1. (20 points total) We are assuming (i) $A \cap B \subseteq A \cap C$ and (ii) $A \cup B \subseteq A \cup C$.
(a) We wish to show $B \subseteq C$. Let $b \in B$. Suppose that $b \in A$. Then $b \in A \cap B$ which means $b \in A \cap C$ by (i). Therefore $b \in C$. (4) Now suppose $b \notin A$. Since $b \in B$ it follows $b \in A \cup B$. Therefore $b \in A \cup C$ by (ii). Since $b \notin A$ necessarily $b \in C$. (4) In any event $b \in C$. We have shown $B \subseteq C$. (4)
(b) We are given $A \cap B=A \cap C$ and $A \cup B=A \cup C$. In particular $A \cap B \subseteq A \cap B$ and $A \cup B \subseteq A \cup C$. Thus $B \subseteq C$ by part (a). (3) The equations also imply $A \cap C \subseteq A \cap B$ and $A \cup C \subseteq A \cup B$. Therefore $C \subseteq B$ by part (a) as well. (3) We have shown $B=C$. (2)
2. (20 points total) The functions $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ satisfy $g \circ f=I_{X}$. The latter is equivalent to $g(f(x))=x$ for all $x \in X$. (4) We use this equivalence in our proofs.

First of all we show f is injective. Suppose $x, x^{\prime} \in X$ and $f(x)=f\left(x^{\prime}\right)$. (3) Then $x=x^{\prime}$ since $x=g(f(x))=g\left(f\left(x^{\prime}\right)\right)=x^{\prime}$. (3) Therefore f is injective. (2)

Next we show that g is surjective. Suppose $x \in X$ and set $y=f(x)$. (3) Then $g(y)=g(f(x))=x$. (3) Therefore f is surjective. (2)
3. (20 points total) $f:[1 / 2, \infty) \longrightarrow[-1 / 4, \infty)$ is defined by $f(x)=x^{2}-x=(x-$ $1 / 2)^{2}-1 / 4$. We base arguments on facts derived about increasing functions and quadratics in class; that increasing functions are injective and the function $g:[0, \infty) \longrightarrow[0, \infty)$ given by $g(x)=x^{2}$ is bijective.
(a) For $x \geq 1 / 2$ observe that $x-1 / 2 \geq 0$ and therefore $f(x)$ is increasing (as g is increasing). Therefore f is increasing and hence injective. (6)
(b) Let $y \in[-1 / 4, \infty)$ or equivalently $y \geq-1 / 4$. Then $y+1 / 4 \geq 0$ so $\sqrt{y+1 / 4}$ exists. Since the latter is non-negative $x=\sqrt{y+1 / 4}+1 / 2 \geq 1 / 2$ which means $x \in[1 / 2, \infty)$. (4) The calculation

$$
\begin{aligned}
f(x) & =f(\sqrt{y+1 / 4}+1 / 2) \\
& =((\sqrt{y+1 / 4}+1 / 2)-1 / 2)^{2}-1 / 4 \\
& =(\sqrt{y+1 / 4})^{2}-1 / 4=(y+1 / 4)-1 / 4 \\
& =y
\end{aligned}
$$

shows that $y=f(x)$. (4) Therefore f is surjective.
Comment: Given y one discovers the solution x to $y=f(x)$ by working backwards. Here we omit those details and show that our x is indeed a solution.
(c) From part (b) the inverse $f^{-1}:[-1 / 4, \infty) \longrightarrow[1 / 2, \infty)$ is given by

$$
\begin{equation*}
f^{-1}(y)=\sqrt{y+/ 4}+1 / 2 \tag{4}
\end{equation*}
$$

for all $y \in[-1 / 4, \infty)$, or in more standard notation, $f^{-1}(x)=\sqrt{x+1 / 4}+1 / 2$ for all $x \in[-1 / 4, \infty)$.
4. (20 points total) Recall $G_{f}^{o p}=\left\{(y, x) \mid(x, y) \in G_{f}\right\}$ is the graph of a function if and only if (a) $\forall y \in Y, \exists x \in X,(y, x) \in G_{f}^{o p}$ and (b) $(y, x),\left(y, x^{\prime}\right) \in G_{f}^{o p}$ implies $x=x^{\prime}$. This is given.

Therefore $G_{f}^{o p}$ is the graph of a function if and only if (a') $\forall y \in Y, \exists x \in X,(x, y) \in G_{f}$ and (b') $(x, y),\left(x^{\prime}, y\right) \in G_{f}$ implies $x=x^{\prime} .(\mathbf{6})$

Note $(x, y) \in G_{f}$ if and only if $x \in X, y \in Y$, and $y=f(x)$. Thus (a') holds if and only if f is surjective (7) and (b') holds if and only if f is injective (7).
5. (20 points total) Here we show two functions are the same by using a modified truth table.
(a) From the table

$x \in A$	$x \in B$	$\chi_{A}(x)$	$\chi_{B}(x)$	$\chi_{A \cap B}(x)$	$\chi_{A}(x) \chi_{B}(x)$
T	T	1	1	1	1
T	F	1	0	0	0
F	T	0	1	0	0
F	F	0	0	0	0

(6 for the table) we see that $\chi_{A \cap B}=\chi_{A} \chi_{B}$ since these functions agree in all cases as columns 5 and 6 of the table are identical (4).
(b) From the table

$x \in A$	$x \in B$	$\chi_{A}(x)$	$\chi_{B}(x)$	$\chi_{A \cup B}(x)$	$\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)$
T	T	1	1	1	1
T	F	1	0	1	1
F	T	0	1	1	1
F	F	0	0	0	0

($\mathbf{6}$ for the table) we see that $\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A \cap B}$ since these functions agree in all cases as columns 5 and 6 of the table are identical (4).

