{2}$).

Let $Z_{a}=\bigcup_{b \in \mathbb{R}^{j}} Z_{a b}$. Note that this is still definable since if $\Phi(x, a, b)$ defines $Z, x \in Z_{a} \Leftrightarrow$ $\exists b \Phi(x, a, b) . \quad Z_{a} \subset \bigcup_{b \in \mathbb{R}^{j}} Y_{a b}^{a l g} \subset \bigcup_{b \in \mathbb{R}^{j}}\left(X_{a} \cap H_{b}\right)^{a l g} \subset X_{a}^{a l g}$, since if x is in an infinite connected componenet of $X_{a} \cap H_{b}$ for some hypersurface H_{b}, this is contained in an infinite connected component of X_{a}.

Let $K=K\left(\frac{\epsilon}{2}, X\right)$ be from the Main Lemma. So $\forall a \in A, X_{a}(\mathbb{Q}, T)$ is contained in $K T^{\frac{\epsilon}{2}}$ many hypersurfaces of degree $\leq d$, and since it is a subset of this, $\left(X_{a} \backslash Z_{a}\right)(\mathbb{Q}, T)$ is.

Let $B^{\prime} \subset \mathbb{R}^{j}$ be such that $\left|B^{\prime}\right| \leq K T^{\frac{\epsilon}{2}}$ and $X_{a}(\mathbb{Q}, T)$ is contained $\bigcup_{b \in B^{\prime}} H_{b}$. Let $y \in$ $\left(X_{a} \backslash Z_{a}\right)(\mathbb{Q}, T)$ and let $b \in B^{\prime}$ be such that $y \in H_{b}$. So $y \in\left(X_{a} \cap H_{b}\right) \backslash Z_{a} \subset\left(X_{a} \cap H_{b}\right) \backslash Z_{a b}=$ $Y_{a b} \backslash Z_{a b}$. So since $y \in \mathbb{Q}^{n}$ and has height $\leq T, y \in\left(Y_{a b} \backslash Z_{a b}\right)(\mathbb{Q}, T)$.

Hence, $\#\left(X_{a} \backslash Z_{a}\right)(\mathbb{Q}, T) \leq c T^{\frac{\epsilon}{2}} K T^{\frac{\epsilon}{2}}=C T^{\epsilon}$, where $C=c K$ is our required constant. $k=n$: For $y \in \mathbb{R}^{m}$, let Z_{y} be the set of C^{1}-smooth points of X_{y}. Note that this is a definable family and that if $x \in Z_{y}$, then there is an open neighborhood in \mathbb{R}^{m} and thus, an infinite connected component of X_{y} containing x. So $Z_{y} \subset X_{y}^{a l g}$. The dimension of $X_{y} \backslash Z_{y}$ is at most $\operatorname{dim} X_{y}-1$, so we may use IH on the family $X \backslash Z$ to get the result.

