Name (print)
(1) There are four questions on this exam. (2) Return this exam copy with your test booklet.
(3) You are expected to abide by the University's rules concerning academic honesty.

1. (30 points) For sets A_{1}, \ldots, A_{n} the union $A_{1} \cup \cdots \cup A_{n}$ and intersection $A_{1} \cap \cdots \cap A_{n}$ are defined inductively by

$$
A_{1} \cup \cdots \cup A_{n}=\left\{\begin{aligned}
& A_{1}: \\
& \quad n=1 ;
\end{aligned} \quad \begin{array}{rl}
\\
\left(A_{1} \cup \cdots \cup A_{n-1}\right) \cup A_{n} & : \\
\hline
\end{array}\right.
$$

and

$$
A_{1} \cap \cdots \cap A_{n}=\left\{\begin{aligned}
A_{1} & : n=1 ; \\
\left(A_{1} \cap \cdots \cap A_{n-1}\right) \cap A_{n} & : \quad n>1
\end{aligned}\right.
$$

respectively.
(a) Working from definitions, for sets A, B and C show that $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$.

Solution: Let $x \in A \cup(B \cap C)(2)$. Then $x \in A$ or $x \in B \cap C$. (2) If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ so $x \in(A \cup B) \cap(A \cup C)$ (3). If $x \in B \cap C$ then $x \in B$ and $x \in C$; therefore $x \in A \cup B$ and $x \in A \cup C$ which means $x \in(A \cup B) \cap(A \cup C)(\mathbf{3})$.
(b) Given that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ for all sets A, B, and C, show by induction that $A \cup\left(A_{1} \cap \cdots \cap A_{n}\right)=\left(A \cup A_{1}\right) \cap \cdots \cap\left(A \cup A_{n}\right)$ for all sets A, A_{1}, \ldots, A_{n} where $n \geq 1$.

Solution: If $n=1$ then the left hand side and the right hand side of the equation are $A \cup A_{1}$; therefore the equation is true for $n=1$. (3) Suppose $n \geq 1$ and the equation holds for all sets A, A_{1}, \ldots, A_{n} and let $A, A_{1}, \ldots, A_{n+1}$ be sets. (3) Then

$$
\begin{aligned}
A & \cup\left(A_{1} \cap \cdots \cap A_{n+1}\right) \\
& =A \cup\left(\left(A_{1} \cap \cdots \cap A_{n}\right) \cap A_{n+1}\right) \\
& =\left(A \cup\left(A_{1} \cap \cdots \cap A_{n}\right)\right) \cap\left(A \cup A_{n+1}\right) \\
& =\left(\left(A \cup A_{1}\right) \cap \cdots \cap\left(A \cup A_{n}\right)\right) \cap\left(A \cup A_{n+1}\right) \\
& =\left(A \cup A_{1}\right) \cap \cdots \cap\left(A \cup A_{n+1}\right) .
\end{aligned}
$$

(3 for each equation) Therefore the equation holds for all $n \geq 1$ and sets A, A_{1}, \ldots, A_{n} (2).
2. (25 points) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions.
(a) Using quantifiers define what it means for f to be a surjection.

Solution: $\forall y \in Y,(2) \exists x \in X,(2) y=f(x)(2)$.
(b) Using quantifiers define what it means for f to be an injection.

Solution: $\forall x_{1}, x_{2} \in X,(\mathbf{2})\left(f\left(x_{1}\right)=f\left(x_{2}\right)\right) \Longrightarrow\left(x_{1}=x_{2}\right)(4)$; OR equivalently $\forall x_{1}, x_{2} \in X$, $\left(x_{1} \neq x_{2}\right) \Longrightarrow\left(f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)$.
(c) Suppose f, g are injections. Show that $g \circ f: X \longrightarrow Z$ is an injection.

Solution: A proof using the first definition of injectivion. Suppose $x_{1}, x_{2} \in X$ and $(g \circ f)\left(x_{1}\right)=$ $(g \circ f)\left(x_{2}\right)$. (2) Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$. (3) Since g is an injection $f\left(x_{1}\right)=f\left(x_{2}\right)$. (3) Since f is an injection $x_{1}=x_{2}$. (3) Therefore $g \circ f$ is an injection. (2)
3. (20 points) Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ be a function and $a, b \in \mathbf{R}$. A compact definition of $\lim _{x \rightarrow a} f(x)=b$ is: $\forall \epsilon>0, \exists \delta>0, \forall x \in \mathbf{R},(0<|x-a|<\delta) \Longrightarrow(|f(x)-b|<\epsilon)$.
(a) Use quantifiers to express "not $\left(\lim _{x \rightarrow a} f(x)=b\right)$ " without using "not".

Solution: $\exists \epsilon>0,(\mathbf{2}) \quad \forall \delta>0,(\mathbf{2}) \quad \exists x \in \mathbf{R},(\mathbf{2}) \quad(0<|x-a|<\delta)(\mathbf{2})$ and (2) $(|f(x)-b| \geq \epsilon)$ (2).
(b) Let $f(x)=\left\{\begin{array}{ll}13 x-2 & : \\ 429 & : x=3\end{array}\right.$ Prove that $\lim _{x \rightarrow 3} f(x)=37$ from the definition of limit above.

Solution: Let $\epsilon>0$. Then $|f(x)-37|=|(13 x-2)-37|=|13 x-29|=13|x-3|(\mathbf{3})<\epsilon(\mathbf{2})$ when $|x-3|<\epsilon / 13$. Now $\epsilon / 13>0$ since $\epsilon>0$. Set $\delta=\epsilon / 13$ (3).
4. (25 points) In this problem binomial symbols must be computed. A committee of 6 persons is to be formed a group of 9 people.
(a) Find the number of such committees.

Solution: $\binom{9}{6}=\frac{9 \cdot 8 \cdot 7}{3 \cdot 2 \cdot 1}=3 \cdot 4 \cdot 7=84$.
(b) Find the number of such committees, given that a particular individual is to be included.

Solution: $\binom{9-1}{6-1}=\binom{8}{5}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=4 \cdot 7 \cdot 2=56$.
(c) Find the number of such committees, given that a particular individual is to be excluded.

Solution: $\binom{9-1}{6}=\binom{8}{6}=\frac{8 \cdot 7}{2 \cdot 1}=4 \cdot 7=28$.
(d) Use the Principle of Inclusion-Exclusion to find the number of such committees, given that at least one of two particular individuals is to be excluded.

Specific instructions for part (d): Let A and B be these individuals, let X be the set of committees which exclude A, and let Y be the set of committees which exclude B. Express the set of committees of part (d) in terms of X and Y and count them.
Solution: $|X \cup Y|=|X|+|Y|-|X \cap Y|(5)=\binom{9-1}{6}+\binom{9-1}{6}-\binom{9-2}{6}=28+28-7=$ 49 (5).

