Written Homework \#5

Due at the beginning of class 07/17/2009

For $n \geq 1$ recall we defined the union of sets A_{1}, \ldots, A_{n} inductively by

$$
A_{1} \cup \cdots \cup A_{n}= \begin{cases}A_{1} & : n=1 ; \\ \left(A_{1} \cup \cdots \cup A_{n-1}\right) \cup A_{n} & : n>1\end{cases}
$$

and we define the intersection of A_{1}, \ldots, A_{n} inductively by

$$
A_{1} \cap \cdots \cap A_{n}= \begin{cases}A_{1} & : n=1 \\ \left(A_{1} \cap \cdots \cap A_{n-1}\right) \cap A_{n} & : n>1\end{cases}
$$

1. Let A, A_{1}, \ldots, A_{n} be sets, where $n \geq 1$.
(a) Prove, by induction, that $A \times\left(A_{1} \cup \cdots \cup A_{n}\right)=\left(A \times A_{1}\right) \cup \cdots \cup\left(A \times A_{n}\right)$. [You may assume $A \times(B \cup C)=(A \times B) \cup(A \times C)$ for sets A, B, C.]
(b) Prove, by induction, that $A \times\left(A_{1} \cap \cdots \cap A_{n}\right)=\left(A \times A_{1}\right) \cap \cdots \cap\left(A \times A_{n}\right)$. [First prove $A \times(B \cap C)=(A \times B) \cap(A \times C)$ for sets A, B, C.]
2. Let A, B be fixed sets. Determine the logical relationships between the following statements:
(a) $\forall a \in A, \exists b \in B, P(a, b)$;
(b) $\exists b \in B, \forall a \in A, P(a, b)$;
(c) $\exists a \in A, \forall b \in B, \operatorname{not} P(a, b)$;
(d) $\exists a \in A, \exists b \in B, P(a, b)$.

Comment: Here implication means universal implication where we regard the statements $P(a, b)$ as parameters. Thus one statement implies another if the implication holds for all possible $P(a, b)$. To show one statement does not imply another supply a counterexample.

Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ be a function and $a, b \in \mathbf{R}$. A compact definition of $\lim _{x \rightarrow a} f(x)=b$ is: $\forall \epsilon>0, \exists \delta>0, P(\epsilon, \delta)$, where $P(\epsilon, \delta): \forall x \in \mathbf{R},(0<|x-a|<\delta) \Longrightarrow(|f(x)-b|<\epsilon)$.
3. Let $f(x)=\left\{\begin{array}{ll}11 x-3 & : \\ 47 & : x=4 \\ 47\end{array}\right.$. Prove that $\lim _{x \rightarrow 4} f(x)=41$ from the definition of limit.
4. Here is an exercise in what "not $\left(\lim _{x \rightarrow a} f(x)=b\right)$) means.
(a) Use quantifiers to express "not $\left(\lim _{x \rightarrow a} f(x)=b\right)$ ", expressing "not $P(\epsilon, \delta)$ " without using "not".
(b) Show that $\lim _{x \rightarrow 0} f(x)=b$ is false for all $b \in \mathbf{R}$, where $f(x)= \begin{cases}1 / 2 & : x \geq 0 \\ 1 / 3 & : x<0\end{cases}$
5. Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ be defined by $f(x)=x^{2}-6 x+21$ for all $x \in \mathbf{R}$.
(a) Show that f is not surjective.
(b) Show that f is not injective.

