MATH 215

Summer 2009

Radford

Written Homework #5

Due at the beginning of class 07/17/2009

For $n \ge 1$ recall we defined the union of sets A_1, \ldots, A_n inductively by

$$A_1 \cup \dots \cup A_n = \begin{cases} A_1 & : n = 1; \\ (A_1 \cup \dots \cup A_{n-1}) \cup A_n & : n > 1 \end{cases}$$

and we define the intersection of A_1, \ldots, A_n inductively by

$$A_1 \cap \dots \cap A_n = \begin{cases} A_1 & : n = 1; \\ (A_1 \cap \dots \cap A_{n-1}) \cap A_n & : n > 1 \end{cases}$$

1. Let A, A_1, \ldots, A_n be sets, where $n \ge 1$.

(a) Prove, by induction, that $A \times (A_1 \cup \cdots \cup A_n) = (A \times A_1) \cup \cdots \cup (A \times A_n)$. [You may assume $A \times (B \cup C) = (A \times B) \cup (A \times C)$ for sets A, B, C.]

(b) Prove, by induction, that $A \times (A_1 \cap \cdots \cap A_n) = (A \times A_1) \cap \cdots \cap (A \times A_n)$. [First prove $A \times (B \cap C) = (A \times B) \cap (A \times C)$ for sets A, B, C.]

2. Let A, B be fixed sets. Determine the logical relationships between the following statements:

- (a) $\forall a \in A, \exists b \in B, P(a,b);$
- (b) $\exists b \in B, \forall a \in A, P(a,b);$
- (c) $\exists a \in A, \forall b \in B, \text{ not } P(a, b);$
- (d) $\exists a \in A, \exists b \in B, P(a, b).$

Comment: Here implication means universal implication where we regard the statements P(a, b) as parameters. Thus one statement implies another if the implication holds for all possible P(a, b). To show one statement does not imply another supply a counterexample.

Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be a function and $a, b \in \mathbf{R}$. A compact definition of $\lim_{x \longrightarrow a} f(x) = b$ is: $\forall \epsilon > 0, \exists \delta > 0, P(\epsilon, \delta), \text{ where } P(\epsilon, \delta) : \forall x \in \mathbf{R}, (0 < |x - a| < \delta) \Longrightarrow (|f(x) - b| < \epsilon).$ 3. Let $f(x) = \begin{cases} 11x - 3 : x \neq 4 \\ 47 : x = 4 \end{cases}$. Prove that $\lim_{x \longrightarrow 4} f(x) = 41$ from the definition of limit. 4. Here is an exercise in what "not $(\lim_{x \to a} f(x) = b)$ " means.

(a) Use quantifiers to express "not $(\lim_{x \to a} f(x) = b)$ ", expressing "not $P(\epsilon, \delta)$ " without using "not".

(b) Show that $\lim_{x \to 0} f(x) = b$ is false for all $b \in \mathbf{R}$, where $f(x) = \begin{cases} 1/2 & : x \ge 0 \\ 1/3 & : x < 0 \end{cases}$

5. Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be defined by $f(x) = x^2 - 6x + 21$ for all $x \in \mathbf{R}$.

- (a) Show that f is not surjective.
- (b) Show that f is not injective.