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Abstract

We will go over the proof of the main theorem in Pila and Wilkie’s 2006 paper The Rational
Points of a Definable Set.

It says that for X ⊂ Rn which is definable in an o-minimal expansion of R, there are (in a
suitable sense) very few rational points of X which do not lie on some connected semialgebraic
subset of X of positive dimension.

1 Definitions and Statement of the Theorem

Definition 1. For any X ⊂ Rn, the algebraic part of X, Xalg, is the union of all infinite
connected semi algebraic subsets of X. X tr = X \Xalg is the transcendental part of X.

Note: By o-minimality, X ⊂ R definable, the “infinite” part of this definition matters,
since if we also include the finite components (points), we would always get Xalg = X.

Recall: X ⊂ Rn is semi-algebraic if it is a finite boolean combination of f(x1, . . . , xn) = 0
and g(x1, . . . , xn) > 0 for f, g ∈ R[x1, . . . , xn].
Here are some examples:

1. If X ⊂ R is semi-algebraic, since R is o-minimal and X is definable, X = I1∪ . . .∪ Ij ∪
Y1 ∪ Y2 where I1, . . . , Ij are open intervals, Y1 ⊂ ∂(I1) ∪ . . . ∪ ∂(Ij), and Y2 is a finite
set of points, disjoint from I1 ∪ . . . ∪ Ij ∪ Y1. Then Xalg = I1 ∪ . . . Ij ∪ Y1.

2. If X ⊂ Rn is open, Xalg = X.

3. X = {(x, y, z) ∈ R3|x > 0, xy = z}, then Xalg = {(x, q, z)|x, z ∈ R, q ∈ Q, x > 0, xq =
z}. Note that this is a countably infinite union of algebraic curves.

Definition 2. For a
b
∈ Q, a, b ∈ Z, b > 0 and gcd(a, b) = 1, H(a

b
) = max{|a|, |b|} is the

height of a
b
. For q1, . . . , qn ∈ Q, H(q1, . . . , qn) = max

1≤i≤n
{H(qi)}.

Definition 3. For X ⊂ Rn, X(Q, T ) := {q ∈ X ∩Qn|H(q) ≤ T}.
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Previously, we were interested in finding, for X ⊂ Rn and t ∈ Z, the number of integer
points in {(tx1, . . . , txn) : (x1, . . . , xn) ∈ X} (this was called the dilation of X by t). There
were some different bounds established for when X was the graph of some f : [0, 1] → R
(obviously #(tX ∩ Z) ≤ t+ 1 here) using various smoothness conditions on f .

Looking for the integer points in tX is like looking for the points of the form m
t

for m ∈ Z
in X, so we generalize this using this notion of height.

We’re interested in establishing bounds on |X tr(Q, T )| under natural geometric conditions
on X and seeing how fast it grows as we change T with the guiding idea that transcendental
sets should contain few rational points.

Recall: R := 〈R; +, ·,−, 0, 1, <〉. Structures like Rrexp = 〈R, exp �(0,1)〉 are o-minimal

expansions of R.

Theorem 1 (Pila-Wilkie 2006). For X ⊂ Rn definable in an o-minimal expansion of R, for
any ε > 0, ∃c(ε) > 0 such that for all T ≥ 1, #X tr(Q, T ) ≤ c(ε)T ε.

Theorem 2 (Uniform Pila-Wilkie). Let (Xa)a∈A be a family of subsets of Rn definable in
an o-minimal expansion of R. For any ε > 0 there is another definable family (Ya)a∈A,
Ya ⊂ Xalg

a and a constant c(ε) > 0 such that for all T ≥ 1,

#(Xa \ Ya)(Q, T ) < c(ε)T ε.

2 r-parameterization

Let S be an o-minimal expansion of a real closed field M. Ultimately, we’re interested in
o-minimal expansions of R, but these results hold for all real closed fields.

When we say definable, we mean definable in S.

Definition 4. a ∈ M is strongly bounded if there is some c ∈ N such that |a| ≤ c. a =
(a1, . . . , an) ∈Mn is strongly bounded if each ai is, and A ⊂Mn is strongly bounded if there
is a fixed finite bound for all coordinates of all elements of A. A definable function is strongly
bounded if its graph is.

Definition 5. Let X ⊂ Mn be definable. A definable function φ : (0, 1)l → X where
l = dimX is called a partial parameterization ofX. A finite set S of partial parameterizations

of X is called a parameterization of X if
⋃
φ∈S

Im(φ) = X.

Definition 6. A parameterization S of a definable setX ⊂Mn is called an r-parameterization
if every φ ∈ S is C(r) and φ(α) is strongly bounded for α ∈ NdimX , |α| ≤ r where |α| is the
sum of the coordinates of α.

Theorem 3. For any r ∈ N and any strongly bounded definable set X, there exists an
r-parameterization of X.

Corollary 4. Let m, r ≥ 1, X ⊂ (0, 1)m definable. Then there exists a finite set S of

functions each mapping (0, 1)dimX → X and of class C(r) such that
⋃
φ∈S

Im(φ) = X and

|φ(α)(x)| ≤ 1 for φ ∈ S, α ∈ NdimX , |α| ≤ r for all x ∈ (0, 1)dimX .
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Proof. Let S∗ be an r-parameterization of X, as given by the parameterization theorem. So
everything holds, except that we have |φα(x)| ≤ c for some finite c (not necessarily 1). Cover
(0, 1)dimX with (2c)dimX cubes of side 1

c
. For each such cube K, let λK : (0, 1)dimX → K be

the obvious linear bijection. S = {φ ◦ λK |φ ∈ S∗, K a cube} works.

Corollary 5. [Uniform Version] Let n,m, r ≥ 1 and suppose X ⊂ (0, 1)n×Mm is a definable
family. Then there exists N ∈ N and, for each y ∈ Mm, a set Sy of N functions, each
mapping (0, 1)dimXy → Xy and each of class C(r) such that

(1)
⋃
φ∈Sy

Im(φ) = Xy, and

(2) |φ(α)(x)| ≤ 1 for each φ ∈ Sy, α ∈ NdimXy , |α| ≤ r for all x ∈ (0, 1)dimXy .

Proof. Suppose not.
Let ΓN(v) be the set of formulas saying that for each N sized set of functions satisfying

(2), the union of the images of those functions is not equal to Xv (that is, (1) fails). Let

Γ =
⋃
N∈N

ΓN(v). Then, for a finite subset of Γ, there is some N such that it is contained in

Γ1 ∪ . . . ∪ ΓN . Thus, by assumption, there must be some v which witnesses it (or else this
would be the N required for the corollary to hold). Hence, since Γ(v) is finitely satisfiable, it
is satisfiable. Let N �M be a saturated elementary extension (and thus, N is a real closed
field) and let v ∈ Nm witness Γ(v). But then consider Xv in N . By the previous corollary,
there should be some N such that there is a set of N functions from (0, 1)dimXv → Xv

satisfying (1) and (2). ⇒⇐

Note that in the previous proof, it was important that we had proved the parameterization
results for arbitrary real closed fields and o-minimal expansions, not just R.

3 Diophantine Approximation

We now restrict our attention to S an o-minimal expansion of R. By definable we still mean
definable in S.

The following is a result of Bombieri and Pila. First we require a few definitions.

Definition 7. A hypersurface of degree d in Rn is a set of the form {x ∈ Rn|f(x) = 0},
f ∈ R[x] non-zero, deg(f) = d.

Definition 8. The fiber dimension of a definable family Z ⊂ Rn × Rm is the maximal
dimension of a fiber of Z.

Theorem 6 (Bombieri-Pila). Let k, n ∈ N, k < n. For each d ∈ N, d ≥ 1, there is
r = r(k, n, d), and positive constants ε = ε(k, n, d) and c = c(k, n, d) such that the following
holds.

If φ : (0, 1)k → Rn is a function of class C(r) with |φ(α)(x)| ≤ 1 for x ∈ (0, 1)k, α ∈ Nk,
|α| ≤ r. Let X = φ((0, 1)k) = Im(φ), and let T ≥ 1. Then X(Q, T ) is contained in the
union of at most cT ε hypersurfaces of degree at most d. Furthermore, ε→ 0 as d→∞.

Note that ε → 0 as d → ∞, since as we get more complicated hypersurfaces (that is, of
higher degree), we don’t need as many.
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4 Main Lemma

Lemma 7 (Main Lemma). Let X ⊂ (0, 1)n ×Mm be a definable family of fiber dimension
k < n. For ease of notation, we let A = π2(Z) and let Xa for a ∈ A denote the fibers of X.
Let ε > 0 be given. There exists d = d(ε, k, n) ∈ N and K = K(X, ε) > 0 such that for any
a ∈ A, T ≥ 1, Xa(Q, T ) is contained in the union of at most KT ε hypersurfaces of degree d.

Proof. Let ε > 0 be given. Choose d from the previous theorem such that ε(k, n, d) ≤ ε
and set r = r(k, n, d) from the previous theorem. By Corollary ??, there exists N such
that for every a ∈ A, there is an r-parameterization of Xa, call it Sa, of at most N maps
φ(0, 1)k → Rn of class C(r) with |φ(α)(x)| ≤ 1 for α ∈ Nk, |α| ≤ r. So for each φ ∈ Sa, by the
previous proposition, Im(φ)(Q, T ) is contained in at most c(k, n, d)T ε(k,n,d) hypersurfaces of
degree at most d. So let K = N · c. Hence, since ε(k, n, d) < ε, Xa(Q, T ) is contained in at
most KT ε hypersurfaces of degree at most d.

5 Proof of the Theorem

Note that rational points of height at most T are stable under maps of the form x 7→ ±x±1,
since H(a

b
) = max(|a|, |b|) = H(−a

b
) = H( b

a
). These maps also preserve Xalg, so we may

assume X ⊂ [0, 1]n × Rm.

Lemma 8. If the theorem holds for definable families of the form X ⊂ (0, 1)n×Rm, then it
holds for definable families of the form X ⊂ [0, 1]n × Rm.

Proof. Let X ⊂ [0, 1]n × Rm be definable. Let ε > 0 be given.
For α $ {1, . . . , n}, and γ ∈ {0, 1}|α|, let Xa,α,γ be Xa intersected with the set of n-tuples

with γ in the positions specified by α, and elements of (0, 1) in the other positions.
For example, if n = 5, α = {2, 4, 5}, γ = (0, 0, 1), then if Xa is just [0, 1]5 for some a, an

element of Xa,α,γ could be something like (1
2
, 0, 1

4
, 0, 1).

So Xa =
⋃

α${1,...,n}

(
⋃

γ∈{0,1}|α|
Xa,α,γ) ∪ (Xa ∩ ({0, 1})n).

For each α $ {1, . . . , n} and γ ∈ {0, 1}|α|, consider the family Xα,γ where (Xα,γ)a =
Xa,α,γ. We can view this as a definable family in (0, 1)n−|α| × Rm, so by assumption, there
is a definable family Yα,γ with Ya,α,γ ⊂ Xalg

a,α,γ and cα,γ such that for all T , #(Xa,α,γ \
Ya,α,γ)(Q, T ) ≤ cα,γT

ε. Note that when we are talking about the heights here, we are talking
about the heights of the coordinates not equal to 0 or 1. But by including these coordinates,
we do not change whether or not the tuple is counted: If the original coordinates were not
rational, the new tuple is not either. If it is, then since T ≥ 1, including 0’s and 1’s will not
change whether or not the tuple’s height is ≤ T .

So, let C =
∑

α${1,...,n}

∑
γ∈{0,1}|α|

cα,γ + 2n.

Let Ya =
⋃

α${1,...,n}

(
⋃

γ∈{0,1}|α|
Ya,α,γ). This is definable, and Ya ⊂ Xalg

a , since of x ∈ Ya, x

is in an infinite connected component of Xa,α,γ ⊂ Xa. Thus, for a ∈ A, (Xa \ Ya)(Q, T ) ⊂
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⋃
α${1,...,n}

(
⋃

γ∈{0,1}|α|
(Xa,α,γ \ Ya,α,γ)(Q, T )) ∪ (Xa ∩ ({0, 1})n), and thus #(Xa \ Ya)(Q, T ) ≤∑

α${1,...,n}

∑
γ∈{0,1}|α|

cα,γT
ε + 2n < CT ε, as required.

So we may assume X ⊂ (0, 1)n × Rm is definable in some o-minimal expansion of R. As
before, let A = π2(X), and let Xa ⊂ (0, 1)n denote the fibers in X for a ∈ A.

Let k = max
a∈A

dimXa. We proceed by induction on k. Let ε > 0 be given.

k = 0: Then Xa is finite by o-minimality, so by uniform bounding, there is N such that
|Xa| < N for all a ∈ A. Let Ya = ∅, so Ya ⊂ Xalg

a for all a ∈ A. Let c(ε) = N . Then, for any
T ≥ 1, #(Xa \ Ya)(Q, T ) ≤ |Xa| ≤ N ≤ c(ε)T ε.
0 < k < n: Let d( ε

2
) be as in the Main Lemma. Let j be the number of coefficients of a

polynomial of degree ≤ d in n variables, so each b ∈ Rj corresponds to exactly one such
polynomial, and thus, one hypersurface of degree ≤ d, call it Hb. Consider the family
Y ⊂ (0, 1)n × (Rm × Rj) where Yab = Xa ∩ Hb. This is also definable. Since Hb is a
hypersurface, dimYab < dimXa ≤ k for all a, b. So by IH, there is a definable family
Z ⊂ (0, 1)n × (Rm × Rj) with Zab ⊂ Y alg

ab such that #(Yab \ Zab)(Q, T ) < c′T
ε
2 for all T ≥ 1

(for some c′ > 0 depending on ε
2
).

Let Za =
⋃
b∈Rj

Zab. Note that this is still definable since if Φ(x, a, b) defines Z, x ∈ Za ⇔

∃bΦ(x, a, b). Za ⊂
⋃
b∈Rj

Y alg
ab ⊂

⋃
b∈Rj

(Xa ∩Hb)
alg ⊂ Xalg

a , since if x is in an infinite connected

componenet of Xa ∩Hb for some hypersurface Hb, this is contained in an infinite connected
component of Xa.

Let K = K( ε
2
, X) be from the Main Lemma. So ∀a ∈ A, Xa(Q, T ) is contained in KT

ε
2

many hypersurfaces of degree ≤ d, and since it is a subset of this, (Xa \ Za)(Q, T ) is.

Let B′ ⊂ Rj be such that |B′| ≤ KT
ε
2 and Xa(Q, T ) is contained

⋃
b∈B′

Hb. Let y ∈

(Xa\Za)(Q, T ) and let b ∈ B′ be such that y ∈ Hb. So y ∈ (Xa∩Hb)\Za ⊂ (Xa∩Hb)\Zab =
Yab \ Zab. So since y ∈ Qn and has height ≤ T , y ∈ (Yab \ Zab)(Q, T ).

Hence, #(Xa \ Za)(Q, T ) ≤ cT
ε
2KT

ε
2 = CT ε, where C = cK is our required constant.

k = n: For y ∈ Rm, let Zy be the set of C1-smooth points of Xy. Note that this is a definable
family and that if x ∈ Zy, then there is an open neighborhood in Rm and thus, an infinite
connected component of Xy containing x. So Zy ⊂ Xalg

y . The dimension of Xy \ Zy is at
most dimXy − 1, so we may use IH on the family X \ Z to get the result.
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