1. (20 points total) This is very similar to WH4, Problem 1.
(a) When $n=1$ the equation holds since both sides are $A \times A_{1}$ in this case. (1)

Suppose $n \geq 1$ and the equation holds for all sets A, A_{1}, \ldots, A_{n} and let $A, A_{1}, \ldots, A_{n+1}$ be sets. The equation holds for $n=2$ (this we are allowed to assume). Thus we may assume $n \geq 2$. (1) Using the fact that the equation holds for $n=2$ and the induction hypothesis we calculate

$$
\begin{align*}
A \times\left(A_{1} \cup \cdots \cup A_{n+1}\right) & =A \times\left(\left(A_{1} \cup \cdots \cup A_{n}\right) \cup A_{n+1}\right) \quad(\mathbf{1}) \tag{1}\\
& =\left(A \times\left(A_{1} \cup \cdots \cup A_{n}\right)\right) \cup\left(A \times A_{n+1}\right) \quad(\mathbf{1}) \tag{1}\\
& =\left(\left(A \times A_{1}\right) \cup \cdots \cup\left(A \times A_{n}\right)\right) \cup\left(A \times A_{n+1}\right) \tag{1}\\
& =\left(A \times A_{1}\right) \cup \cdots \cup\left(A \times A_{n+1}\right) \quad \text { (1) }
\end{align*}
$$

which means that the equation holds for $A, A_{1}, \ldots, A_{n+1}$. (1) By induction the equation holds for all sets A, A_{1}, \ldots, A_{n}, where $n \geq 1$. (1)
(b) Prove $A \times(B \cap C)=(A \times B) \cap(A \times C)$ (4) and then repeat the proof of part (a) with " \cap " replacing " \cup "; graded same way. (8)
2. ($\mathbf{2 0}$ points total) This requires a bit of patience since there are so many cases. It should have been stated that A and B are not empty.

Each of the statements implies itself (2). We consider the other implications. For counter examples we take $A=B=\mathbf{R}$. ($\mathbf{3}$ for the correct number of cases.) We repeat the statements for convenience and refer to statements by their labels.
(a) $\forall a \in A, \exists b \in B, P(a, b)$;
(b) $\exists b \in B, \forall a \in A, P(a, b)$;
(c) $\exists a \in A, \forall b \in B, \operatorname{not} P(a, b)$;
(d) $\exists a \in A, \exists b \in B, P(a, b)$.
(a) \nRightarrow (b). (3) Take $P(a, b): a \geq b$ for example. Then (a) is true ($\forall a \in A$ take $b=a-1$) but (b) is false since $\forall b \in B$ the statement $a \geq b$ is false with $a=b-1$.
(a) \nRightarrow (c). (3) The statements of (a) and (c) are negations of each other.
(a) $\Longrightarrow(\mathrm{d})$. (3) Note $\forall a \in A, Q(a)$ implies $\exists a \in A, Q(a)$ holds for non-empty sets A.
(b) \Longrightarrow (a). (2) Observe (b) can be read for some $b_{0} \in B$ the statement $P\left(a, b_{0}\right)$ is true for all $a \in A$. Thus for all $a \in A$ there is a $b \in B$, namely $b=b_{0}$, such that $P(a, b)$ is true. Note in (a) the $b \in B$ mentioned may very well depend on the $a \in A$.
(b) \nRightarrow (c). (2) Take $P(a, b): a^{2} \geq 0$ for example, which is always true. Thus "not $P(a, b)$ " is always false.
(b) \Longrightarrow (d). (2) Note (b) implies " $\exists b \in B, \exists a \in A, P(a, b)$ ", since A is not empty, and the latter is equivalent to (d).
(c) $\nRightarrow(\mathrm{a})$. Take $P(a, b): a^{2}<0$, for example, which is false. Thus "not $P(a, b)$ " is true.
(c) \nRightarrow (b). Same.
(c) \nRightarrow (d). Same.
(d) $\nRightarrow(\mathrm{a})$. Take $P(a, b): a=0$.
$(\mathrm{d}) \nRightarrow(\mathrm{b})$. Take $P(a, b): a \geq b$.
(d) \nRightarrow (c). Take $P(a, b): a^{2} \geq 0$.
3. (20 points total) For $x \neq 4$ observe that $|f(x)-41|=|(11 x-3)-41|=|11 x-44|=$ $11|x-4|$. (3) Let $\epsilon>0$ (3) and $\delta=\epsilon / 11$ (3). Then

$$
\begin{align*}
0<|x-4|<\delta & \Longrightarrow 0<|x-4|<\epsilon / 11 \quad(\mathbf{3}) \\
& \Longrightarrow 0<11|x-4|<\epsilon(\mathbf{3}) \\
& \Longrightarrow 0<|f(x)-41|<\epsilon \quad(\mathbf{3}) \tag{3}\\
& \Longrightarrow|f(x)-41|<\epsilon(\mathbf{2}) .
\end{align*}
$$

4. (20 points total) $\lim _{x \rightarrow a} f(x)=b$ is the statement " $\forall \epsilon>0, \exists \delta>0, \forall x \in \mathbf{R}, 0<|x-a|<\delta$ implies $|f(x)-b|<\epsilon$ ".
(a) The negation of the statement is:

$$
" \exists \epsilon>0 \quad \text { (2), } \forall \delta>0 \quad \text { (2), } \exists x \in \mathbf{R} \quad(\mathbf{2}), 0<|x-a|<\delta \quad \text { (2) and } \quad(\mathbf{2}) \quad|f(x)-b| \geq
$$

$\epsilon(2)$ ".
(b) Here is an argument. Let $\delta>0$ and $x= \pm \delta / 2$. Then $0<|x-0|=\delta / 2<\delta$. Note $|f(-\delta / 2)-b|=|1 / 3-b|$ and $|f(\delta / 2)-b|=|1 / 2-b|$. One of $|1 / 3-b|,|1 / 2-b|$ is positive, else $1 / 3=b=1 / 2$, a contradiction. Let ϵ be the smallest positive value of the previous line. Then $|f(-\delta / 2)-b|=\epsilon \geq \epsilon$ or $|f(\delta / 2)-b|=\epsilon \geq \epsilon$. Thus the statement of (a) is satisfied with $x=-\delta / 2$ or $x=\delta / 2$. (8)
5. (20 points total) $f: \mathbf{R} \longrightarrow \mathbf{R}$ is given by $f(x)=x^{2}-6 x+21$.
(a) Completing the square we see $f(x)=(x-3)^{2}+12 \geq 12$. Therefore $f(x) \neq 11.99$ for all $x \in \mathbf{R}$, for example. (10) We have shown that f is not surjective.
Comment: Need a specific $y \in \mathbf{R}$ such that $f(x) \neq y$ for all $x \in \mathbf{R}$.
(b) $f(x)=x(x-6)+21$ so $f(0)=21=f(6)$. (10) Therefore f is not injective.

Comment: Need specific $x_{1}, x_{2} \in \mathbf{R}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

