1. (20 points total) If $n=1$ the left hand side of the equation is $A \cap A_{1}$ which is the right hand side. Therefore the equation is true for $n=1$. (3)

Suppose $n \geq 1$ and the equation holds for all sets A_{1}, \ldots, A_{n} and let A_{1}, \ldots, A_{n+1} be sets. The equation holds for $n=2$ (this we are allowed to assume). Thus we may assume $n \geq 2$. (3) Using the fact that the equation holds for $n=2$ and the induction hypothesis we calculate

$$
\begin{align*}
A \cap\left(A_{1} \cup \cdots \cup A_{n+1}\right) & =A \cap\left(\left(A_{1} \cup \cdots A_{n}\right) \cup A_{n+1}\right) \quad(\mathbf{3}) \tag{3}\\
& =\left(A \cap\left(A_{1} \cup \cdots \cup A_{n}\right)\right) \cup\left(A \cap A_{n+1}\right) \quad(\mathbf{3}) \tag{3}\\
& =\left(\left(A \cap A_{1}\right) \cup \cdots \cup\left(A \cap A_{n}\right)\right) \cup\left(A \cap A_{n+1}\right) \tag{3}\\
& =\left(A \cap A_{1}\right) \cup \cdots \cup\left(A \cap A_{n+1}\right) \quad \text { (3) }
\end{align*}
$$

which means that the equation holds for A_{1}, \ldots, A_{n+1}. By induction the equation holds for all sets A_{1}, \ldots, A_{n}, where $n \geq 1$. (2)
2. (20 points total) a) $P(\emptyset)=\{\emptyset\}$ (5)
b) $P(\{41\})=\{\emptyset,\{41\}\}$
c) $P(\{\emptyset\})=$ $\{\emptyset,\{\emptyset\}\}(5)$ and d) $P(\{\pi, e\})=\{\emptyset,\{\pi\},\{e\},\{\pi, e\}\}$ (5).
3. (20 points total) We first complete the truth table

$x \in A$	$x \in B$	$x \in A-B$	$x \in A \cap B$	$x \in(A-B) \cap(A \cap B)$	$x \in A$
T	T	F	T	F	T
T	F	T	F	F	T
F	T	F	F	F	T
F	F	F	F	F	F
		(2)	(2)	(2)	(2)

From columns 3 and 4 we conclude that $x \in A-B$ or $x \in A \cap B$ if and only if $x \in A$. Hence $(A-B) \cup(A \cap B)=A$. (6) Since column 5 consists of all F's we conclude that $(A-B) \cap(A \cap B)=\emptyset$. (6)
4. (20 points total) The sets $(A \cup B)^{c}$ and $A^{c} \cap B^{c}$ are equal since the $4^{\text {th }}$ and $7^{\text {th }}$ columns of the truth table below are the same. (5)

$x \in A$	$x \in B$	$x \in A \cup B$	$x \in(A \cup B)^{c}$	$x \in A^{c}$	$x \in B^{c}$	$x \in A^{c} \cap B^{c}$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T
		(3)	(3)	$(\mathbf{3})$	$(\mathbf{3})$	$(\mathbf{3})$

5. (20 points total) We apply $A^{c} \cap B^{c}=(A \cup B)^{c}$ to A^{c} and B^{c} and deduce $(A \cap B)^{c}=\left(A^{c c} \cap B^{c c}\right)^{c}=\left(A^{c} \cup B^{c}\right)^{c c}=A^{c} \cup B^{c}$.
(6)
(7)
(7)
