Math 516 Fall 2006 Radford

Written Homework # 2 Solution

10/09/06

Let G be a non-empty set with binary operation. For non-empty subsets
S,T C GG we define the product of the sets S and T by

ST ={st|seS,teT}.
If S = {s} is a singleton then we set

sT ={s}T ={st|teT}
and if 7' = {t} is a singleton we set

St = S{t} = {st|s e S}

We denote the set of inverses of elements of S by S~!.
You may assume multiplication of sets is associative and (ST)~! = T-1S~1.
From this point on G is a group, not necessarily finite.

1. (20 total) Suppose that H < G.
(a) (5) Suppose that G is abelian. Show that H < G.

Solution: Let g € G and h € H. Since G is abelian ghg™! = hgg™! =
he = h € H. Therefore H <.

(b) (5) Suppose that a* = e for all @ € G. Show that G is abelian.

Solution: Let a,b € G. Then e = (ab)? = (ab)(ab) shows that e =
abab. Multiplying both sides of this equation on the left by a and on the
right by b gives ab = aeb = a(abab)b = a*bab® = ebae = ba. Therefore
ab = ba which shows that G is abelian.



(c) (10) Suppose that G is finite and a®> = e for all a € G. Show, by
induction, that |G| = 2" for some n > 0. [Hint: Suppose e # a € G
and consider the quotient G/H, where H = <a> |

Solution: We give a very formal, and detailed, proof by induction.
For m > 1 let P,, be the statement:

“If G is a group which satisfies a* = ¢ for all a € G and |G| < m then
|G| is a power of 2.”

We will show that P; is true and for m > 1 if P,, is true then P, is
true (that is P, implies Py, 1).

Py is true; for in this case |G| =1 = 2°.

Suppose m > 1 and P, is true (our induction hypothesis). We need to
show that P, is true.

Let G be a group which satisfies a* = e for all a € G and |G| < m + 1.
We must show that |G| is a power of 2.

Now G is a abelian by part (b). Since P is true we may assume |G| > 1.
In this case there exists x € H,  # e. Choose such an element a and
set H = <a>. Then H < G by part (a). Since a* = e # a it follows
that |H| = 2.

Consider the quotient G/H. Note |G/H| = |G|/|H| = |G|/2. Now
|G/H| < m; otherwise (m + 1)/2 > |G|/2 > m which implies m + 1 >
2m, or 1 > m, a contradiction. Since (aH)? = a*H = eH = H for all
a € G, by the induction hypothesis |G/H| is a power of 2. Therefore
|G| = 2-|G/H| is a power of 2. We have shown that P, implies Py, ;.

We have shown that P is true and that P, implies P,,.; for all m > 1.
Therefore P,, is true for all m > 1 by the Principle of Mathematical
Induction.

Remark: Part (a) is rather trivial but is included for part (c).

2. (20 total) Suppose that H, K < G and let f: HxK — HK be the set
map defined by f((h,k)) = hk for all (h,k) € HXK.



(a) (10) For fixed h € H and k € K show that

fH(hk) = {(hx,z7 k) |z € HNK}.

Solution: Let x € HNK. Then (hx,27'k) € HxK since H, K < G.
Since f((hz,x 'k)) = haxz~'k = hek = hk we have shown that

{(hz,x k) |z € HNK} C f~'(hk).

To complete part (a) we need only establish the other inclusion.

Suppose that (h/,k') € f~'(hk). Then W'k’ = f((W,k')) = hk. From
the equation hk = h'k’ we derive h(kk'~') = K, thus kk'~1 = h='}I/, and
K = (W'h)k. Let x = kk/"'. Then I/ = hz and z € KNH follow from
the second and third equations. From the fourth and third we deduce
E = (h W)k = (kk'"')"'k = 27 'k. Therefore (W', k') = (hz,x k).
We have shown

f1(nk) C {(hz,z k) |z € HNK}.

(b) (5) For fixed h € h and k € K show that the function
b: HNK — f~(hk)
defined by b(z) = (hz,x'k) for all x € HNK is a bijection.
Solution: By part (a) the problem is to show that
b: HWK — {(hx, 27 k) |z € HNK}
defined by b(z) = (hx,z7'k) for all z € HNK is injective. Suppose that

z,2’ € HNK and b(z) = b(2’). Then (hz,z k) = (ha',2'~'k) which

implies hx = ha'. By left cancellation x = 2’/. Thus b is injective.
(c) (5) Now suppose that H, K are finite. Use parts (a)—(b) to show that

|H||K| = [HK[[HNK].



Solution: (5) Suppose that X is a finite set and f : X — Y is

surjective. Then
[XT=2>1f ()
yey

since the fibers of f partition X. Thus by parts (a) and (b)
[HIIK| = [HxK|= > [f(2)|= > [HNK|=|HK||HNK]|.

reHK reHK

Remark: The conclusion of part (c¢) is an important counting principle
stated in the text and proved there somewhat differently. Here we base a
proof on fibers which is an idea emphasized in the text discussion of cosets
and quotient groups.

3. (20 total) Suppose that H is a non-empty subset of G.
(a) (6) Show that H < G if and only if HH = H and H' = H.

Solution: Suppose H < G. Then HH = {hh'|h,h' € H} C H since
H is closed under products. Thus HH C H. Since h = he € HH for
all h € H it follows that H C HH. Therefore HH = H.

Now h™' € H for all h € H. Therefore H' C H. As (a!) ' =a
for all @ € G, the inclusion H~! C H implies H = (H')™' C H L.
Therefore H' = H.

Conversely, suppose that HH = H and H' = H. Let a,b € H. Then
ab-'€¢ HH~'= HH = H. By assumption H # (). Therefore H < G.

(b) (6) Suppose that H, K < G. Using part (a), show that HK < G if
and only if HK = KH.

Solution: Suppose that HK < G. Then, using part (a), KH =
K-'H"' = (HK)~' = HK. Therefore KH = HK.

Conversely, suppose that HK = K H. Then, using part (a) again,
(HK)(HK)=H(KH)K = HHK)K =HHKK = HK

and
(HK)*1 =K 'H'=KH=HK.

Thus HK < G by part (a).



(¢) (7) Suppose that H is finite. Show that H < G if and only if HH C
H. [Hint: Suppose that HH C H and a € H. Show that the list
a,a? a3, ... must have a repetition.|
Solution: If H < G then HH = H by part (a); hence HH C H.
Conversely, suppose that H C G and HH C H. Let a € H. Then

a,a’,a®,. ..
is a sequence of elements which lie in H since H is closed under the
group operation. Since H is finite there must be a repetition in this
sequence. Thus a‘e = a’ = a™ for some 1 < £ < m. By left cancellation
e = a™* Since m — ¢ > 0 it follows that a° = e € H and, as
m—{—1>0,a!=a"""€H.

Remark Part (a) gives a very important way of saying what it means to be
a subgroup in terms of sets instead of elements. Part (c) shows that “finite”
can be a rather powerful assumption.

4. (20 total) Suppose that |G| = 6.
(a) (4) Use Exercise 1 to show that a® # e for some a € G.

Solution: Suppose that a® = e for all a € G. Then |G| is a power of
2 by Exercise 1, a contradiction. Therefore a? # e for some a € G.

(b) (4) Use Exercise 2 to show that G has at most one subgroup of order
3. (Thus if G has a subgroup N of order 3 then N 9G.)

Solution: Suppose that H, K < G are subgroups of order 3. Since
HNK < H, it follows by Lagrange’s Theorem that |HNK| = 1,3. By
the formula of Exercise 2

0= |H||K| = |[HK||HNK].

Since |HK| < 6 necessarily |HNK| # 1; thus |[HNK| = 3. Since
HNK C H,K, and |H|, |HNK|, |K| are all equal, we deduce H =
HNK =K.



(c) (4) Use Lagrange’s Theorem and parts (a) and (b) to show that G has
an element a of order 2 and an element b of order 3.

Solution: By Lagrange’s Theorem an element of G has order 1,2, 3 or
6 as these are the divisors of |G| = 6.

Suppose that € G has order 6. Then a = 22 has order 2 and b = z?
has order 3. Thus we may assume that G' has no elements of order 6.

Since |G| is not a power of 2, by part (a) there is some element of G
whose order is not 1 or 2. Let b be such an element. Then b must have
order 3. Let a ¢ H = <b>. Since a does not have order 3 by part (b),
and a does not have order 1 since a # e, necessarily a has order 2.

(d) (4) Let N = <b>. Show that |G : N| =2. (Thus N <@G.) Show that
ab = ba or ab = b*a = b 'a.

Solution: N = <b> has order 3 since b does. Since |G| = |G : N||N||
we have 6 = |G : N[3so |G : N| = 2. (Thus N < G.) Now
{ae,ab,ab®} = aN = Na = {ea,ba,b*a} since N < G. If ab # ba,b*a
then ab = ea = ae which means b = e by left cancellation, contradic-
tion. Thus ab = ba or ab = b%a.

(e) (4) Suppose that ab = ba. Use Lagrange’s Theorem to show that G is
cyclic. [Hint: Consider <ab>.]

Solution: Since ab = ba it follows that (ab)™ = a™b™ for all m > 0.
The calculations

(ab)° = e, (ab)t = ab, (ab)? = a®b* = eb® = b,

(ab)? = a’b® = a*ae = eae = a, (ab)® = a®b°® = ece = e,
and
(ab)® = b =ee =¢

show that * = b~!,a € <ab> and |<ab>| < 6. By Lagrange’s Theorem
2 = |a],3 = |b7!| divide |<ab>| = |ab] < 6. Therefore 6 divides |ab|
which means |ab| = 6; thus G = <ab>.



Remark: A more efficient way to do this exercise would be to use Cauchy’s
theorem. As it turns out we can use more elementary arguments since 6 is
such a small size for group.

5. (20 total) We continue Exercise 4.
(a) (10) Show that G = {e,b,b?, a, ab, ab®}.

Solution: N = {e,b,b?} has 3 elements; thus aN = {ae, ab, ab?} does
also since the left cosets of a subgroup of a finite group have the same
number of elements. Since a does not have order 1 or 3 it follows a ¢ H.
As |G : H| = 2 it follows that H and aH are the left cosets of G. Since
the left cosets partition G, G = HUaH is a disjoint union.

(b) (10) Suppose that ab = b*a. Complete the multiplication table

e b b a ab ab?

b?
a
ab
ab?

for G.

[Hint: Let N = <b> = {e,b,b?}. Then N <G and |G/N| = 2. Note that
G/N = {N,aN} by part (a). Since aN has order 2 the multiplication table
for G/N is given by

| N aN
N[ N aN ]
aN |aN N

You can ignore this hint and simply use the relations
a’ =e, b =e, ab = ba

to compute all of the products. However, it would be very illuminating to
use the hint and see how many calculations you then need to make using the
relations.



Comment: The relations a? = e = b® and ab = b%*a completely determine
the group table in Exercise 5. In light of Exercise 4 there is at most one
non-abelian group G (up to isomorphism) of order 6. Since S3 has order 6
and is non-abelian, G ~ Sj.

Solution: b?a = ab and (ab)* = abab = b*aab = b*eb = b* = e. Coset
multiplication is multiplication of sets. Using the relations a? = e, ® = e,
the results of the two preceding calculations, the multiplication table for
G/N, and the fact that each element of G must appear once in each row and
column of the multiplication table for GG, we must have:

H e b b? \a ab  ab?

e e b ¥ |a ab ab?
b b b e ab® a ab
b? > e b ab ab?® a

a a ab ab® | e b b?
ab || ab ab® a b e b
ab® | ab®> a ab |b b?

The single lines are not part of the table; they indicate the role the table for
G/N plays in the construction of the table for G.

One further comment. From our solution of part (c) of Exercise 4 we
know that any element not in N must have order 2. Thus the calculation
which shows (ab)? = e was not necessary. It was, of course, a good exercise
in the use of the relation ab = b%a.



