1. (20 points total) The number of m-element subset of an n-element set, where $0 \leq$ $m \leq n$, is $\binom{n}{m}=\frac{n!}{m!(n-m)!}$.
(a) $\binom{11}{7}=\frac{11!}{7!4!}=\frac{11 \cdot 10 \cdot 9 \cdot 8}{4 \cdot 3 \cdot 2 \cdot 1}=11 \cdot 10 \cdot 3=330 .(3$ points $)$
(b) Since two particular individuals are to be included on the committee, these committees are formed by choosing $7-2=5$ from the remaining $11-2=9$. Thus the number is $\binom{11-2}{7-2}=\binom{9}{5}=\frac{9!}{5!4!}=\frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1}=9 \cdot 7 \cdot 2=126 .(\mathbf{3}$ points $)$
(c) Since two particular individuals are to be excluded from the committee, these committees are formed by choosing 7 from the remaining $11-2=9$. Thus the number is $\binom{11-2}{7}=\binom{9}{7}=\frac{9!}{7!2!}=\frac{9 \cdot 8}{2 \cdot 1}=9 \cdot 4=36 .(3$ points $)$
(d) See part (c). Thus the number is $\binom{11-1}{7}=\binom{10}{7}=\frac{10!}{7!3!}=\frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=10 \cdot 3 \cdot 4=120$. (3 points)
(e) Let X be the set of committees of 7 with the first individual excluded and Y be the set of committees of 7 with the second excluded. Then $X \cup Y$ is the set of committees with one or the other excluded and $X \cap Y$ is the set of committees with both excluded. Thus

$$
|X \cup Y|=|X|+|Y|-|X \cap Y| \text { (4 points) }=120+120-36=204 . \text { (4 points) }
$$

2. ($\mathbf{2 0}$ points total) This exercise is best done by systematic listings.
(a) Isomorphisms $f:\{a, b, c, d\} \longrightarrow\{a, b, c, d\}$ such that $f(a)=c$:

$$
\begin{array}{r|rlll}
x & a & b & c & d \\
\hline f_{1}(x) & c & a & b & d
\end{array} \quad \begin{array}{r|rllll}
x & a & b & c & d \\
x & a & b & c & d \\
\hline f_{2}(x) & c & a & d & b \\
\hline x) & c & b & a & d
\end{array} \quad \begin{array}{r|rlll}
x & a & b & c & d \\
\hline f_{4}(x) & c & b & d & a \\
x & a & b & c & d \\
\hline f_{5}(x) & c & d & a & b
\end{array} \quad \begin{array}{r|rlll}
x & a & b & c & d \\
\hline f_{6}(x) & c & d & b & a
\end{array}
$$

Inverses are obtained by exchanging the value parts of the rows.

$$
\begin{array}{r|rlll}
x & c & a & b & d \\
\hline f(x)_{1}^{-1} & a & b & c & d
\end{array} \quad \begin{array}{rlrlll}
x & c & a & d & b \\
x & c & b & a & d \\
\hline f_{2}^{-1}(x) & a & b & c & d \\
\hline f_{3}^{-1}(x) & a & b & c & d
\end{array} \quad \begin{array}{r|rlll}
x & c & b & d & a \\
\hline f_{4}^{-1}(x) & a & b & c & d \\
\hline f_{5}^{-1}(x) & c & d & a & b \\
a & b & c & d
\end{array} \quad \begin{array}{r|rlll}
\\
f_{6}^{-1}(x) & a & b & c & d
\end{array}
$$

(6 for each of the two tables)
(b) Surjections $f:\{\pi, e, 19\} \longrightarrow\{c, x\}:$

$$
\begin{aligned}
& \begin{array}{r|rrr}
x & \pi & e & 19 \\
\hline f_{1}(x) & c & c & x
\end{array} \quad \begin{array}{r|rrr}
x & \pi & e & 19 \\
\hline f_{2}(x) & c & x & c
\end{array} \quad \begin{array}{r|rrr}
x & \pi & e & 19 \\
\hline f_{3}(x) & x & c & c
\end{array} \\
& \left.\begin{array}{r|rrr|rrr}
x & \pi & e & 19 \\
\hline f_{4}(x) & x & x & c
\end{array} \quad \begin{array}{r|rr|rrr}
x & \pi & e & 19 \\
\hline f_{5}(x) & x & c & x
\end{array} \quad \begin{array}{rlr}
x & \pi & e \\
\hline f_{6}(x) & c & x
\end{array}\right]
\end{aligned}
$$

(4 points)

Comment: Note that x plays two roles in the tables above. This is known as "abuse of notation". We should use " z " for the input, or some other letter not c or x.
(c) Injections $f:\{c, x\} \longrightarrow\{\pi, e, 19\}$:

$$
\begin{array}{r|rr|rr}
z & c & x \\
\hline f_{1}(z) & \pi & e
\end{array} \quad \begin{array}{rr|rr}
z & c & x \\
\hline z & c & x \\
f_{2}(z) & \pi & 19 \\
\hline f_{3}(z) & e & \pi
\end{array} \quad \begin{array}{r|rr}
\\
z & c & x
\end{array} \quad \begin{array}{rl|rr}
\\
f_{4}(z) & e & 19 \\
\hline f_{5}(z) & 19 & \pi
\end{array} \quad \begin{array}{rlrl}
& z & c & x \\
\hline f_{6}(z) & 19 & e
\end{array}
$$

(4 points)
3. (20 points total) Let X be the set of residents of this small town.
(a) For $x \in X$ let $f(x)$ be the number of denominations resident x is carrying. Then $f(x) \in\{0,1, \ldots, 7\}$ as there are 7 denominations. The question can be rephrased as how large does $|X|$ have to be to guarantee that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1} \neq x_{2}$; that is for f not to be injective. Answer: $|X|>8$. (10 points)
(b) Let $f(x)$ be the set of types of denominations resident x is carrying. Then $f(x) \in$ $P(\{\$ 1, \$ 5, \$ 10, \$ 20, \$ 50, \$ 100, \$ 500\})$ which has $2^{7}=128$ elements. In light of the solution to part (a), $|X|>128$. (10 points)
4. (20 points total) Observe that a $2 m-1$, where $m \geq 1$, describes all positive odd integers as does $2 m+1$, where $m \geq 0$.
f is surjective. Suppose $\ell \in \mathbf{O}^{+}$. Then $\ell=2 m-1$ for some $m \geq 1$. Suppose m is even. Then $m=2 n$ for some $n \geq 1$. Therefore $\ell=2 m-1=4 n-1=f(n)$. Suppose m is odd. Then $m=2 n^{\prime}+1$ for some $n^{\prime} \geq 0$. In this case $\ell=2 m-1=2\left(2 n^{\prime}+1\right)-1=4 n^{\prime}+1=-4 n+1$, where $n=-n^{\prime} \leq 0$. In this case $\ell=f(n)$. We have shown that f is surjective. (8 points)
f is injective. Let $n, n^{\prime} \in \mathbf{Z}$ and suppose that $f(n)=f\left(n^{\prime}\right)$.
Case 1: n, n^{\prime} both positive or n, n^{\prime} both non-negative. Then $4 n-1=f(n)=f\left(n^{\prime}\right)=4 n^{\prime}-1$ or $-4 n+1=f(n)=f\left(n^{\prime}\right)=-4 n+1$. Thus $4 n=4 n^{\prime}$ or $-4 n=-4 n^{\prime}$ either one of which $n=n^{\prime}$. (6 points)
Case 2: n positive and n^{\prime} non-negative, or vice versa. We may assume the former. In this case $4 n-1=f(n)=f\left(n^{\prime}\right)=-4 n^{\prime}+1$ which implies $4\left(n+n^{\prime}\right)=2$, or equivalently $2\left(n+n^{\prime}\right)=1$, a contradiction. This case does not exist. (6 points)

We have shown that $f(n)=f\left(n^{\prime}\right)$ implies $n=n^{\prime}$. Therefore f is injective.
5. (20 points total) The Principle of Inclusion-Exclusion: If X, Y are finite sets then $|X \cup Y|=|X|+|Y|-|X \cap Y|$.
(a) Using DeMorgan's Law $\left|A^{c} \cap B^{c}\right|=\left|(A \cup B)^{c}\right|=|U|-|A \cup B|$. (4 points) Since $|A \cup B|=$ $|A|+|B|-|A \cap B|=9+5-2=12$ (4 points) and $|U|=23,\left|A^{c} \cap B^{c}\right|=23-12=11$. (2 points)
(b) Let S and C be the sets of square tiles and circular tiles respectively, and let Let R and G be the sets of red tiles and green tiles respectively. Let U be the set of tiles. Then $S \cup C=U=G \cup R$ and these are disjoint unions. Thus by the Addition Principle (a special case of the Inclusion-Exclusion Principle)

$$
|S|+|C|=|U|=|G|+|R| .
$$

Since we are given that $|U|=22,|S|=9$, and $|R|=14$, we conclude that $|C|=13$ and $|G|=8$.
(i) $|S \cup G|=|S|+|G|-|S \cap G|=9+8-6=11$ (3 points) as $|S \cap G|=6$ (given).
(ii) $S=(S \cap G) \cup(S \cap R)$ and is a disjoint union. Therefore

$$
|S|=|S \cap G|+|S \cap R|,
$$

or $9=6+|S \cap R|$ which means $|S \cap R|=3$.
Now $R=(R \cap S) \cup(R \cap C)$ and is a disjoint union. Therefore

$$
|R|=|S \cap R|+|C \cap R|,
$$

or $14=3+|C \cap R|$ which means $|C \cap R|=11$. (3 points)
(iii) $|C \cup R|=|C|+|R|-|C \cap R|=13+14-8=16$. (4 points)

