1. (30 points total) We first construct a table for small values of n and for them the values of the terms a_n of the Fibonacci sequence and the values of 2^{n-3} .

n	a_n	2^{n-3}
1	1	1/4
2	1	1/2
3	2	1
4	3	2
5	5	4
6	8	8
7	13	16.

a) From the table we that $a_n > 2^{n-3}$ for $1 \le n \le 5$ and $a_n \le 2^{n-3}$ for n = 6, 7. (10)

b) From the table it follows that $a_6 = 8 \le 8 = 2^3 = 2^{6-3}$; thus the inequality is true for n = 6. (5) Suppose $n \ge 6$ and the inequality is true. We need to show that it is true for n+1; that is $a_{n+1} \le 2^{(n+1)-3} = 2^{n-2}$. If n = 7 then from the table $a_7 = 13 < 16 = 2^4 = 2^{7-3}$. (5)

Suppose n > 6. Then $n - 1 \ge 6$ and therefore

$$a_{n+1} = a_n + a_{n-1} \le 2^{n-3} + 2^{n-4} \le 2^{n-3} + 2^{n-3} = 2 \cdot 2^{n-3} = 2^{n-2} = 2^{(n+1)-3}.$$
 (5)

We have shown that $a_{n+1} \leq 2^{(n+1)-3}$. Thus $a_n \leq 2^{n-3}$ for all $n \geq 6$ by the strong induction principle (with base case n = 6.) (5)

2. (40 points total) When m = 1 the left hand side of the equation is $1^2 = 1$ and the right hand side is $\frac{1(2 \cdot 1 - 1)(2 \cdot 1 + 1)}{3} = \frac{1 \cdot 1 \cdot 3}{3} = 1$. Thus the equation holds in the base case n = 1. (10)

Suppose $n \ge 1$ the equation holds. We must show it holds for n + 1; that is

$$1^{2} + 3^{2} + 5^{2} + \dots (2(m+1) - 1)^{2} = \frac{(m+1)(2(m+1) - 1)(2(m+1) + 1)}{3}$$

or equivalently

$$1^{2} + 3^{2} + 5^{2} + \dots (2m+1)^{2} = \frac{(m+1)(2m+1)(2m+3)}{3}$$

Now

$$1^{2} + 3^{2} + 5^{2} + \dots + (2m+1)^{2}$$

= $1^{2} + 3^{2} + 5^{2} + \dots + (2m-1)^{2} + (2m+1)^{2}$ (5)

$$= \underbrace{\frac{m(2m-1)(2m+1)}{3}}_{(2m+1)} + (2m+1)^2 \quad (5)$$

$$= \left(\frac{2m+1}{3}\right) (m(2m-1) + 3(2m+1))$$

$$= \left(\frac{2m+1}{3}\right) (2m^2 + 5m + 3) \quad (5)$$

$$= \left(\frac{2m+1}{3}\right) (2m+3)(m+1) \quad (5)$$

$$= \frac{(m+1)(2m+1)(2m+3)}{3}$$

$$= \frac{(m+1)(2(m+1)-1)(2(m+1)+1)}{3} \quad (5)$$

as required. We have shown that if the formula holds for n it holds for n + 1. Therefore the formula holds for all $n \ge 1$ by induction on n. (5)

3. (30 points total) Suppose $x \in A$. Then $x \notin B$, in which case $x \in A - B$, or $x \in B$, in which case $x \in A \cap B$. Therefore $x \in (A - B) \cup (A \cap B)$. We have shown $x \in A$ implies $x \in (A - B) \cup (A \cap B)$. (10)

Conversely, suppose $x \in (A-B) \cup (A \cap B)$. Then $x \in A - B$ or $x \in A \cap B$. By definition $x \in A$ and $x \notin B$, or $x \in A$ and $x \in B$. In either case $x \in A$. Therefore $x \in A$. We have shown that $x \in (A - B) \cup (A \cap B)$ implies $x \in A$. Therefore $A = (A - B) \cup (A \cap B)$. (10)

To show that $(A - B) \cap (A \cap B) = \emptyset$, assume $(A - B) \cap (A \cap B) \neq \emptyset$. Then there is an $x \in (A - B) \cap (A \cap B)$. Now $x \in A - B$ and $x \in A \cap B$. Therefore $x \in A, x \notin B$ and $x \in A, x \in B$. But $x \notin B$ and $x \in B$ is impossible. This contradiction shows that $(A - B) \cap (A \cap B) = \emptyset$ after all. (10)