1. (20 points total) If n = 1 the left hand side of the equation is $A \cap A_1$ which is the right hand side. Therefore the equation is true for n = 1. (3)

Suppose $n \ge 1$ and the equation holds for all sets A_1, \ldots, A_n and let A_1, \ldots, A_{n+1} be sets. The equation holds for n = 2 (this we are allowed to assume). Thus we may assume $n \ge 2$. (3) Using the fact that the equation holds for n = 2 and the induction hypothesis we calculate

$$A \cap (A_1 \cup \dots \cup A_{n+1}) = A \cap ((A_1 \cup \dots A_n) \cup A_{n+1}) \quad (\mathbf{3})$$

= $(A \cap (A_1 \cup \dots \cup A_n)) \cup (A \cap A_{n+1}) \quad (\mathbf{3})$
= $((A \cap A_1) \cup \dots \cup (A \cap A_n)) \cup (A \cap A_{n+1}) \quad (\mathbf{3})$
= $(A \cap A_1) \cup \dots \cup (A \cap A_{n+1}) \quad (\mathbf{3})$

which means that the equation holds for A_1, \ldots, A_{n+1} . By induction the equation holds for all sets A_1, \ldots, A_n , where $n \ge 1$. (2)

2. (20 points total) a) $P(\emptyset) = \{\emptyset\}$ (5) b) $P(\{41\}) = \{\emptyset, \{41\}\}$ (5) c) $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$ (5) and d) $P(\{\pi, e\}) = \{\emptyset, \{\pi\}, \{e\}, \{\pi, e\}\}$ (5).

3. (20 points total) We first complete the truth table										
$x \in A$	$x \in B$	$x \in A - B$	$x\in A\cap B$	$x \in (A - B) \cap (A \cap B)$	$x \in A$					
Т	Т	F	Т	F	Т					
Т	F	Т	\mathbf{F}	\mathbf{F}	Т					
F	Т	F	\mathbf{F}	\mathbf{F}	Т					
\mathbf{F}	\mathbf{F}	F	\mathbf{F}	\mathbf{F}	\mathbf{F}					
		(2)	(2)	(2)	(2)					

From columns 3 and 4 we conclude that $x \in A - B$ or $x \in A \cap B$ if and only if $x \in A$. Hence $(A - B) \cup (A \cap B) = A$. (6) Since column 5 consists of all F's we conclude that $(A - B) \cap (A \cap B) = \emptyset$. (6)

4. (20 points total) The sets $(A \cup B)^c$ and $A^c \cap B^c$ are equal since the 4th and 7th columns of the truth table below are the same. (5)

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in (A \cup B)^c$	$x\in A^c$	$x\in B^c$	$x\in A^c\cap B^c$	
Т	Т	Т	F	F	F	F	-
Т	F	Т	\mathbf{F}	F	Т	\mathbf{F}	
\mathbf{F}	Т	Т	\mathbf{F}	Т	F	\mathbf{F}	•
F	F	F	Т	Т	Т	Т	
		(3)	(3)	(3)	(3)	(3)	

5. (20 points total) We apply $A^c \cap B^c = (A \cup B)^c$ to A^c and B^c and deduce $(A \cap B)^c = (A^{cc} \cap B^{cc})^c = (A^c \cup B^c)^{cc} = A^c \cup B^c$. (6) (7) (7)