1. (20 points total) This is very similar to WH4, Problem 1.

(a) When n = 1 the equation holds since both sides are $A \times A_1$ in this case. (1)

Suppose $n \ge 1$ and the equation holds for all sets A, A_1, \ldots, A_n and let A, A_1, \ldots, A_{n+1} be sets. The equation holds for n = 2 (this we are allowed to assume). Thus we may assume $n \ge 2$. (1) Using the fact that the equation holds for n = 2 and the induction hypothesis we calculate

$$A \times (A_1 \cup \dots \cup A_{n+1}) = A \times ((A_1 \cup \dots \cup A_n) \cup A_{n+1}) \quad (\mathbf{1})$$

= $(A \times (A_1 \cup \dots \cup A_n)) \cup (A \times A_{n+1}) \quad (\mathbf{1})$
= $((A \times A_1) \cup \dots \cup (A \times A_n)) \cup (A \times A_{n+1}) \quad (\mathbf{1})$
= $(A \times A_1) \cup \dots \cup (A \times A_{n+1}) \quad (\mathbf{1})$

which means that the equation holds for A, A_1, \ldots, A_{n+1} . (1) By induction the equation holds for all sets A, A_1, \ldots, A_n , where $n \ge 1$. (1)

(b) Prove $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (4) and then repeat the proof of part (a) with " \cap " replacing " \cup "; graded same way. (8)

2. (20 points total) This requires a bit of patience since there are so many cases. It should have been stated that A and B are not empty.

Each of the statements implies itself (2). We consider the other implications. For counter examples we take $A = B = \mathbf{R}$. (3 for the correct number of cases.) We repeat the statements for convenience and refer to statements by their labels.

- (a) $\forall a \in A, \exists b \in B, P(a, b);$
- (b) $\exists b \in B, \forall a \in A, P(a, b);$
- (c) $\exists a \in A, \forall b \in B, \text{ not } P(a, b);$
- (d) $\exists a \in A, \exists b \in B, P(a, b).$

(a) $\neq \Rightarrow$ (b). (3) Take $P(a, b) : a \ge b$ for example. Then (a) is true ($\forall a \in A$ take b = a - 1) but (b) is false since $\forall b \in B$ the statement $a \ge b$ is false with a = b - 1.

(a) $\neq \Rightarrow$ (c). (3) The statements of (a) and (c) are negations of each other.

(a) \Longrightarrow (d). (3) Note $\forall a \in A, Q(a)$ implies $\exists a \in A, Q(a)$ holds for non-empty sets A.

(b) \implies (a). (2) Observe (b) can be read for some $b_0 \in B$ the statement $P(a, b_0)$ is true for all $a \in A$. Thus for all $a \in A$ there is a $b \in B$, namely $b = b_0$, such that P(a, b) is true. Note in (a) the $b \in B$ mentioned may very well depend on the $a \in A$.

(b) $\neq \Rightarrow$ (c). (2) Take $P(a, b) : a^2 \ge 0$ for example, which is always true. Thus "not P(a, b)" is always false.

(b) \implies (d). (2) Note (b) implies " $\exists b \in B, \exists a \in A, P(a, b)$ ", since A is not empty, and the latter is equivalent to (d).

(c) $\neq \Rightarrow$ (a). Take $P(a, b) : a^2 < 0$, for example, which is false. Thus "not P(a, b)" is true.

- (c) $\not\Longrightarrow$ (b). Same.
- (c) $\neq \Rightarrow$ (d). Same.
- (d) $\not\Longrightarrow$ (a). Take P(a, b) : a = 0.
- (d) $\not\Longrightarrow$ (b). Take $P(a, b) : a \ge b$.
- (d) $\neq \Rightarrow$ (c). Take $P(a, b) : a^2 \ge 0$.

3. (20 points total) For $x \neq 4$ observe that |f(x) - 41| = |(11x - 3) - 41| = |11x - 44| = 11|x - 4|. (3) Let $\epsilon > 0$ (3) and $\delta = \epsilon/11$ (3). Then

$$0 < |x - 4| < \delta \implies 0 < |x - 4| < \epsilon/11 \quad (3)$$

$$\implies 0 < 11|x - 4| < \epsilon \quad (3)$$

$$\implies 0 < |f(x) - 41| < \epsilon \quad (3)$$

$$\implies |f(x) - 41| < \epsilon \quad (2).$$

- 4. (20 points total) $\lim_{x \to a} f(x) = b$ is the statement " $\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathbf{R}, 0 < |x - a| < \delta$ implies $|f(x) - b| < \epsilon$ ".
- (a) The negation of the statement is: " $\exists \epsilon > 0$ (2), $\forall \delta > 0$ (2), $\exists x \in \mathbf{R}$ (2), $0 < |x - a| < \delta$ (2) and (2) $|f(x) - b| \ge$

 ϵ (2)".

(b) Here is an argument. Let $\delta > 0$ and $x = \pm \delta/2$. Then $0 < |x - 0| = \delta/2 < \delta$. Note $|f(-\delta/2) - b| = |1/3 - b|$ and $|f(\delta/2) - b| = |1/2 - b|$. One of |1/3 - b|, |1/2 - b| is positive, else 1/3 = b = 1/2, a contradiction. Let ϵ be the smallest positive value of the previous line. Then $|f(-\delta/2) - b| = \epsilon \ge \epsilon$ or $|f(\delta/2) - b| = \epsilon \ge \epsilon$. Thus the statement of (a) is satisfied with $x = -\delta/2$ or $x = \delta/2$. (8)

5. (20 points total) $f : \mathbf{R} \longrightarrow \mathbf{R}$ is given by $f(x) = x^2 - 6x + 21$.

(a) Completing the square we see $f(x) = (x-3)^2 + 12 \ge 12$. Therefore $f(x) \ne 11.99$ for all $x \in \mathbf{R}$, for example. (10) We have shown that f is not surjective.

Comment: Need a specific $y \in \mathbf{R}$ such that $f(x) \neq y$ for all $x \in \mathbf{R}$.

(b) f(x) = x(x-6) + 21 so f(0) = 21 = f(6). (10) Therefore f is not injective.

Comment: Need specific $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$.