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0. Introduction

Hopf algebras were discovered by Heinz Hopf
1941 as structures in algebraic topology [Hopf].
Hopf algebras we consider are in the category
of vector spaces over a field k. A few examples:
group algebras, enveloping algebras of Lie al-
gebras, and quantum groups. Some quantum
groups produce invariants of knots and links.

A general theory of Hopf algebras began in
the late 1960s [Swe]. In a 1975 publication
[Kap] Kaplansky listed 10 conjectures on Hopf
algebras. These have been the focus of a great
deal of research. Some have not been resolved.

We define Hopf algebra, describe examples in
detail, and discuss the significance and status
of each conjecture. In discussing conjectures
more of the nature of Hopf algebras will be
revealed.

⊗ = ⊗k. “f-d” = finite-dimensional. “n-d” =
n-dimensional. What is a Hopf algebra?



1. A Basic Example and Definition

G is a group, A = k[G] is the group algebra of

G over k. Let g, h ∈ G. The algebra structure:

k[G]⊗ k[G]
m−→ k[G] m(g ⊗ h) = gh

k η−→ k[G] η(1k) = e = 1k[G]

The coalgebra structure:

k[G]
∆−→ k[G]⊗ k[G] ∆(g) = g ⊗ g

k[G]
ϵ−→ k ϵ(g) = 1k

The map which accounts for inverses:

k[G]
S−→ k[G] S(g) = g−1



Observe that

∆(gh) = gh⊗ gh = (g⊗ g)(h⊗ h) = ∆(g)∆(h),

ϵ(gh) = 1k = 1k1k = ϵ(g)ϵ(h),

gS(g) = gg−1 = e = 1ke = ϵ(g)1k[G],

and

S(g)g = g−1g = e = ϵ(g)1k[G].

Also ∆(1k[G]) = 1k[G]⊗1k[G] and ϵ(1k[G]) = 1k;

thus

∆, ϵ are algebra maps

and S is determined by

gS(g) = ϵ(g)1k[G] = S(g)g.

We generalize the system (k[G],m, η,∆, ϵ, S).



Hopf algebra over k, a tuple (A,m, η,∆, ϵ, S),
where (A,m, η) is an algebra over k:

A⊗A
m−→ A m(a⊗ b) = ab

k η−→ A η(1k) = 1A

(A,∆, ϵ) is a coalgebra over k:

A
∆−→ A⊗A ∆(a) = a(1) ⊗ a(2)

A
ϵ−→ k

and A
S−→ A is an ”antipode” where certain

axioms are satisfied.

Comments: ∆(a) ∈ A ⊗ A is usually a sum of
tensors; thus ∆(a) = a(1)⊗a(2) is a notation,
called the Heyneman-Sweedler notation. ∆ is
called the coproduct and ϵ the counit.

The axioms for a Hopf algebra over k:



(A,m, η) is an (associative) algebra over k

(ab)c = a(bc), 1a = a = a1;

(A,∆, ϵ) is a (coassociative) coalgebra over k

a(1)(1) ⊗ a(1)(2) ⊗ a(2) = a(1) ⊗ a(2)(1) ⊗ a(2)(2),

ϵ(a(1))a(2) = a = a(1)ϵ(a(2));

∆ is an algebra map

∆(ab) = a(1)b(1) ⊗ a(2)b(2), ∆(1) = 1⊗ 1;

ϵ is an algebra map

ϵ(ab) = ϵ(a)ϵ(b), ϵ(1) = 1; and

a(1)S(a(2)) = ϵ(a)1 = S(a(1))a(2)

for all a, b, c ∈ A. From now on A denotes a
Hopf algebra over k.



2. Basic Properties and More Definitions

1. A has a unique antipode.

For g, h ∈ k[G] observe

S(gh) = (gh)−1 = h−1g−1 = S(h)S(g)

and

S(e) = e−1 = e, or S(1k[G]) = 1k[G].

Also

ϵ(S(g)) = ϵ(g−1) = 1k = ϵ(g).

2. For a, b ∈ A

S(ab) = S(b)S(a); S(1) = 1.

Also

∆(S(a)) = S(a(2))⊗ S(a(1)), ϵ(S(a)) = ϵ(a).



Explanation of notation:

a(2) ⊗ a(1) = τ(a(1) ⊗ a(2)),

where τ : A⊗A −→ A⊗A is given by

τ(a⊗ b) = b⊗ a.

3. a ∈ A is cocommutative if τ(∆(a)) = ∆(a),

or a(2)⊗a(1) = a(1)⊗a(2). A is cocommutative

if τ◦∆ = ∆ , or if all a ∈ A are cocommutative.

k[G] is cocommutative (∆(g) = g⊗g for g ∈ G).

4. A is commutative if m◦τ = m , or ba = ab

for all a, b ∈ A.

k[G] is commutative if and only if G is an

abelian group.

Variation on ba = ab; ba = qab, q ∈ k.



5. a ∈ A is grouplike if ∆(a) = a ⊗ a and

ϵ(a) = 1. G(A) denotes the set of grouplike

elements of A.

6. G(A) is linearly independent (a coalgebra

fact).

G(k[G]) = G.

7. G(A) is a group under multiplication and

S(g) = g−1 for g ∈ G(A). Thus if A is f-d then

G(A) is a finite group.

8. (A,mop, η,∆cop, ϵ, S) is a Hopf algebra over

k, where mop = m◦τ and ∆cop = τ◦∆.

9. (A∗,∆∗, ϵ∗,m∗, η∗, S∗) is a f-d Hopf algebra

over k if (A,m, η,∆, ϵ, S) is.

10. If A is f-d then S is bijective.



11. If A is commutative or cocommutative

then S2 = IA. In this case S is bijective.

12. If S is bijective then (A,mop, η,∆, ϵ, S−1),

(A,m, η,∆cop, ϵ, S−1) are Hopf algebras over k.

13. Let M,N be left A-modules (regard A as

an algebra). Then M ⊗ N is a left A-module

where a·(m⊗ n) = a(1)·m⊗ a(2)·n.

For g ∈ G(A) note g·(m⊗ n) = g·m⊗ g·n.

14. Let C be a coalgebra over k. Every f-d

subspace of C generates a f-d subcoalgebra.

15. A has simple subcoalgebras, and all are

f-d. k1, more generally kg for g ∈ G(A), is a

simple subcoalgebra of A.

The reader is referred to any basic text on Hopf
algebras: [Swe], [Abe], [Mont], [DNR], [R].



3. The Enveloping Algebra

Let L be a Lie algebra over k. The enveloping

algebra U(L) is a cocommutative Hopf algebra

over k where

∆(ℓ) = 1⊗ ℓ+ ℓ⊗ 1, (1)

ϵ(ℓ) = 0, and S(ℓ) = −ℓ for ℓ ∈ L. An ℓ ∈ A

such that (1) holds is primitive.

The set of primitives P(A) of A is a subspace

and a Lie algebra under associative bracket.

A = U(L) is pointed irreducible meaning k1 is

the only simple subcoalgebra of A.

Variation on primitive: ∆(ℓ) = g ⊗ ℓ+ ℓ⊗ h,

where g, h ∈ G(A).

Such an ℓ is a skew primitive element.



4. The 10 Kaplansky conjectures

1. Hopf algebras are free modules over their

Hopf subalgebras (under multiplication).

Let G be a group. The Hopf subalgebras of

k[G] are the group algebras k[L], where L is a

subgroup of G. True in this case.

When A is f-d the conjecture can be thought

of as generalization of Lagrange’s Theorem

for finite groups.

Infinite-dimensional counterexamples: Takeuchi

in 1972 [Tak], Oberst and Schneider in 1974

[ObSch], the speaker 1980 [Rad], Schneider

in 1981. [Sch1].

Proved when A is f-d by Nichols and Zoeller

[NicZel1] in 1989. Implications when A is f-d:



If B is a Hopf subalgebra of A then Dim(B)

divides Dim(A).

|G(A)| = Dim(k[G(A)]) divides Dim(A).

Suppose B is a Hopf subalgebra of A. Then A

semisimple implies B is also.

Nichols and Zoeller used representation theory
of algebras to establish relative Hopf modules
are free when A is f-d.

A relative Hopf module is a structure (M,µ, ρ),
where

µ : B ⊗M −→ M

is a left B-module and

ρ : M −→ A⊗M

is a left A-comodule, which have a certain
compatibility. With (b⊗ b′)(a⊗m) = ba⊗ b′·m,

ρ(b·m) = ∆(b)ρ(m) .



When B = A then (M,µ, ρ) is a Hopf module.

Such are always free with A-basis any linear

basis of

Mco inv = {m ∈ M | ρ(m) = 1⊗m}.

Freeness of Hopf modules is elementary in that

no representation theory needed.

Implications of freeness of Hopf modules:

If A contains a non-zero f-d left ideal then A

is f-d.

If A is semisimple then A is f-d.

If A is f-d then A contains a 1-d ideal.

A definition for our next conjecture.



Definition: A coalgebra is admissible if there
is an algebra structure which makes it a Hopf

algebra.

2. A coalgebra is admissible iff every f-d sub-

space lies in a f-d admissible subcoalgebra.

Assume k has characteristic 0. If 0 ̸= ℓ ∈ P(A)

the Hopf subalgebra generated by ℓ is k[ℓ], the
free k-algebra on kℓ.

k[x] is a Hopf algebra where x is primitive. Any

Hopf subalgebra contains x or is k1. Thus:

The Hopf subalgebras of k[x] are k1 and k[x].

Hence the conjecture is false. This example is

due to Larson. Note k[x] = U(kx).

Generally the Hopf subalgebras of U(L) are

U(M), where M is a Lie subalgebra of L, when

the characteristic of k is zero.



3. A Hopf algebra in characteristic 0 has no

non-zero nilpotent elements.

Let G be a finite group, Λ =
∑

g∈G g ∈ k[G].
Then gΛ = Λ, or gΛ = ϵ(g)Λ, for all g ∈ G.
Thus

aΛ = ϵ(a)Λ (2)

for all a ∈ k[G]. Since

ϵ(Λ) =
∑
g∈G

ϵ(g) = |G|1k :

Maschke’s Theorem Let G be a finite group.
Then k[G] is semisimple if and only if ϵ(Λ) ̸= 0.

Let A be f-d. Then A contains a non-zero Λ
which satisfies (2) for all a ∈ A. Further

A is semisimple if and only if ϵ(Λ) ̸= 0.

If A is not semisimple Λ2 = ϵ(Λ)Λ = 0Λ = 0;
thus Λ is a non-zero nilpotent element.



There are f-d Hopf algebras over C which are
not semisimple. Thus the conjecture is false.

Example 1: A as an algebra is generated by
a, x subject to the relations

a2 = 1, x2 = 0, xa = −ax

and as a coalgebra its structure is given by

∆(a) = a⊗ a, ∆(x) = x⊗ a+1⊗ x

and

ϵ(a) = 1 ϵ(x) = 0.

S(a) = a, and S(x) = ax.

Note

S2(x) = S(ax) = S(x)S(a) = (ax)a = −x;

thus S2 ̸= IA. Dim(A) = 4. We can take

Λ = (1+ a)x.

A is not semisimple since

ϵ(Λ) = ϵ(1 + a)ϵ(x) = ϵ(1 + a)0 = 0.



4. An element x in a Hopf algebra is in its

center if a(1)xS(a(2)) = ϵ(a)x for all a ∈ A.

x ∈ k[G] is central if and only if

gxg−1 = x (= ϵ(g)x)

for all g ∈ G. The formula

gxg−1 = ϵ(g)x

translates to

a·x := a(1)xS(a(2)) = ϵ(a)x

for all a, x ∈ A. The conjecture rewritten:

x ∈ A is central if and only if a·x = ϵ(a)x

for all a ∈ A. If x is central then

a·x = a(1)S(a(2))x = a(1)ϵ(a(2))1x = ϵ(a)x.

Observe a·x defines a left A-module action on

itself.



For g, x ∈ k[G] the formula

gx = (gxg−1)g = gxS(g)g

translates to

ax = a(1)xS(a(2)(1))a(2)(2)
= a(1)(1)xS(a(1)(2))a(2)
= (a(1)·x)a(2);

thus the commutation relation

ax = (a(1)·x)a(2)

holds for all a, x ∈ A.

If a·x = ϵ(a)x for all a ∈ A then

ax = ϵ(a(1))xa(2) = xϵ(a(1))a(2) = xa

for all a ∈ A and therefore x is central.

The conjecture is true.

From now on suppose A is f-d.



5. If A or A∗ is semisimple then S2 = IA.

Established by Larson and the speaker [RL1,RL2]
when k has characteristic 0 in 1988.

Over any field

Tr(S2) = Dim(A)Tr(S2|Ax), (3)

where x ∈ A is defined by p(x) = Tr(ℓ(p)) for
all p ∈ A∗ and ℓ(p)(q) = pq for all q ∈ A∗.

First assume A and A∗ are semisimple. Then
S4 = IA. Now assume the characteristic of k is
0. Then S2 is diagonalizable and eigenvalues
are ±1. But −1 is not an eigenvalue of S2 by
(3). Thus S2 = I. Now A or A∗ semisimple
implies A and A∗ are in characteristic 0.

The characteristic p > 0 case is still open.

Etingof and Gelaki showed in 1998 if A and A∗

are semisimple then S2 = IA by “lifting” to the
characteristic 0 case [EtGel1].



6. The size of matrices occurring in any matrix

constituent of A divides Dim(A).

The conjecture is interpreted:

If A is a f-d Hopf algebra over an algebraically

closed field k and M is a simple A-module then

Dim(M)|Dim(A).

True when A = k[G] is semisimple, false for

group algebras in general.

Assume A is semisimple and that M is a simple

A-module. Then Dim(M)|Dim(A) when:

(1) Dim(M) = 2, due to Nichols and Zoeller

[NicZel2] in 1996;

(2) A = D(B), where B is a f-d semisimple,

due to Etingof and Gelaki [EtGel2] in 1998;



(3) A is cosemisimple and quasitriagular, due

to Etingof and Gelaki [EtGel2] 1998;

(4) Dim(A) is a prime power, this is due to

Montgomery and Witherspoon [MW] in 1998.

Regarding (2), [EtGel2] builds on important

work of Zhu [Zhu1]. He obtains partial results

for D(B).

Regarding (3), every f-d quasitriangular Hopf

algebra A is a quotient of D(A). Therefore (2)

implies (3).

Recent progress on conjecture six is through

classification of semisimple Hopf algebras. We

single out Natale’s 2007 paper [Nat].

There are many contributors to classifiaction.

See the 2008 survey by Masuoka [Mas].



7. If A and A∗ are both semisimple then the

characteristic of k does not divide Dim(A).

Settled in 1988. Let Λ ∈ A satisfy (2), that is

aΛ = ϵ(a)Λ

for all a ∈ A and λ ∈ A∗ satisfy

λp = p(1)λ

for all p ∈ A∗. We may assume λ(Λ) = 1. Then

Tr(S2) = ϵ(Λ)λ(1). (4)

Both A and A∗ are semisimple if and only if

Tr(S2) ̸= 0.

Now we use (4) and (3), which is

Tr(S2) = Dim(A)Tr(S2|Ax),

to prove the conjecture. Equation (4) is is
found in the 1988 paper [LR1] by Larson and
the speaker.

When k = Zp note k[Zp]∗ is semisimple, k[Zp]
is not, and Dim(k[Zp]) = p.



8. If Dim(A) is prime then A is commutative

and cocommutative.

We may assume that k is algebraically closed.
Suppose Dim(A) is prime. Then S4 = IA.

Assume k has characteristic 0. Tr(S2) ̸= 0.
Thus A (and also A∗) is semisimple. We use
Zhu’s class equation in the 1994 paper [Zhu2].
Ck(A) ⊆ A∗ is the span of the characters of A.
It is a semisimple algebra. For semisimple A:

Theorem 1 Let {e1, . . . , en} be a complete set
of orthogonal idempotents for Ck(A). Then

Dim(A) =
n∑

i=1

Dim(eiA
∗),

Dim(eiA
∗)|Dim(A) for all i, and Dim(eiA

∗) = 1
for some i.

There is a bijective correspondence between
G(A)∩Z(A) and the set of 1-dimensional eiA

∗’s.
Thus p = Dim(A) prime implies A = k[Zp].



Zhu established the conjecture in this case in

1993 in [Zhu1]. The class equation is based

on work of Kac [Kac].

The characteristic p > 0 case has not been

completely decided.

Etingof and Gelaki showed A is commutative

and cocommutative when both A and A∗ are

semisimple by “lifting” to the characteristic

zero case in 1998 [EtGel2].

For the two remaining conjectures suppose the

characteristic of k does not divide Dim(A).



9. The radicals of A and A∗ have the same

dimension.

We reformulate the conjecture. A0 is the sum
of the simple subcoalgebras of A.

Rad(A∗) = A⊥
0 := {p ∈ A∗ | p(A0) = (0)}.

Reformulation: Dim(A0) = Dim(A∗
0)

Example 2: Consider A of Example 1. A0 =
k1 ⊕ ka and thus Dim(A0) = 2. The Drinfel’d
double, a very special quantum group,

D(A) = A∗ cop ⊗A = A⊗A

as a coalgebra. Thus Dim(D(A)0) = 4 since

D(A)0 = (A⊗A)0 = A0 ⊗A0.

As D(A) has a 2-d simple module, D(A)∗ has
a 4-d simple subcoalgebra C. Therefore the
conjecture is false since D(A)∗0 ⊇ k1 ⊕ C and
hence Dim(D(A)0) = 4 < Dim(D(A)∗0).

Counterexamples were given by Schneider in
1995 [Sch2] and Sommerhäuser in 1998 [Som].



10. For a given dimension there are only

finitely many different isomorphism types of

Hopf algebras.

Established for semisimple cosemisimple Hopf

algebras by Ştefan in 1997 [Stef ].

Generally false, shown by Andruskiewitsch and

Schneider in 2000 [AS], by Beattie, Dăscălescu,

and Grünenfelder in 1999 [BDG], by Gelaki

in 1998 [Gel], and by Müller in 2000 [Mue].

These were independent efforts.

We describe the family of Hq(a)’s, where a ∈ k,
of [BDG]. Dim(Hq(a)) = p4, where p is an odd

prime. Assume q ∈ k is a primitive pth root of

unity and k is infinite.



Example 3: Hq(a) is generated as a k-algebra
by c, x, y subject to the relations

cn
2
= 1, xn = cn − 1, yn = cn − 1,

xc = q−1cx, yc = qcy, yx = qxy + a(c2 − 1).

As a k-coalgebra Hq(a) is determined by

∆(c) = c⊗c, ∆(z) = c⊗z + z⊗1,

ϵ(c) = 1, ϵ(z) = 0,

where z = x, y.

Hq(b) ≃ Hq(a) if and only if b = ua for some
pth root of unity u ∈ k.

Remark: As an algebra Hq(a) is a quotient of
iterated Ore extensions.

*************************************

A fuller account of the conjectures is found
in Sommerhäuser’s excellent 2000 expository
paper [Som]. Appended is an expanded list of
references.
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[Som] Sommerhäuser, Yorck. On Kaplansky’s conjectures. Inter-
actions between ring theory and representations of algebras (Mur-
cia), 393412, Lecture Notes in Pure and Appl. Math., 210, Dekker,
New York, 2000.
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