Math 210: Chapter 14 Review

Victoria Noquez

August 4, 2015

Line Integrals (14.2)

Let C be a curve given by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$.
Scalar Valued Function: $f(x, y, z)$

$$
\int_{C} f d s=\int_{a}^{b} f(x(t), y(t), z(t))\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Vector Field: $\mathbf{F}=\langle f, g, h\rangle$

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Surface Integrals (14.6)

Let S be a surface in \mathbb{R}^{3} given parametrically by $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$ for (u, v) in some region R in the $u v$-plane.

Let

$$
\mathbf{t}_{u}=\frac{\partial}{\partial u} \mathbf{r}=\left\langle x_{u}, y_{u}, z_{u}\right\rangle
$$

and

$$
\mathbf{t}_{v}=\frac{\partial}{\partial v} \mathbf{r}=\left\langle x_{v}, y_{v}, z_{v}\right\rangle
$$

Then $\mathbf{n}=\mathbf{t}_{u} \times \mathbf{t}_{v}$ is orthogonal to the surface S.

Scalar Valued Function: $f(x, y, z)$

Parameterized Surface
The surface integral of f over S is

$$
\iint_{S} f(x, y, z) d S=\iint_{R} f(x(u, v), y(u, v), z(u, v))\left|\mathbf{t}_{u} \times \mathbf{t}_{v}\right| d A
$$

Explicitly Defined Surface

For a surface S given explicitly by $z=g(x, y)$ for (x, y) in a region R in the $x y$-plane, the surface integral of f over S is

$$
\iint_{S} f(x, y, z) d S=\iint_{R} f(x, y, g(x, y)) \sqrt{z_{x}^{2}+z_{y}^{2}+1^{2}} d A
$$

Note that this follows from the parametric version, since $\mathbf{n}=\left\langle-z_{x},-z_{y}, 1\right\rangle$ is orthogonal to the surface S.

Surface Area

When $f(x, y, z)=1$,

$$
\iint_{S} f d S=\iint_{S} d S
$$

is the surface area of S.

Vector Field: $\mathbf{F}=\langle f, g, h\rangle$
Parameterized Surface
The surface integral of \mathbf{F} over S is

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{R} \mathbf{F} \cdot\left(\mathbf{t}_{u} \times \mathbf{t}_{v}\right) d A
$$

Explicitly Defined Surface

For a surface S given explicitly by $z=g(x, y)$ for (x, y) in a region R in the $x y$-plane, the surface integral of \mathbf{F} is

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{R} \mathbf{F} \cdot\left\langle-z_{x},-z_{y}, 1\right\rangle d A=\iint_{R}\left(-f z_{x}-g z_{y}+h\right) d A
$$

Conservative Vector Fields (14.3)

A vector field \mathbf{F} is conservative if we can find a potential function ϕ such that $\nabla \phi=\mathbf{F}$.

Checking if a Vector Field is Conservative

$\mathbf{F}=\langle f, g, h\rangle$ is conservative if

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=\frac{\partial g}{\partial x} \\
& \frac{\partial f}{\partial z}=\frac{\partial h}{\partial x} \\
& \frac{\partial g}{\partial z}=\frac{\partial h}{\partial y}
\end{aligned}
$$

If $\mathbf{F}=\langle f, g\rangle$, we only need to check

$$
\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}
$$

Finding Potential Functions in \mathbb{R}^{3}

We want to find ϕ such that $\nabla \phi=\left\langle\phi_{x}, \phi_{y}, \phi_{z}\right\rangle=\langle f, g, h\rangle=\mathbf{F}$.

1. Integrate $\phi_{x}=f$ with respect to x to obtain $\phi=F(x, y, z)+c(y, z)$.
2. Compute $\phi_{y}=F_{y}(x, y, z)+c_{y}(y, z)$ and set it equal to g to solve for $c_{y}(y, z)$.
3. Integrate $c_{y}(y, z)$ with respect to y to obtain $c(y, z)=G(y, z)+d(z)$. So at this stage, $\phi=F(x, y, z)+G(y, z)+d(z)$.
4. Compute $\phi_{z}=F_{z}(x, y, z)+G_{z}(y, z)+d^{\prime}(z)$ and set it equal to h to solve for $d^{\prime}(z)$.
5. Integrate $d^{\prime}(z)$ with respect to z to obtain $H(z)$. So $\phi=F(x, y, z)+G(y, z)+H(z)$.

Facts About Conservative Vector Fields

For a curve C with initial point A and terminal point B, if \mathbf{F} is a conservative vector field with potential function ϕ, by the Fundamental Theorem of Line Integrals,

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\phi(B)-\phi(A)
$$

If C is a closed curve,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

If \mathbf{F} is conservative,

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=0
$$

Circulation and Curl

2 Dimensions

Let C be a curve in \mathbb{R}^{2} given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $a \leq t \leq b$. Let $\mathbf{F}=\langle f, g\rangle$ be a vector field.

The curl (14.2) of \mathbf{F} is

$$
\operatorname{curl} \mathbf{F}=\frac{\partial}{\partial x} g-\frac{\partial}{\partial y} f
$$

The circulation (14.2) of \mathbf{F} is the sum of the components of the vectors of \mathbf{F} in the direction of C, over C. It is calculated as follows:

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

For a closed curve C, by the circulation form of Green's Theorem (14.4)

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{R} \operatorname{curl} \mathbf{F} d A=\iint_{R} \frac{\partial}{\partial x} g-\frac{\partial}{\partial y} f d A
$$

where R is the region in $x y$-plane enclosed by C.

3 Dimensions

Let C be a curve in \mathbb{R}^{3} given by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$. Let $\left.\mathbf{F}=f, g, h\right\rangle$ be a vector field.

The curl (14.5) of \mathbf{F} is

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f & g & h
\end{array}\right|=\left(\frac{\partial h}{\partial y}-\frac{\partial g}{\partial z}\right) \mathbf{i}+\left(\frac{\partial f}{\partial z}-\frac{\partial h}{\partial x}\right) \mathbf{j}+\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) \mathbf{k}
$$

By Stokes' Theorem, the circulation of \mathbf{F} over C is

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

where \mathbf{n} is the unit vector normal to an oriented surface S in \mathbb{R}^{3} whose boundary is C, and whose orientation is consistent with C (via the right hand rule).

Flux and Divergence

2 Dimensions

Let C be a curve in \mathbb{R}^{2} given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $a \leq t \leq b$. Let $\mathbf{F}=\langle f, g\rangle$ be a vector field.

The divergence (14.2) of \mathbf{F} is

$$
\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x} f+\frac{\partial}{\partial y} g
$$

The flux (14.2) of \mathbf{F} is the sum of the components of the vectors of \mathbf{F} orthogonal to the direction of C, over C. It is calculated as follows:

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle d t
$$

since $\mathbf{n}=\left\langle y^{\prime},-x^{\prime}\right\rangle$ is orthogonal to $\mathbf{r}^{\prime}=\left\langle x^{\prime}, y^{\prime}\right\rangle$ (which can be seen using a dot product). For a closed curve C, by the flux form of Green's Theorem (14.4)

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C} f d y-g d z=\iint_{R} \operatorname{div} \mathbf{F} d A=\iint_{R} \frac{\partial}{\partial x} f+\frac{\partial}{\partial y} g d A
$$

where R is the region in $x y$-plane enclosed by C.

3 Dimensions

Let S be an oriented surface in \mathbb{R}^{3}. Let $F=\langle f, g, h\rangle$ be a vector field.
The divergence (14.5) of \mathbf{F} is

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=\frac{\partial}{\partial x} f+\frac{\partial}{\partial y} g+\frac{\partial}{\partial z} h
$$

The flux of \mathbf{F} is the sum of the components of the vectors of \mathbf{F} orthogonal to the direction of S, over S. It is calculated by

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

Note that if S is given explicitly via $z=g(x, y)$ for (x, y) in some region R in \mathbb{R}^{2}, then to calculate the upward flux, we use

$$
\iint_{R} \mathbf{F}(x, y, g(x, y)) \cdot\left\langle-z_{x},-z_{y}, 1\right\rangle d A
$$

and to calculate the downward flux, we use

$$
\iint_{R} \mathbf{F}(x, y, g(x, y)) \cdot\left\langle z_{x}, z_{y},-1\right\rangle d A
$$

Extra Credit: By the Divergence Theorem (14.8),

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{D} \operatorname{div} \mathbf{F} d V=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

where D is the region in \mathbb{R}^{3} bounded by S, and \mathbf{n} is the outward unit normal vector.

