Math 516

Fall 2006

Radford

Written Homework # 2 Solution $\frac{10/09/06}{10}$

Let G be a non-empty set with binary operation. For non-empty subsets $S, T \subseteq G$ we define the product of the sets S and T by

$$ST = \{st \mid s \in S, t \in T\}.$$

If $S = \{s\}$ is a singleton then we set

$$sT = \{s\}T = \{st \mid t \in T\}$$

and if $T = \{t\}$ is a singleton we set

$$St = S\{t\} = \{st \,|\, s \in S\}.$$

We denote the set of inverses of elements of S by S^{-1} .

You may assume multiplication of sets is associative and $(ST)^{-1} = T^{-1}S^{-1}$. From this point on G is a group, not necessarily finite.

- 1. (20 total) Suppose that $H \leq G$.
 - (a) (5) Suppose that G is abelian. Show that $H \trianglelefteq G$.

Solution: Let $g \in G$ and $h \in H$. Since G is abelian $ghg^{-1} = hgg^{-1} = he = h \in H$. Therefore $H \leq G$.

(b) (5) Suppose that $a^2 = e$ for all $a \in G$. Show that G is abelian.

Solution: Let $a, b \in G$. Then $e = (ab)^2 = (ab)(ab)$ shows that e = abab. Multiplying both sides of this equation on the left by a and on the right by b gives $ab = aeb = a(abab)b = a^2bab^2 = ebae = ba$. Therefore ab = ba which shows that G is abelian.

(c) (10) Suppose that G is finite and $a^2 = e$ for all $a \in G$. Show, by induction, that $|G| = 2^n$ for some $n \ge 0$. [Hint: Suppose $e \ne a \in G$ and consider the quotient G/H, where $H = \langle a \rangle$.]

Solution: We give a very formal, and detailed, proof by induction. For $m \ge 1$ let P_m be the statement:

"If G is a group which satisfies $a^2 = e$ for all $a \in G$ and $|G| \leq m$ then |G| is a power of 2."

We will show that P_1 is true and for $m \ge 1$ if P_m is true then P_{m+1} is true (that is P_m implies P_{m+1}).

 P_1 is true; for in this case $|G| = 1 = 2^0$.

Suppose $m \ge 1$ and P_m is true (our induction hypothesis). We need to show that P_{m+1} is true.

Let G be a group which satisfies $a^2 = e$ for all $a \in G$ and $|G| \leq m + 1$. We must show that |G| is a power of 2.

Now G is a abelian by part (b). Since P_1 is true we may assume |G| > 1. In this case there exists $x \in H$, $x \neq e$. Choose such an element a and set $H = \langle a \rangle$. Then $H \trianglelefteq G$ by part (a). Since $a^2 = e \neq a$ it follows that |H| = 2.

Consider the quotient G/H. Note |G/H| = |G|/|H| = |G|/2. Now $|G/H| \le m$; otherwise $(m+1)/2 \ge |G|/2 > m$ which implies m+1 > 2m, or 1 > m, a contradiction. Since $(aH)^2 = a^2H = eH = H$ for all $a \in G$, by the induction hypothesis |G/H| is a power of 2. Therefore $|G| = 2 \cdot |G/H|$ is a power of 2. We have shown that P_m implies P_{m+1} .

We have shown that P_1 is true and that P_m implies P_{m+1} for all $m \ge 1$. Therefore P_m is true for all $m \ge 1$ by the Principle of Mathematical Induction.

Remark: Part (a) is rather trivial but is included for part (c).

2. (20 total) Suppose that $H, K \leq G$ and let $f : H \times K \longrightarrow HK$ be the set map defined by f((h, k)) = hk for all $(h, k) \in H \times K$.

(a) (10) For fixed $h \in H$ and $k \in K$ show that

$$f^{-1}(hk) = \{(hx, x^{-1}k) \mid x \in H \cap K\}.$$

Solution: Let $x \in H \cap K$. Then $(hx, x^{-1}k) \in H \times K$ since $H, K \leq G$. Since $f((hx, x^{-1}k)) = hxx^{-1}k = hek = hk$ we have shown that

$$\{(hx, x^{-1}k) \mid x \in H \cap K\} \subseteq f^{-1}(hk).$$

To complete part (a) we need only establish the other inclusion.

Suppose that $(h', k') \in f^{-1}(hk)$. Then h'k' = f((h', k')) = hk. From the equation hk = h'k' we derive $h(kk'^{-1}) = h'$, thus $kk'^{-1} = h^{-1}h'$, and $k' = (h'^{-1}h)k$. Let $x = kk'^{-1}$. Then h' = hx and $x \in K \cap H$ follow from the second and third equations. From the fourth and third we deduce $k' = (h^{-1}h')^{-1}k = (kk'^{-1})^{-1}k = x^{-1}k$. Therefore $(h', k') = (hx, x^{-1}k)$. We have shown

$$f^{-1}(hk) \subseteq \{(hx, x^{-1}k) \mid x \in H \cap K\}.$$

(b) (5) For fixed $h \in h$ and $k \in K$ show that the function

$$b: H \cap K \longrightarrow f^{-1}(hk)$$

defined by $b(x) = (hx, x^{-1}k)$ for all $x \in H \cap K$ is a bijection.

Solution: By part (a) the problem is to show that

$$b: H \cap K \longrightarrow \{(hx, x^{-1}k) \mid x \in H \cap K\}$$

defined by $b(x) = (hx, x^{-1}k)$ for all $x \in H \cap K$ is injective. Suppose that $x, x' \in H \cap K$ and b(x) = b(x'). Then $(hx, x^{-1}k) = (hx', x'^{-1}k)$ which implies hx = hx'. By left cancellation x = x'. Thus b is injective.

(c) (5) Now suppose that H, K are *finite*. Use parts (a)–(b) to show that

$$|H||K| = |HK||H \cap K|.$$

Solution: (5) Suppose that X is a finite set and $f : X \longrightarrow Y$ is surjective. Then

$$|X| = \sum_{y \in Y} |f^{-1}(y)|$$

since the fibers of f partition X. Thus by parts (a) and (b)

$$|H||K| = |H \times K| = \sum_{x \in HK} |f^{-1}(x)| = \sum_{x \in HK} |H \cap K| = |HK||H \cap K|.$$

Remark: The conclusion of part (c) is an important counting principle stated in the text and proved there somewhat differently. Here we base a proof on fibers which is an idea emphasized in the text discussion of cosets and quotient groups.

- 3. (20 total) Suppose that H is a non-empty subset of G.
 - (a) (6) Show that $H \leq G$ if and only if HH = H and $H^{-1} = H$.

Solution: Suppose $H \leq G$. Then $HH = \{hh' | h, h' \in H\} \subseteq H$ since H is closed under products. Thus $HH \subseteq H$. Since $h = he \in HH$ for all $h \in H$ it follows that $H \subseteq HH$. Therefore HH = H.

Now $h^{-1} \in H$ for all $h \in H$. Therefore $H^{-1} \subseteq H$. As $(a^{-1})^{-1} = a$ for all $a \in G$, the inclusion $H^{-1} \subseteq H$ implies $H = (H^{-1})^{-1} \subseteq H^{-1}$. Therefore $H^{-1} = H$.

Conversely, suppose that HH = H and $H^{-1} = H$. Let $a, b \in H$. Then $ab^{-1} \in HH^{-1} = HH = H$. By assumption $H \neq \emptyset$. Therefore $H \leq G$.

(b) (6) Suppose that $H, K \leq G$. Using part (a), show that $HK \leq G$ if and only if HK = KH.

Solution: Suppose that $HK \leq G$. Then, using part (a), $KH = K^{-1}H^{-1} = (HK)^{-1} = HK$. Therefore KH = HK.

Conversely, suppose that HK = KH. Then, using part (a) again,

$$(HK)(HK) = H(KH)K = H(HK)K = HHKK = HK$$

and

$$(HK)^{-1} = K^{-1}H^{-1} = KH = HK$$

Thus $HK \leq G$ by part (a).

(c) (7) Suppose that H is *finite*. Show that $H \leq G$ if and only if $HH \subseteq H$. [Hint: Suppose that $HH \subseteq H$ and $a \in H$. Show that the list a, a^2, a^3, \ldots must have a repetition.]

Solution: If $H \leq G$ then HH = H by part (a); hence $HH \subseteq H$. Conversely, suppose that $H \subseteq G$ and $HH \subseteq H$. Let $a \in H$. Then

$$a, a^2, a^3, \ldots$$

is a sequence of elements which lie in H since H is closed under the group operation. Since H is finite there must be a repetition in this sequence. Thus $a^{\ell}e = a^{\ell} = a^m$ for some $1 \leq \ell < m$. By left cancellation $e = a^{m-\ell}$. Since $m - \ell > 0$ it follows that $a^0 = e \in H$ and, as $m - \ell - 1 \geq 0, a^{-1} = a^{m-\ell-1} \in H$.

Remark Part (a) gives a very important way of saying what it means to be a subgroup in terms of *sets* instead of elements. Part (c) shows that "finite" can be a rather powerful assumption.

- 4. (20 total) Suppose that |G| = 6.
 - (a) (4) Use Exercise 1 to show that $a^2 \neq e$ for some $a \in G$.

Solution: Suppose that $a^2 = e$ for all $a \in G$. Then |G| is a power of 2 by Exercise 1, a contradiction. Therefore $a^2 \neq e$ for some $a \in G$.

(b) (4) Use Exercise 2 to show that G has at most one subgroup of order 3. (Thus if G has a subgroup N of order 3 then $N \trianglelefteq G$.)

Solution: Suppose that $H, K \leq G$ are subgroups of order 3. Since $H \cap K \leq H$, it follows by Lagrange's Theorem that $|H \cap K| = 1, 3$. By the formula of Exercise 2

$$9 = |H||K| = |HK||H \cap K|.$$

Since $|HK| \leq 6$ necessarily $|H \cap K| \neq 1$; thus $|H \cap K| = 3$. Since $H \cap K \subseteq H, K$, and |H|, $|H \cap K|$, |K| are all equal, we deduce $H = H \cap K = K$.

(c) (4) Use Lagrange's Theorem and parts (a) and (b) to show that G has an element a of order 2 and an element b of order 3.

Solution: By Lagrange's Theorem an element of G has order 1, 2, 3 or 6 as these are the divisors of |G| = 6.

Suppose that $x \in G$ has order 6. Then $a = x^3$ has order 2 and $b = x^2$ has order 3. Thus we may assume that G has no elements of order 6.

Since |G| is not a power of 2, by part (a) there is some element of G whose order is not 1 or 2. Let b be such an element. Then b must have order 3. Let $a \notin H = \langle b \rangle$. Since a does not have order 3 by part (b), and a does not have order 1 since $a \neq e$, necessarily a has order 2.

(d) (4) Let $N = \langle b \rangle$. Show that |G : N| = 2. (Thus $N \leq G$.) Show that ab = ba or $ab = b^2a = b^{-1}a$.

Solution: $N = \langle b \rangle$ has order 3 since b does. Since |G| = |G:N||N||we have 6 = |G:N|3 so |G:N| = 2. (Thus $N \leq G$.) Now $\{ae, ab, ab^2\} = aN = Na = \{ea, ba, b^2a\}$ since $N \leq G$. If $ab \neq ba, b^2a$ then ab = ea = ae which means b = e by left cancellation, contradiction. Thus ab = ba or $ab = b^2a$.

(e) (4) Suppose that ab = ba. Use Lagrange's Theorem to show that G is cyclic. [Hint: Consider $\langle ab \rangle$.]

Solution: Since ab = ba it follows that $(ab)^m = a^m b^m$ for all $m \ge 0$. The calculations

$$(ab)^0 = e, (ab)^1 = ab, (ab)^2 = a^2b^2 = eb^2 = b^2,$$

 $(ab)^3 = a^3b^3 = a^2ae = eae = a, (ab)^6 = a^6b^6 = ee = e,$

and

$$(ab)^6 = a^6b^6 = ee = e$$

show that $b^2 = b^{-1}$, $a \in \langle ab \rangle$ and $|\langle ab \rangle| \leq 6$. By Lagrange's Theorem $2 = |a|, 3 = |b^{-1}|$ divide $|\langle ab \rangle| = |ab| \leq 6$. Therefore 6 divides |ab| which means |ab| = 6; thus $G = \langle ab \rangle$.

Remark: A more efficient way to do this exercise would be to use Cauchy's theorem. As it turns out we can use more elementary arguments since 6 is such a small size for group.

- 5. (20 total) We continue Exercise 4.
 - (a) (10) Show that $G = \{e, b, b^2, a, ab, ab^2\}.$

Solution: $N = \{e, b, b^2\}$ has 3 elements; thus $aN = \{ae, ab, ab^2\}$ does also since the left cosets of a subgroup of a finite group have the same number of elements. Since *a* does not have order 1 or 3 it follows $a \notin H$. As |G:H| = 2 it follows that *H* and *aH* are the left cosets of *G*. Since the left cosets partition $G, G = H \cup aH$ is a disjoint union.

(b) (10) Suppose that $ab = b^2 a$. Complete the multiplication table

for G.

[Hint: Let $N = \langle b \rangle = \{e, b, b^2\}$. Then $N \leq G$ and |G/N| = 2. Note that $G/N = \{N, aN\}$ by part (a). Since aN has order 2 the multiplication table for G/N is given by

You can ignore this hint and simply use the relations

$$a^2 = e, \qquad b^3 = e, \qquad ab = b^2a$$

to compute *all* of the products. However, it would be very illuminating to use the hint and see how many calculations you then need to make using the relations.

Comment: The relations $a^2 = e = b^3$ and $ab = b^2a$ completely determine the group table in Exercise 5. In light of Exercise 4 there is at most one non-abelian group G (up to isomorphism) of order 6. Since S_3 has order 6 and is non-abelian, $G \simeq S_3$.

Solution: $b^2a = ab$ and $(ab)^2 = abab = b^2aab = b^2eb = b^3 = e$. Coset multiplication is multiplication of sets. Using the relations $a^2 = e$, $b^3 = e$, the results of the two preceding calculations, the multiplication table for G/N, and the fact that each element of G must appear once in each row and column of the multiplication table for G, we must have:

	e	b	b^2	a	ab	ab^2
e	e	b	b^2	a	ab	ab^2
b	b	b^2	e	ab^2	a	ab
b^2	b^2	e	b	ab	ab^2	a
a	a	ab	ab^2	e	b	b^2
ab	ab	ab^2	a	b^2	e	b
ab^2	ab^2	a	ab	b	b^2	e

The single lines are not part of the table; they indicate the role the table for G/N plays in the construction of the table for G.

One further comment. From our solution of part (c) of Exercise 4 we know that any element not in N must have order 2. Thus the calculation which shows $(ab)^2 = e$ was not necessary. It was, of course, a good exercise in the use of the relation $ab = b^2a$.