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Line Integrals (14.2)

Let C be a curve given by r(t) = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b.

Scalar Valued Function: f(x, y, z)∫
C

fds =

∫ b

a

f(x(t), y(t), z(t))|r′(t)|dt =

∫ b

a

f(x(t), y(t), z(t))
√
x′(t)2 + y′(t)2 + z′(t)2dt

Vector Field: F = 〈f, g, h〉∫
C

F ·Tds =

∫
C

F · dr =

∫ b

a

F(r(t)) · r′(t)dt

Surface Integrals (14.6)

Let S be a surface in R3 given parametrically by r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 for (u, v)
in some region R in the uv-plane.

Let

tu =
∂

∂u
r = 〈xu, yu, zu〉

and

tv =
∂

∂v
r = 〈xv, yv, zv〉

Then n = tu × tv is orthogonal to the surface S.

Scalar Valued Function: f(x,y,z)

Parameterized Surface

The surface integral of f over S is∫ ∫
S

f(x, y, z)dS =

∫ ∫
R

f(x(u, v), y(u, v), z(u, v))|tu × tv|dA
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Explicitly Defined Surface

For a surface S given explicitly by z = g(x, y) for (x, y) in a region R in the xy-plane, the
surface integral of f over S is∫ ∫

S

f(x, y, z)dS =

∫ ∫
R

f(x, y, g(x, y))
√
z2x + z2y + 12dA

Note that this follows from the parametric version, since n = 〈−zx,−zy, 1〉 is orthogonal
to the surface S.

Surface Area

When f(x, y, z) = 1, ∫ ∫
S

fdS =

∫ ∫
S

dS

is the surface area of S.

Vector Field: F = 〈f, g, h〉
Parameterized Surface

The surface integral of F over S is∫ ∫
S

F · ndS =

∫ ∫
R

F · (tu × tv)dA

Explicitly Defined Surface

For a surface S given explicitly by z = g(x, y) for (x, y) in a region R in the xy-plane, the
surface integral of F is∫ ∫

S

F · ndS =

∫ ∫
R

F · 〈−zx,−zy, 1〉dA =

∫ ∫
R

(−fzx − gzy + h)dA

Conservative Vector Fields (14.3)

A vector field F is conservative if we can find a potential function φ such that ∇φ = F.

Checking if a Vector Field is Conservative

F = 〈f, g, h〉 is conservative if
∂f

∂y
=
∂g

∂x

∂f

∂z
=
∂h

∂x
∂g

∂z
=
∂h

∂y

If F = 〈f, g〉, we only need to check
∂f

∂y
=
∂g

∂x
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Finding Potential Functions in R3

We want to find φ such that ∇φ = 〈φx, φy, φz〉 = 〈f, g, h〉 = F.

1. Integrate φx = f with respect to x to obtain φ = F (x, y, z) + c(y, z).

2. Compute φy = Fy(x, y, z) + cy(y, z) and set it equal to g to solve for cy(y, z).

3. Integrate cy(y, z) with respect to y to obtain c(y, z) = G(y, z) + d(z). So at this stage,
φ = F (x, y, z) +G(y, z) + d(z).

4. Compute φz = Fz(x, y, z) +Gz(y, z) + d′(z) and set it equal to h to solve for d′(z).

5. Integrate d′(z) with respect to z to obtain H(z). So φ = F (x, y, z) +G(y, z) +H(z).

Facts About Conservative Vector Fields

For a curve C with initial point A and terminal point B, if F is a conservative vector field
with potential function φ, by the Fundamental Theorem of Line Integrals,∫

C

F ·Tds =

∫
C

F · dr = φ(B)− φ(A)

If C is a closed curve, ∫
C

F · dr = 0

If F is conservative,
curl F = ∇× F = 0

Circulation and Curl

2 Dimensions

Let C be a curve in R2 given by r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b. Let F = 〈f, g〉 be a vector
field.

The curl (14.2) of F is

curl F =
∂

∂x
g − ∂

∂y
f

.
The circulation (14.2) of F is the sum of the components of the vectors of F in the

direction of C, over C. It is calculated as follows:∫
C

F ·Tds =

∫
C

F · dr =

∫ b

a

F(r(t)) · r′(t)dt

For a closed curve C, by the circulation form of Green’s Theorem (14.4)∫
C

F · dr =

∫ ∫
R

curl FdA =

∫ ∫
R

∂

∂x
g − ∂

∂y
fdA

where R is the region in xy-plane enclosed by C.
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3 Dimensions

Let C be a curve in R3 given by r(t) = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b. Let F = f, g, h〉 be a
vector field.

The curl (14.5) of F is

curl F = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

f g h

∣∣∣∣∣∣ = (
∂h

∂y
− ∂g

∂z
)i + (

∂f

∂z
− ∂h

∂x
)j + (

∂g

∂x
− ∂f

∂y
)k

By Stokes’ Theorem, the circulation of F over C is∮
C

F · dr =

∫ ∫
S

(∇× F) · ndS

where n is the unit vector normal to an oriented surface S in R3 whose boundary is C,
and whose orientation is consistent with C (via the right hand rule).

Flux and Divergence

2 Dimensions

Let C be a curve in R2 given by r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b. Let F = 〈f, g〉 be a vector
field.

The divergence (14.2) of F is

div F =
∂

∂x
f +

∂

∂y
g

.
The flux (14.2) of F is the sum of the components of the vectors of F orthogonal to the

direction of C, over C. It is calculated as follows:∫
C

F · nds
∫ b

a

F(r(t)) · 〈y′(t),−x′(t)〉dt

since n = 〈y′,−x′〉 is orthogonal to r′ = 〈x′, y′〉 (which can be seen using a dot product).
For a closed curve C, by the flux form of Green’s Theorem (14.4)∫

C

F · nds =

∫
C

fdy − gdz =

∫ ∫
R

div FdA =

∫ ∫
R

∂

∂x
f +

∂

∂y
gdA

where R is the region in xy-plane enclosed by C.

3 Dimensions

Let S be an oriented surface in R3. Let F = 〈f, g, h〉 be a vector field.
The divergence (14.5) of F is

div F = ∇ · F =
∂

∂x
f +

∂

∂y
g +

∂

∂z
h
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The flux of F is the sum of the components of the vectors of F orthogonal to the direction
of S, over S. It is calculated by ∫ ∫

S

F · ndS

Note that if S is given explicitly via z = g(x, y) for (x, y) in some region R in R2, then
to calculate the upward flux, we use∫ ∫

R

F(x, y, g(x, y)) · 〈−zx,−zy, 1〉dA

and to calculate the downward flux, we use∫ ∫
R

F(x, y, g(x, y)) · 〈zx, zy,−1〉dA

Extra Credit: By the Divergence Theorem (14.8),∫ ∫
S

F · ndS =

∫ ∫ ∫
D

div FdV =

∫ ∫ ∫
D

∇ · FdV

where D is the region in R3 bounded by S, and n is the outward unit normal vector.
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