math 215 Hour Exam I Solution Radford 07/07/2009

Base the proofs for problems 2c) and 4 on the axioms for the real number system and:
a) the product of two positive real numbers is positive,
b) the product of two negative real numbers is positive,
c) the product of a positive real number and a negative real number is negative,
d) the product of zero and any real number is zero, and
e) if a, b, c are real numbers and $a<b$ then $a-c<b-c$ and $c-a>c-b$.

1. ($\mathbf{2 5}$ points total) Let P and Q be statements.
a) Write out the truth table for the statement " P implies (Q and P)".

Solution:

P	Q	P implies (Q and P)
T	T	T
T	F	F
F	T	T
F	F	T

b) Write out the truth table for the statement "(P implies Q) and P".

P	Q	$(\mathrm{P}$ implies Q) and P
T	T	T
T	F	F
F	T	F
F	F	F

c) Does the statement of part a) imply the statement of part b)? Justify your answer in terms of the truth tables of parts a) and b).

Solution: No (2), line 3 (or 4) of the table of a) has a "T" in the last column and the corresponding position in the table of part b) has an "F". (5)

Solution:

d) Does the statement of part b) imply the statement of part a)? Justify your answer in terms of the truth tables of parts a) and b).

Solution: Yes (3), in the table of part b) the only "T" which occurs is in the last column in row 1 and there is a " T " in the corresponding position in the table of part a). (5)

Comment: One could also out the full truth table of "(P implies (Q and P)) implies ($(\mathrm{P}$ implies Q) and P$)$ " and "($(\mathrm{P}$ implies Q) and P) implies (P implies $(\mathrm{Q}$ and P$)$)" to answer parts c) and d) respectively.
2. ($\mathbf{3 0}$ points total) Consider the statement " $(a+3)(a-5)>0$ implies $a \leq-3$ or $5<a$ ".
a) Write down the converse of the statement and determine whether or not it is true.

Solution: The converse is " $a \leq-3$ or $5<a$ implies $(a+3)(a-5)>0$ ". (5) The converse is false since with $a=-3$, the relation $-3 \leq a<5$ holds and $(a+3)(a-5)=0 \ngtr 0$. (5)
b) What is the contrapositive of the statement? Write it without "not".

Solution: $-3<a \leq 5(\mathbf{3}) \Longrightarrow(3)(a+3)(a-5) \leq 0(4)$.
c) Prove the statement by contradiction.

Solution: Suppose the hypothesis $(a+3)(a-5)>0$ is true and the conclusion $a \leq-3$ or $5<a$ is false. (2) Then $(a+3)(a-5)>0$ and $-3<a \leq 5$. (2) Now $-3<a$ implies $0<a+3$ and $a \leq 5$ implies $a-5 \leq 0$. (2) Therefore $a+3$ is positive and $a-5$ is negative, in which case $(a+3)(a-5)<0$, or $a+3$ is positive and $a-5=0$, in which case $(a+3)(a-5)=0$. In either case we contradict $(a+3)(a-5)>0$. (2) Thus if the hypothesis is true the conclusion must be also. (2)
3. (25 points total) Let x be a real number, $x \neq \pm 1$. Prove by induction that the sum of the odd powers

$$
x+x^{3}+x^{5}+\cdots+x^{2 n-1}=\frac{x^{2 n+1}-x}{x^{2}-1}
$$

for all $n \geq 1$.
Solution: The equation holds when $n=1$ since the left hand side is $x^{1}=x$ and the right hand side is $\frac{x^{3}-x}{x^{2}-1}=\frac{x\left(x^{2}-1\right)}{x^{2}-1}=x$. (5) Suppose that $n \geq 1$ and the equation holds. We must show that it holds for $n+1$; that is

$$
x+x^{3}+x^{5}+\cdots+x^{2(n+1)-1}=\frac{x^{2(n+1)+1}-x}{x^{2}-1} .
$$

Now

$$
\begin{align*}
& x+x^{3}+x^{5}+\cdots+x^{2(n+1)-1} \\
& \quad=x+x^{3}+x^{5}+\cdots+x^{2 n-1}+x^{2(n+1)-1} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& =\frac{x^{2 n+1}-x}{x^{2}-1}+x^{2 n+1} \tag{4}\\
& =\frac{x^{2 n+1}-x+x^{2 n+3}-x^{2 n+1}}{x^{2}-1} \tag{4}\\
& =\frac{-x+x^{2 n+3}}{x^{2}-1} \\
& =\frac{x^{2(n+1)+1}-x}{x^{2}-1}
\end{align*}
$$

Thus if the formula holds for $n \geq 1$ it holds for $n+1$. By induction the formula holds for all $n \geq 1$.
4. (20 points total) Show directly that $a<4$ or $9 \leq a$ implies $a^{2}-13 a+36 \geq 0$.

Solution: First of all notice that $a^{2}-13 a+36=(a-4)(a-9)$; thus we are to show $a<4$ or $9 \leq a$ implies $(a-4)(a-9) \geq 0$.

Suppose $a<4$. Then $a-9<a-4<0$ which implies that $(a-4)(a-9)$ is the product of two negative numbers and thus $(a-4)(a-9)>0$. (8)

Suppose $9 \leq a$. Then $0 \leq a-9<a-4$ which implies $(a-4)(a-9)$ is the product of zero and a positive number, and is thus zero, (4) or is the product of two positive numbers and thus positive. In either case $(a-4)(a-9) \geq 0$. (8)

