1. (30 points total) We first construct a table for small values of n and for them the values of the terms a_{n} of the Fibonacci sequence and the values of 2^{n-3}.

n	a_{n}	2^{n-3}
1	1	$1 / 4$
2	1	$1 / 2$
3	2	1
4	3	2
5	5	4
6	8	8
7	13	16.

a) From the table we that $a_{n}>2^{n-3}$ for $1 \leq n \leq 5$ and $a_{n} \leq 2^{n-3}$ for $n=6,7$. (10)
b) From the table it follows that $a_{6}=8 \leq 8=2^{3}=2^{6-3}$; thus the inequality is true for $n=6$. (5) Suppose $n \geq 6$ and the inequality is true. We need to show that it is true for $n+1$; that is $a_{n+1} \leq 2^{(n+1)-3}=2^{n-2}$. If $n=7$ then from the table $a_{7}=13<16=2^{4}=2^{7-3}$. (5)

Suppose $n>6$. Then $n-1 \geq 6$ and therefore

$$
\begin{equation*}
a_{n+1}=a_{n}+a_{n-1} \leq 2^{n-3}+2^{n-4} \leq 2^{n-3}+2^{n-3}=2 \cdot 2^{n-3}=2^{n-2}=2^{(n+1)-3} \tag{5}
\end{equation*}
$$

We have shown that $a_{n+1} \leq 2^{(n+1)-3}$. Thus $a_{n} \leq 2^{n-3}$ for all $n \geq 6$ by the strong induction principle (with base case $n=6$.) (5)
2. (40 points total) When $m=1$ the left hand side of the equation is $1^{2}=1$ and the right hand side is $\frac{1(2 \cdot 1-1)(2 \cdot 1+1)}{3}=\frac{1 \cdot 1 \cdot 3}{3}=1$. Thus the equation holds in the base case $n=1$. (10)

Suppose $n \geq 1$ the equation holds. We must show it holds for $n+1$; that is

$$
1^{2}+3^{2}+5^{2}+\cdots(2(m+1)-1)^{2}=\frac{(m+1)(2(m+1)-1)(2(m+1)+1)}{3}
$$

or equivalently

$$
1^{2}+3^{2}+5^{2}+\cdots(2 m+1)^{2}=\frac{(m+1)(2 m+1)(2 m+3)}{3} .
$$

Now

$$
\begin{align*}
& 1^{2}+3^{2}+5^{2}+\cdots+(2 m+1)^{2} \\
& \quad=\underbrace{1^{2}+3^{2}+5^{2}+\cdots+(2 m-1)^{2}}+(2 m+1)^{2} \tag{5}
\end{align*}
$$

$$
\begin{align*}
& =\underbrace{\frac{m(2 m-1)(2 m+1)}{3}}+(2 m+1)^{2} \tag{5}\\
& =(5) \\
& =\left(\frac{2 m+1}{3}\right)(m(2 m-1)+3(2 m+1)) \tag{5}\\
& =\left(\frac{2 m+1}{3}\right)\left(2 m^{2}+5 m+3\right)(2 m+3)(m+1) \tag{5}\\
& =\frac{(m+1)(2 m+1)(2 m+3)}{3} \\
& =\frac{(m+1)(2(m+1)-1)(2(m+1)+1)}{3} \tag{5}
\end{align*}
$$

as required. We have shown that if the formula holds for n it holds for $n+1$. Therefore the the formula holds for all $n \geq 1$ by induction on n. (5)
3. ($\mathbf{3 0}$ points total) Suppose $x \in A$. Then $x \notin B$, in which case $x \in A-B$, or $x \in B$, in which case $x \in A \cap B$. Therefore $x \in(A-B) \cup(A \cap B)$. We have shown $x \in A$ implies $x \in(A-B) \cup(A \cap B)$. (10)

Conversely, suppose $x \in(A-B) \cup(A \cap B)$. Then $x \in A-B$ or $x \in A \cap B$. By definition $x \in A$ and $x \notin B$, or $x \in A$ and $x \in B$. In either case $x \in A$. Therefore $x \in A$. We have shown that $x \in(A-B) \cup(A \cap B)$ implies $x \in A$. Therefore $A=(A-B) \cup(A \cap B)$. (10)

To show that $(A-B) \cap(A \cap B)=\emptyset$, assume $(A-B) \cap(A \cap B) \neq \emptyset$. Then there is an $x \in(A-B) \cap(A \cap B)$. Now $x \in A-B$ and $x \in A \cap B$. Therefore $x \in A, x \notin B$ and $x \in A, x \in B$. But $x \notin B$ and $x \in B$ is impossible. This contradiction shows that $(A-B) \cap(A \cap B)=\emptyset$ after all. (10)

