Name (print) ____

- (1) There are *four questions* on this exam. (2) *Return* this exam copy with your test booklet.
- (3) You are expected to abide by the University's rules concerning academic honesty.

1. (30 points) For sets A_1, \ldots, A_n the union $A_1 \cup \cdots \cup A_n$ and intersection $A_1 \cap \cdots \cap A_n$ are defined inductively by

$$A_1 \cup \dots \cup A_n = \begin{cases} A_1 : n = 1; \\ (A_1 \cup \dots \cup A_{n-1}) \cup A_n : n > 1 \end{cases}$$

and

$$A_1 \cap \dots \cap A_n = \begin{cases} A_1 : n = 1; \\ (A_1 \cap \dots \cap A_{n-1}) \cap A_n : n > 1 \end{cases}$$

respectively.

(a) Working from definitions, for sets A, B and C show that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

Solution: Let $x \in A \cup (B \cap C)$ (2). Then $x \in A$ or $x \in B \cap C$. (2) If $x \in A$ then $x \in A \cup B$ and $x \in A \cup C$ so $x \in (A \cup B) \cap (A \cup C)$ (3). If $x \in B \cap C$ then $x \in B$ and $x \in C$; therefore $x \in A \cup B$ and $x \in A \cup C$ which means $x \in (A \cup B) \cap (A \cup C)$ (3).

(b) Given that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ for all sets A, B, and C, show by induction that $A \cup (A_1 \cap \cdots \cap A_n) = (A \cup A_1) \cap \cdots \cap (A \cup A_n)$ for all sets A, A_1, \ldots, A_n where $n \ge 1$.

Solution: If n = 1 then the left hand side and the right hand side of the equation are $A \cup A_1$; therefore the equation is true for n = 1. (3) Suppose $n \ge 1$ and the equation holds for all sets A, A_1, \ldots, A_n and let A, A_1, \ldots, A_{n+1} be sets. (3) Then

$$A \cup (A_1 \cap \dots \cap A_{n+1})$$

= $A \cup ((A_1 \cap \dots \cap A_n) \cap A_{n+1})$
= $(A \cup (A_1 \cap \dots \cap A_n)) \cap (A \cup A_{n+1})$
= $((A \cup A_1) \cap \dots \cap (A \cup A_n)) \cap (A \cup A_{n+1})$
= $(A \cup A_1) \cap \dots \cap (A \cup A_{n+1}).$

(3 for each equation) Therefore the equation holds for all $n \ge 1$ and sets A, A_1, \ldots, A_n (2). 2. (25 points) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions.

(a) Using quantifiers define what it means for f to be a surjection.

Solution: $\forall y \in Y$, (2) $\exists x \in X$, (2) y = f(x) (2).

(b) Using quantifiers define what it means for f to be an injection.

Solution: $\forall x_1, x_2 \in X$, (2) $(f(x_1) = f(x_2)) \Longrightarrow (x_1 = x_2)$ (4); OR equivalently $\forall x_1, x_2 \in X$, $(x_1 \neq x_2) \Longrightarrow (f(x_1) \neq f(x_2))$.

(c) Suppose f, g are injections. Show that $g \circ f : X \longrightarrow Z$ is an injection.

Solution: A proof using the first definition of injectivion. Suppose $x_1, x_2 \in X$ and $(g \circ f)(x_1) = (g \circ f)(x_2)$. (2) Then $g(f(x_1)) = g(f(x_2))$. (3) Since g is an injection $f(x_1) = f(x_2)$. (3) Since f is an injection $x_1 = x_2$. (3) Therefore $g \circ f$ is an injection. (2)

3. (20 points) Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be a function and $a, b \in \mathbf{R}$. A compact definition of $\lim_{x \longrightarrow a} f(x) = b$ is: $\forall \epsilon > 0, \ \exists \delta > 0, \ \forall x \in \mathbf{R}, \ (0 < |x - a| < \delta) \Longrightarrow (|f(x) - b| < \epsilon).$

(a) Use quantifiers to express "not $(\lim_{x \to a} f(x) = b)$ " without using "not".

Solution: $\exists \epsilon > 0$, (2) $\forall \delta > 0$, (2) $\exists x \in \mathbf{R}$, (2) $(0 < |x - a| < \delta)$ (2) and (2) $(|f(x) - b| \ge \epsilon)$ (2).

(b) Let
$$f(x) = \begin{cases} 13x - 2 & : x \neq 3 \\ 429 & : x = 3 \end{cases}$$
 Prove that $\lim_{x \to 3} f(x) = 37$ from the definition of limit above.

Solution: Let $\epsilon > 0$. Then |f(x) - 37| = |(13x - 2) - 37| = |13x - 29| = 13|x - 3| (3) $< \epsilon$ (2) when $|x - 3| < \epsilon/13$. Now $\epsilon/13 > 0$ since $\epsilon > 0$. Set $\delta = \epsilon/13$ (3).

4. (25 points) In this problem binomial symbols must be computed. A committee of 6 persons is to be formed a group of 9 people.

(a) Find the number of such committees.

Solution:
$$\binom{9}{6} = \frac{9 \cdot 8 \cdot 7}{3 \cdot 2 \cdot 1} = 3 \cdot 4 \cdot 7 = 84.$$
 (5)

(b) Find the number of such committees, given that a particular individual is to be *included*.

Solution:
$$\binom{9-1}{6-1} = \binom{8}{5}_{=} \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 4 \cdot 7 \cdot 2 = 56.$$
 (5)

(c) Find the number of such committees, given that a particular individual is to be *excluded*.

Solution:
$$\binom{9-1}{6} = \binom{8}{6}_{=} \frac{8 \cdot 7}{2 \cdot 1} = 4 \cdot 7 = 28.$$
 (5)

(d) Use the Principle of Inclusion-Exclusion to find the number of such committees, given that at least one of two particular individuals is to be *excluded*.

Specific instructions for part (d): Let A and B be these individuals, let X be the set of committees which exclude A, and let Y be the set of committees which exclude B. Express the set of committees of part (d) in terms of X and Y and count them.

Solution: $|X \cup Y| = |X| + |Y| - |X \cap Y|$ (5) $= \begin{pmatrix} 9-1 \\ 6 \end{pmatrix} + \begin{pmatrix} 9-1 \\ 6 \end{pmatrix} - \begin{pmatrix} 9-2 \\ 6 \end{pmatrix} = 28 + 28 - 7 = 49$ (5).