1. (20 points total) We are assuming (i) $A \cap B \subseteq A \cap C$ and (ii) $A \cup B \subseteq A \cup C$.

(a) We wish to show $B \subseteq C$. Let $b \in B$. Suppose that $b \in A$. Then $b \in A \cap B$ which means $b \in A \cap C$ by (i). Therefore $b \in C$. (4) Now suppose $b \notin A$. Since $b \in B$ it follows $b \in A \cup B$. Therefore $b \in A \cup C$ by (ii). Since $b \notin A$ necessarily $b \in C$. (4) In any event $b \in C$. We have shown $B \subseteq C$. (4)

(b) We are given $A \cap B = A \cap C$ and $A \cup B = A \cup C$. In particular $A \cap B \subseteq A \cap B$ and $A \cup B \subseteq A \cup C$. Thus $B \subseteq C$ by part (a). (3) The equations also imply $A \cap C \subseteq A \cap B$ and $A \cup C \subseteq A \cup B$. Therefore $C \subseteq B$ by part (a) as well. (3) We have shown B = C. (2)

2. (20 points total) The functions $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ satisfy $g \circ f = I_X$. The latter is equivalent to g(f(x)) = x for all $x \in X$. (4) We use this equivalence in our proofs.

First of all we show f is injective. Suppose $x, x' \in X$ and f(x) = f(x'). (3) Then x = x' since x = g(f(x)) = g(f(x')) = x'. (3) Therefore f is injective. (2)

Next we show that g is surjective. Suppose $x \in X$ and set y = f(x). (3) Then g(y) = g(f(x)) = x. (3) Therefore f is surjective. (2)

3. (20 points total) $f : [1/2, \infty) \longrightarrow [-1/4, \infty)$ is defined by $f(x) = x^2 - x = (x - 1/2)^2 - 1/4$. We base arguments on facts derived about increasing functions and quadratics in class; that increasing functions are injective and the function $g : [0, \infty) \longrightarrow [0, \infty)$ given by $g(x) = x^2$ is bijective.

(a) For $x \ge 1/2$ observe that $x-1/2 \ge 0$ and therefore f(x) is increasing (as g is increasing). Therefore f is increasing and hence injective. (6)

(b) Let $y \in [-1/4, \infty)$ or equivalently $y \ge -1/4$. Then $y + 1/4 \ge 0$ so $\sqrt{y + 1/4}$ exists. Since the latter is non-negative $x = \sqrt{y + 1/4} + 1/2 \ge 1/2$ which means $x \in [1/2, \infty)$. (4) The calculation

$$f(x) = f(\sqrt{y+1/4} + 1/2)$$

= $((\sqrt{y+1/4} + 1/2) - 1/2)^2 - 1/4$
= $(\sqrt{y+1/4})^2 - 1/4 = (y+1/4) - 1/4$
= y

shows that y = f(x). (4) Therefore f is surjective.

Comment: Given y one discovers the solution x to y = f(x) by working backwards. Here we omit those details and show that our x is indeed a solution.

(c) From part (b) the inverse $f^{-1}: [-1/4, \infty) \longrightarrow [1/2, \infty)$ is given by

$$f^{-1}(y) = \sqrt{y + /4} + 1/2$$
 (4)

for all $y \in [-1/4, \infty)$, or in more standard notation, $f^{-1}(x) = \sqrt{x + 1/4} + 1/2$ for all $x \in [-1/4, \infty)$.

4. (20 points total) Recall $G_f^{op} = \{(y, x) | (x, y) \in G_f\}$ is the graph of a function if and only if (a) $\forall y \in Y, \exists x \in X, (y, x) \in G_f^{op}$ and (b) $(y, x), (y, x') \in G_f^{op}$ implies x = x'. This is given.

Therefore G_f^{op} is the graph of a function if and only if (a') $\forall y \in Y, \exists x \in X, (x, y) \in G_f$ and (b') $(x, y), (x', y) \in G_f$ implies x = x'. (6)

Note $(x, y) \in G_f$ if and only if $x \in X, y \in Y$, and y = f(x). Thus (a') holds if and only if f is surjective (7) and (b') holds if and only if f is injective (7).

5. (20 points total) Here we show two functions are the same by using a modified truth table.

(a)	From	the	table

$x \in A$	$x \in B$	$\chi_A(x)$	$\chi_B(x)$	$\chi_{A\cap B}(x)$	$\chi_A(x)\chi_B(x)$
Т	Т	1	1	1	1
Т	\mathbf{F}	1	0	0	0
F	Т	0	1	0	0
\mathbf{F}	\mathbf{F}	0	0	0	0

(6 for the table) we see that $\chi_{A\cap B} = \chi_A \chi_B$ since these functions agree in all cases as columns 5 and 6 of the table are identical (4).

(b) From the table

$x \in A$	$x \in B$	$\chi_A(x)$	$\chi_B(x)$	$\chi_{A\cup B}(x)$	$\chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$
Т	Т	1	1	1	1
Т	\mathbf{F}	1	0	1	1
F	Т	0	1	1	1
F	\mathbf{F}	0	0	0	0

(6 for the table) we see that $\chi_{A\cup B} = \chi_A + \chi_B - \chi_{A\cap B}$ since these functions agree in all cases as columns 5 and 6 of the table are identical (4).