Summer 2009

MATH 215

Written Homework #6 (REVISED)

Due at the beginning of class 07/24/2009

1. Let A, B, and C be sets.

(a) Prove $A \cap B \subseteq A \cap C$ and $A \cup B \subseteq A \cup C$ implies $|B \subseteq C|$.

(b) Use part (a) to show that $A \cap B = A \cap C$ and $A \cup B = A \cup C$ implies B = C.

2. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ be functions which satisfy $g \circ f = I_X$. Prove that f is injective and g is surjective.

3. Let $f: [1/2, \infty) \longrightarrow [-1/4, \infty)$ be defined by $f(x) = x^2 - x$ for all $x \in [1/2, \infty)$.

- (a) Show that f is injective.
- (b) Show that f is surjective.
- (c) Find f^{-1} .

4. Let $f: X \longrightarrow Y$ be a function and $G_f \subseteq X \times Y$ be its graph. Show that f is bijective if and only if $G_f^{op} = \{(y, x) \mid (x, y) \in G_f\}$ is the graph of a function. [*Hint*: You may use the fact that $G \subseteq X \times Y$ is the graph of a function if and only if (a) $\forall x \in X, \exists y \in Y, (x, y) \in G$ and (b) $(x, y), (x, y') \in G$ implies y = y'.

5. Let U be a universal set and $A, B \subseteq U$. Recall that $\chi_{\emptyset} = 0, \chi_U = 1$, and $\chi_A = \chi_B$ if and only if A = B.

(a) Complete the table

and explain how it proves that $\chi_{A\cap B} = \chi_A \chi_B$.

(b) Complete the table

and explain how it proves that $\chi_{A\cup B} = \chi_A + \chi_B - \chi_{A\cap B}$.