Summer 2009

Radford

Written Homework #3

Due at the beginning of class 07/06/2009

- 1. Let a_1, a_2, a_3, \ldots be the terms of the Fibonacci sequence.
 - a) Show that n = 6 is the smallest positive integer such that $a_n \leq 2^{n-3}$.
 - b) Prove, by induction, that $a_n \leq 2^{n-3}$ for all $n \geq 6$.

2. Prove, by induction, that the sum of the squares of the first $m \ge 1$ odd integers is given given by m(2m-1)(2m+1)

$$1^{2} + 3^{2} + \dots + (2m - 1)^{2} = \frac{m(2m - 1)(2m + 1)}{3}.$$

3. Let A and B be sets. Working from definitions, prove that $A = (A - B) \cup (A \cap B)$ and that $(A - B) \cap (A \cap B) = \emptyset$. (Thus A is the disjoint union of A - B and $A \cap B$.)