Proof Theory Project

Victoria Noquez

March 18, 2011

1 PRA^{ω}

To define PRA^{ω} , we start with a many sorted version of first-order predicate logic with a sort for each finite type, and an equality relation = at type N only. Finite types are defined inductively as follows: N is a type, denoting the natural numbers in the intended interpretation. For types σ and τ , $\sigma \times \tau$ and $\sigma \to \tau$ are types denoting the cross product of σ and τ and the set of functions from σ to τ respectively. We use $\sigma, \tau \to \rho$ to abbreviate $\sigma \to (\tau \to \rho)$.

We have variables for all finite types and the following constants:

- 0 of type N
- S of type $N \to N$
- For types σ, τ , a constant of type $\sigma, \tau \to \sigma \times \tau$ for paring, $\langle x, y \rangle$
- For types σ, τ constants of type $\sigma \times \tau \to \sigma$ and $\sigma \times \tau \to \tau$ for the projections $(z)_0$ and $(z)_1$
- R of type $N, (N, N \to N), N \to N$
- For each type σ , $Cond_{\sigma}$ of type $N, \sigma, \sigma \to \sigma$.

The set of lambda terms is closed under lambda abstraction, denoted λxt , and application, denoted t(s). If t and s are terms and x is a variable of the appropriate type, then t[s/x] denotes the result of substituting s for x in t, renaming bound variables if necessary.

1.1 Axioms of PRA^{ω}

For r[z] a term of type N, z a variale of appropriate type, s and t terms and x a variable,

$$r[(\lambda x.t)(s)] = r[t[s/x]]$$

For x, y terms of types σ, τ respectively,

$$r[(\langle x, y \rangle)_0] = r[x]$$
$$r[(\langle x, y \rangle)_1] = r[y]$$

For x, y of type N,

$$\neg S(x) = 0$$
$$S(x) = S(y) \rightarrow x = y$$

For a, x of type N and f of type $N, N \to N$,

$$R(a, f, 0) = a$$

$$R(a, f, S(x)) = f(x, R(a, f, x))$$

For r[z] a term of type N and z of type σ , n of type N, and x, y of type σ

$$r[Cond_{\sigma}(0, x, y)] = r[x]$$
$$r[Cond(S(n), x, y)] = r[y]$$

For $\phi \Sigma_1$, and induction scheme equivalent to

$$\forall x(\phi(0) \land \forall y < x(\phi(y) \to \phi(y+1)) \to \phi(x))$$

Note that since we have projections and successor, with the axioms for R we can define all primitive recursive functions, and thus, by identifying relations with their characteristic functions, we can use primitive recursion to define the relation x < y. For y of type N, we use y + 1 to abbreviate S(y).

We will use the following in our proof of the main theorem:

Lemma 1. Over PRA^{ω} , Σ_1 -induction is equivalent to the following principle:

$$\exists z \forall y (f(y) \le z) \to \exists x \forall y (f(y) \le f(x)) \tag{1}$$

which says that every bounded function on N has a least upper bounded, and it attains it.

Proof. Note that for a Σ_1 formula $\phi(x)$, Σ_1 -induction is equivalent to

$$\forall x(\phi(0) \land \forall k < x(\phi(k) \to \phi(k+1)) \to \phi(x)).$$

The contrapositive of (1) is

$$\forall x \exists y (f(y) > f(x)) \to \forall z \exists y (f(y) > z).$$

⇒: Suppose $\forall x \exists y(f(y) > f(x))$. Let $\phi(z)$ be $\exists y f(y) > z$. Let z be given. $\phi(0) \equiv \exists y(f(y) > 0)$ holds since $\exists y(f(y) > f(0))$ by assumption and $f(0) \ge 0$. Let $k \le z$ and assume $\exists y(f(y) > k)$. By assumption there exists y_2 such that $f(y_2) > f(y)$, so since $f(y_2) > f(y) > k$, $f(y_2) > k + 1$, so $\exists y(f(y) > k + 1)$, so $\phi(k + 1)$.

Hence, by Σ_1 -induction, since $\forall z \phi(z) \equiv \forall z \exists y f(y) > z$, the claim holds.

 $\Leftarrow: \text{ Let } \phi(u,v) \text{ be a } \Delta_0 \text{ formula satisfying } \exists v \phi(0,v) \land \forall u (\exists v \phi(u,v) \to \exists v \phi(u+1,v)).$ Define f(x) to be the greatest $w \leq x$ such that $\forall u < w \exists v \leq x \phi(u,v).$

Claim 1. $\forall x \exists y (f(y) > f(x)).$

Proof of claim: Let x be given. If f(x) = 0, let y be given (by assupption) such that $\phi(0, y)$. Then $f(y+1) \ge 1$ since $(\exists v \le y+1)\phi(0, v)$. So $\forall u < 1$, $(\exists v \le y+1)\phi(u, v)$ holds.

If f(x) = w > 0, then $\forall u < w \exists v \leq x \phi(u, v)$. Let w = s + 1. Then $\forall u \leq s \exists v \leq x \phi(u, v)$. Let $u \leq s$. $\exists v \leq x \phi(u, v)$, so by assumption, $\exists v_u \phi(u+1, v_u)$. Let v_z be such that $\phi(0, v_z)$ and let $y = \max\{v_u | u \leq s\} \cup \{v_z, x\}$. Then f(y) > w = s + 1, since $(\forall u \leq s + 1)(\exists v \leq y)\phi(u, v)$. \Box (Claim)

So by assumption, $\forall z \exists y (f(y) > z)$, that is, for all z, there is y such that the greatest w such that $\forall u < w \exists v \leq y \phi(u, v)$ is greater than z.

Let x be given. Then there is y such that $(\forall u < x + 1)(\exists v \leq y)\phi(u, v)$, so for x, there is some v such that $\phi(x, v)$. So $\exists v\phi(x, v)$.

2 $NPRA^{\omega}$

Now we look at a nonstandard version of PRA^{ω} , which we will call $NPRA^{\omega}$.

We start by adding a relation symbol st(t) ranging over N, and a new constant ω of type N.

We use $\forall^{st} x \phi$ and $\exists^{st} x \phi$ to abbreviate $\forall x(st(x) \to \phi)$ and $\exists x(st(x) \to \phi)$ respectively. A formula ϕ is said to be internal if it does not involve st, and external otherwise.

2.1 Axioms of $NPRA^{\omega}$

We add to the axioms of PRA^{ω} the following:

 $\neg st(\omega)$

For x, y of type N,

$$st(x) \land y < x \to st(y)$$

For x_1, \ldots, x_k of type N and f of type $N, \ldots, N \to N$,

$$st(x_1) \land \ldots st(x_k) \to st(f(x_1, \ldots, x_k))$$

For $\psi(\vec{x})$ quantifier-free, internal and not involving ω , with only the free variables shown

$$\forall^{st} \vec{x} \psi(\vec{x}) \to \forall \vec{x} \psi(\vec{x})$$

3 Proving the Theorem

The interpretation and lemmas of this section will be used to prove the following theorem

Theorem 2. Suppose $NPRA^{\omega}$ proves $\forall^{st}x \exists y\phi(x,y)$, where ϕ is quantifier-free in the language of PRA^{ω} with the free variables shown. Then $PRA^{\omega} + \Sigma_1$ -induction proves $\forall x \exists y\phi(x,y)$.

The interpretation of $NPRA^{\omega}$ in PRA^{ω} uses a forcing argument, described entirely in the language of PRA^{ω} . Let L denote the language of PRA^{ω} and L^{st} denote the language of $NPRA^{\omega}$.

First, we need to translate terms of L^{st} to terms of L. Let ω be a type N variable in L corresponding to the constnat ω in L^{st} . For each variable x of type σ in L^{st} , let \tilde{x} of type $N \to \sigma$ in L. Finally, if $t[x_1, \ldots, x_n]$ is a term of L^{st} with free variables shown, let \hat{t} denote the term $t[\tilde{x}_1(\omega), \ldots, \tilde{x}_k(\omega)]$ of L where the constant ω of L^{st} is also replaced by the corresponding variable of L.

For a unary predicate p on N in L, define $Cond(p) \equiv \forall z \exists w \geq zp(w)$. For a predicates q and a condition p, let $q \leq p$ be defined by $\forall u(q(u) \rightarrow p(u)) \land Cond(q)$.

Now for a predicate p and a formula ϕ of L^{st} , we define the forcing relation $p \Vdash \phi$ as follows:

- $p \Vdash t_1 = t_2 \equiv \exists z \forall w \ge z(p(w) \to \hat{t_1} = \hat{t_2})$
- $p \Vdash t_1 < t_2 \equiv \exists z \forall w \ge z(p(w) \to \hat{t_1} < \hat{t_2})$
- $p \Vdash st(t) \equiv \exists z \forall w \ge z(p(w) \to \hat{t} < z)$
- $p \Vdash \phi \to \psi \equiv \forall q \preceq p(q \Vdash \phi \to q \Vdash \psi)$
- $p \Vdash \phi \Vdash \phi \land \psi \equiv (p \Vdash \phi) \land (p \Vdash \psi)$
- $p \Vdash \forall x \phi \equiv \forall \tilde{x} (p \Vdash \phi)$

Lemma 3. For a predicate p, $Cond(p) \Leftrightarrow p \nvDash \bot$.

Proof. $p \Vdash \bot$ $\Leftrightarrow \exists z \forall w \ge z(p(w) \to \bot)$ $\Leftrightarrow \exists z \forall w \ge z(\neg p(w))$ $\Leftrightarrow \neg \forall z \exists w \ge z(p(w))$ $\Leftrightarrow \neg Cond(p)$

Let $\Vdash \phi$ denote $\forall p(Cond(p) \rightarrow p \Vdash \phi)$.

Lemma 4. Suppose t and s are terms of L^{st} , r[z] is a type N term of PRA^{ω} , and z has the same type as t. Then PRA^{ω} proves

$$r[\widehat{t}[\lambda\omega\widehat{s}/\widetilde{x}]] = r[\widehat{t[s/x]}].$$

Proof. The proof is by induction on terms. If t = x, then $r[\hat{t}[\lambda \omega \hat{s}/\tilde{x}]]$

 $= r[\widehat{x}[\lambda\omega\widehat{s}/\widetilde{x}]]$ $= r[\widetilde{x}(\omega)[\lambda\omega\widehat{s}/\widetilde{x}]] \text{ by the definition of }^{}$ $= r[\lambda\omega\widehat{s}(\omega)]$ $= r[\widehat{s}]$ $= r[\widehat{x[s/x]}]$ $= r[\widehat{t[s/x]}]$ If t = y is a variable or constant other than x, then $r[\widehat{t}[\lambda\omega\widehat{s}/\widetilde{x}]]$ $= r[\widehat{y}[\lambda\omega\widehat{s}/\widetilde{x}]]$

 $= r[\hat{y}]$ since \tilde{x} does not appear in \hat{y}

$$= r[\widehat{y[s/x]}].$$
If $t = f(t_1, \dots, t_n)$ where f, t_1, \dots, t_n are terms for which the claim holds, then
$$r[\widehat{t}[\lambda \omega \widehat{s}/\widetilde{x}]]$$

$$= r[f(\widehat{t_1}, \dots, \widehat{t_n})[\lambda \omega \widehat{s}/\widetilde{x}]]$$

$$= r[\widehat{f}(\widehat{t_1}, \dots, \widehat{t_n})[\lambda \omega \widehat{s}/\widetilde{x}]]$$

$$= r[\widehat{f}[\lambda \omega \widehat{s}/\widetilde{x}](\widehat{t_1}[\lambda \omega \widehat{s}/\widetilde{x}], \dots, \widehat{t_n}[\lambda \omega \widehat{s}/\widetilde{x}])]$$

$$= r[\widehat{f[s/x]}(\widehat{t_1[s/x]}, \dots, \widehat{t_n[s/x]})]$$
 by induction
$$= r[f(\widehat{t_1}, \dots, \widehat{t_n})[s/x]]$$

$$= r[\widehat{t[s/x]}].$$

Lemma 5 (Substitution). For each formula ϕ and terms s in the language L^{st} , PRA^{ω} proves $p \Vdash \phi[s/x] \leftrightarrow (p \Vdash \phi)[\lambda \omega \hat{s}/\tilde{x}]$.

$$\begin{array}{l} Proof. \mbox{ By induction on formula.s Suppose ϕ is $t_1 = t_2$ for some terms t_1, t_2 of type N. $p \Vdash \phi[s/x] \Leftrightarrow p \Vdash (t_1 = t_2)[s/x] \\ \Leftrightarrow p \Vdash t_1[s/x] = t_2[s/x] \\ \Leftrightarrow \overline{p} \vdash t_1[s/x] = t_2[s/x] \\ \Leftrightarrow \overline{p} \vdash v[s/x] \otimes z(p(w) \rightarrow \widehat{t_1}[s/x] = \widehat{t_2}[\lambda\omega\hat{s}/\bar{x}]) \\ \Leftrightarrow \overline{p} \vdash v[s/w) \geq z(p(w) \rightarrow \widehat{t_1} = \widehat{t_2})[\lambda\omega\hat{s}/\bar{x}] \\ \Leftrightarrow (p \Vdash t_1 = t_2)[\lambda\omega\hat{s}/\bar{x}]. \\ Now let ϕ be $t_1 < t_2$ for terms t_1, t_2 of type N. $p \Vdash b[t_1[s/x] = t_2[\delta\omega\hat{s}/\bar{x}]) \\ \Leftrightarrow \overline{p} \Vdash t_1[s/x] < t_2[s/x] \\ \Leftrightarrow p \Vdash t_1[s/x] < t_2[s/x] \\ \Leftrightarrow \overline{p} \vdash t_1[s/x] < t_2[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Leftrightarrow \overline{p} \vdash v(y) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Rightarrow \overline{t_2} \forall w \geq z(p(w) \rightarrow \widehat{t_1}[s/x]) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t_1}[s/x]) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t_1}[s/x] < \widehat{t_2}[s/x] \\ \Rightarrow p \Vdash st(t) \text{ for a term t of type N. $p \Vdash \phi[s/x]] \\ \Leftrightarrow p \Vdash st(t)[s/x] \\ \Rightarrow p \Vdash st(t)[s/x] \\ \Rightarrow p \Vdash st(y) \rightarrow \widehat{t}[s/x] < z) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t}[s/x] < z) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t}[s/x] < z) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t}[s/x] < z) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t}[s/x] < z) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t}[s/x] < z) \\ \Leftrightarrow \overline{d} z \forall w \geq z(p(w) \rightarrow \widehat{t}[s/x] > \psi[s/x] \\ \Rightarrow (p \Vdash st(t))[\lambda\omega\hat{s}/\bar{x}]. \\ Finally, suppose the clain holds for ϕ and ψ. $p \Vdash (\phi \rightarrow \psi)[s/x] \\ \Rightarrow \langle q \perp \phi(q \Vdash \phi[s/x] \rightarrow q \Vdash \psi[s/x]) \\ \Leftrightarrow \langle \forall q \preceq p(q \Vdash \phi \rightarrow q \Vdash \psi))[\lambda\omega\hat{s}/\bar{x}] \\ \Leftrightarrow \langle \psi \perp \phi \rightarrow \psi)[\lambda\omega\hat{s}/\bar{x}] \rightarrow (q \Vdash \psi)[\lambda\omega\hat{s}/\bar{x}] \\ \Leftrightarrow \langle \psi \parallel \phi \rightarrow \psi)[\lambda\omega\hat{s}/\bar{x}] \\ \Rightarrow (p \Vdash \phi \wedge \psi)[\lambda\omega\hat{s}/\bar{x}] \\ \Leftrightarrow (p \Vdash \phi \wedge \psi)[\lambda\omega\hat{s}/\bar{x}] \\ \Leftrightarrow (p \Vdash \phi \wedge \psi)[\lambda\omega\hat{s}/\bar{x}] . \\ (p \Vdash \phi \wedge \psi)[\lambda\omega\hat{s}/\bar{x}] . \\ (p \Vdash \phi \wedge \psi)[\lambda\omega\hat{s}/\bar{x}]. \end{aligned}$$

$$p \Vdash (\forall y \phi)[s/x] \Leftrightarrow p \Vdash \forall y \phi[s/x] \\ \Leftrightarrow \forall \tilde{y}(p \Vdash \phi[s/x]) \\ \Leftrightarrow \forall \tilde{y}((p \Vdash \phi)[\lambda \omega \hat{s}/\tilde{x}]) \\ \Leftrightarrow (\forall \tilde{y}(p \Vdash \phi))[\lambda \omega \hat{s}/\tilde{x}] \\ \Leftrightarrow (p \Vdash \forall y \phi)[\lambda \omega \hat{s}/\tilde{x}].$$

Lemma 6. For each formula ϕ of L^{st} , PRA^{ω} proves $p \Vdash \phi \land q \preceq p \rightarrow q \Vdash \phi$ for conditions p.

Proof. By induction on formulas.

Suppose ϕ is $t_1 = t_2$ for terms t_1, t_2 of type N. Assume $p \Vdash \phi$ and $q \preceq p$. Then $p \Vdash t_1 = t_2$ and $\forall x(q(x) \rightarrow p(x)) \land Cond(q)$. $p \Vdash t_1 = t_2 \rightarrow \exists z \forall w \ge z(p(w) \rightarrow \hat{t_1} = \hat{t_2})$. Choose z such that $\forall w \ge z(p(w) \rightarrow \hat{t_1} = \hat{t_2})$. Then, since $\forall w \ge z(q(w) \rightarrow p(w), \forall w \ge z(q(w) \rightarrow \hat{t_1} = \hat{t_2})$, so $q \Vdash t_1 = t_2$, that is, $q \Vdash \phi$.

If ϕ is $t_1 < t_2$ for terms t_1, t_2 of type N. Again, assume $p \Vdash \phi$ and $q \preceq p$. Then $p \Vdash t_1 < t_2$ and $\forall x(q(x) \rightarrow p(x)) \land Cond(q)$. $p \Vdash t_1 < t_2 \rightarrow \exists z \forall w \geq z(p(w) \rightarrow \hat{t_1} < \hat{t_2})$. Choose z such that $\forall w \geq z(p(w) \rightarrow \hat{t_1} < \hat{t_2})$. Then, since $\forall w \geq z(q(w) \rightarrow p(w), \forall w \geq z(q(w) \rightarrow \hat{t_1} < \hat{t_2})$, so $q \Vdash t_1 < t_2$, that is, $q \Vdash \phi$.

Now suppose ϕ is st(t). Assume $p \Vdash \phi$ and $q \preceq p$, so $p \Vdash st(t)$ and $\forall x(q(x) \rightarrow p(x)) \land Cond(q)$. $p \Vdash st(t) \rightarrow \exists z \forall w \ge z(p(w) \rightarrow \hat{t} < z)$. Choose z such that $\forall w \ge z(p(w) \rightarrow \hat{t} < z)$. Then, since $\forall w \ge z(q(w) \rightarrow p(w), \forall w \ge z(q(w) \rightarrow \hat{t} < z)$, so $q \Vdash st(t)$, that is, $q \Vdash \phi$.

Suppose the claim holds for formulas ϕ and ψ .

If $p \Vdash \phi \land \psi \land q \preceq p$, then $p \Vdash \phi$ and $p \Vdash \psi$, so by induction, $q \Vdash \phi$ and $q \Vdash \psi$, so $q \Vdash \phi \land \psi$.

If $p \Vdash \phi \to \psi \land q \preceq p$, then $\forall r \preceq p(r \Vdash \phi \to r \Vdash \psi)$. So, if $r \preceq q$, since $q \preceq p, r \preceq p$, so $\forall r \preceq q(r \Vdash \phi \to r \Vdash \psi)$. That is, $r \Vdash \phi \to \psi$.

If $p \Vdash \forall x \phi \land q \preceq p$, then $\forall \tilde{x}(p \Vdash \phi)$, so by induction, $\forall \tilde{x}(q \Vdash \phi)$. Thus, $q \Vdash \forall x \phi$.

Lemma 7. For each formula ϕ in the language of L^{st} , PRA^{ω} proves $\Vdash (\bot \rightarrow \phi)$.

Proof. Let p be a condition. $p \Vdash \bot \to \phi \Leftrightarrow \forall q \preceq p(q \Vdash \bot \to q \Vdash \phi)$ $\Leftrightarrow \forall q \preceq p(\neg Cond(p) \to q \Vdash (\phi))$ $\Leftrightarrow \forall q \preceq p(Cond(p) \lor q \Vdash (\phi))$ which is true since $\forall q \preceq p(Cond(p))$ by definition of \preceq .

Lemma 8. For each formula ϕ in the language of L^{st} , if ϕ is provable in intuitionistic logic, then PRA^{ω} proves $\Vdash \phi$.

Proof.

Lemma 9. Let t be any term. $PRA^{\omega} + \Sigma_1$ -induction proves the following: Let p be any condition and let q be the predicate defined by

$$q(w) \equiv p(w) \land \forall u < w(p(u) \to \hat{t}(u) < \hat{t}(w)).$$

Then, if q is a condition, $q \Vdash \neg st(t)$.

Proof. Suppose q is a condition and let r be a predicate such that $\forall u(r(u) \to q(u))$. It suffices to show that if $r \Vdash st(t)$ then r is not a condition. This is because $q \Vdash \neg st(t) \Leftrightarrow q \Vdash st(t) \to \bot \Leftrightarrow \forall r \preceq q(r \Vdash st(t) \to r \Vdash \bot) \Leftrightarrow \forall r \preceq q(r \Vdash st(t) \to \neg Cond(r))$.

Suppose $r \Vdash st(t)$, i.e.,

$$\exists z \forall w \ge z(r(w) \to \hat{t}(w) < z).$$
⁽²⁾

Since $r \leq q$, we know $\forall u(r(u) \rightarrow q(u))$, so for all $w, r(w) \rightarrow q(w) \rightarrow p(w) \land \forall u < w(p(u) \rightarrow \hat{t}(u) < \hat{t}(w))$. Thus, since $r(u) \rightarrow p(u)$ for all u,

$$\forall u \forall v (r(u) \land r(v) \land u < v \to \hat{t}(u) < \hat{t}(v)).$$
(3)

Define f by $f(v) = \max_{u \leq v \wedge r(u)} \hat{t}(u)$. By (2) f is bounded by some z. Since we are assuming Σ_1 induction, by Lemma 1, $\exists z \forall y (f(y) \leq z) \rightarrow \exists x \forall y (f(y) \leq f(x))$. So $\exists x \forall y (f(x) \geq f(y))$. Let x witness this and u be such that $f(x) = \hat{t}(u)$ (note that r(u) holds). Then for any v with r(v), take y > v and note that $f(y) = (\max_{u \leq y \wedge r(u)} \hat{t}(u)) \geq \hat{t}(v)$. So $\hat{t}(v) \leq \hat{t}(u)$.

Let w > u be given. By (3), $r(w) \wedge u < w \rightarrow \hat{t}(u) < \hat{t}(w)$. Thus, $\forall w > u \neg r(w)$, so r is not a condition.

Lemma 10. $PRA^{\omega} + \Sigma_1$ -induction proves that $\neg \neg st(t) \rightarrow st(t)$ is forced.

Proof. Let p be a predicate and suppose $p \Vdash \neg \neg st(t)$. Then $\forall q \leq p(q \Vdash \neg st(t) \rightarrow q \Vdash \bot) \Leftrightarrow \forall q \leq p(q \Vdash \neg st(t) \rightarrow \neg Cond(q))$, so for all $q \leq p$, since q is a condition, then $q \nvDash \neg st(t)$. Let q be as in the previous lemma. Clearly, $\forall u(q(u) \rightarrow p(u))$, so if q is a condition, $q \Vdash \neg st(t)$. Thus, q is not a condition.

So $\exists z \forall w \geq z \neg q(w)$, i.e., for some $z, \forall w \geq z(p(w) \rightarrow \exists u < w(p(u) \land \hat{t}(w) \leq \hat{t}(u)))$. Since p is a condition, pick $w \geq z$ such that p(w) holds. Let $v = \max_{u \leq w \land p(u)} \hat{t}(u)$. Then

 $\forall w \geq z(p(w) \to \hat{t}(w) \leq v). \text{ So } \forall w \geq z(p(w) \to \hat{t}(w) \leq v). \text{ Thus, } p \Vdash st(t).$

Hence, for any condition r, for any $p \leq r$, $p \Vdash \neg \neg st(t) \rightarrow p \Vdash st(t)$, so $r \Vdash \neg \neg st(t) \rightarrow st(t)$. Thus, since r is arbitrary, $\neg \neg st(t) \rightarrow st(t)$ is forced.

Lemma 11. For each formula ϕ of L^{st} , PRA^{ω} proves $\Vdash \neg \neg \phi \rightarrow \phi$.

Proof.

Lemma 12. For each formula ϕ in the language of L^{st} , if ϕ is provable classically, then PRA^{ω} proves $\Vdash \phi$.

Proof. Follows from Lemma 8 and Lemma 11.