Written Homework \# 2 Solution

10/09/06

Let G be a non-empty set with binary operation. For non-empty subsets $S, T \subseteq G$ we define the product of the sets S and T by

$$
S T=\{s t \mid s \in S, t \in T\} .
$$

If $S=\{s\}$ is a singleton then we set

$$
s T=\{s\} T=\{s t \mid t \in T\}
$$

and if $T=\{t\}$ is a singleton we set

$$
S t=S\{t\}=\{s t \mid s \in S\} .
$$

We denote the set of inverses of elements of S by S^{-1}.
You may assume multiplication of sets is associative and $(S T)^{-1}=T^{-1} S^{-1}$. From this point on G is a group, not necessarily finite.

1. (20 total) Suppose that $H \leq G$.
(a) (5) Suppose that G is abelian. Show that $H \unlhd G$.

Solution: Let $g \in G$ and $h \in H$. Since G is abelian $g h g^{-1}=h g g^{-1}=$ $h e=h \in H$. Therefore $H \unlhd G$.
(b) (5) Suppose that $a^{2}=e$ for all $a \in G$. Show that G is abelian.

Solution: Let $a, b \in G$. Then $e=(a b)^{2}=(a b)(a b)$ shows that $e=$ $a b a b$. Multiplying both sides of this equation on the left by a and on the right by b gives $a b=a e b=a(a b a b) b=a^{2} b a b^{2}=e b a e=b a$. Therefore $a b=b a$ which shows that G is abelian.
(c) (10) Suppose that G is finite and $a^{2}=e$ for all $a \in G$. Show, by induction, that $|G|=2^{n}$ for some $n \geq 0$. [Hint: Suppose $e \neq a \in G$ and consider the quotient G / H, where $H=\langle a\rangle$.]

Solution: We give a very formal, and detailed, proof by induction. For $m \geq 1$ let P_{m} be the statement:
"If G is a group which satisfies $a^{2}=e$ for all $a \in G$ and $|G| \leq m$ then $|G|$ is a power of 2. ."

We will show that P_{1} is true and for $m \geq 1$ if P_{m} is true then P_{m+1} is true (that is P_{m} implies P_{m+1}).
P_{1} is true; for in this case $|G|=1=2^{0}$.
Suppose $m \geq 1$ and P_{m} is true (our induction hypothesis). We need to show that P_{m+1} is true.
Let G be a group which satisfies $a^{2}=e$ for all $a \in G$ and $|G| \leq m+1$. We must show that $|G|$ is a power of 2 .
Now G is a abelian by part (b). Since P_{1} is true we may assume $|G|>1$. In this case there exists $x \in H, x \neq e$. Choose such an element a and set $H=\langle a\rangle$. Then $H \unlhd G$ by part (a). Since $a^{2}=e \neq a$ it follows that $|H|=2$.
Consider the quotient G / H. Note $|G / H|=|G| /|H|=|G| / 2$. Now $|G / H| \leq m$; otherwise $(m+1) / 2 \geq|G| / 2>m$ which implies $m+1>$ $2 m$, or $1>m$, a contradiction. Since $(a H)^{2}=a^{2} H=e H=H$ for all $a \in G$, by the induction hypothesis $|G / H|$ is a power of 2 . Therefore $|G|=2 \cdot|G / H|$ is a power of 2 . We have shown that P_{m} implies P_{m+1}.
We have shown that P_{1} is true and that P_{m} implies P_{m+1} for all $m \geq 1$. Therefore P_{m} is true for all $m \geq 1$ by the Principle of Mathematical Induction.

Remark: Part (a) is rather trivial but is included for part (c).
2. (20 total) Suppose that $H, K \leq G$ and let $f: H \times K \longrightarrow H K$ be the set map defined by $f((h, k))=h k$ for all $(h, k) \in H \times K$.
(a) (10) For fixed $h \in H$ and $k \in K$ show that

$$
f^{-1}(h k)=\left\{\left(h x, x^{-1} k\right) \mid x \in H \cap K\right\} .
$$

Solution: Let $x \in H \cap K$. Then $\left(h x, x^{-1} k\right) \in H \times K$ since $H, K \leq G$. Since $f\left(\left(h x, x^{-1} k\right)\right)=h x x^{-1} k=h e k=h k$ we have shown that

$$
\left\{\left(h x, x^{-1} k\right) \mid x \in H \cap K\right\} \subseteq f^{-1}(h k) .
$$

To complete part (a) we need only establish the other inclusion.
Suppose that $\left(h^{\prime}, k^{\prime}\right) \in f^{-1}(h k)$. Then $h^{\prime} k^{\prime}=f\left(\left(h^{\prime}, k^{\prime}\right)\right)=h k$. From the equation $h k=h^{\prime} k^{\prime}$ we derive $h\left(k k^{\prime-1}\right)=h^{\prime}$, thus $k k^{\prime-1}=h^{-1} h^{\prime}$, and $k^{\prime}=\left(h^{\prime-1} h\right) k$. Let $x=k k^{\prime-1}$. Then $h^{\prime}=h x$ and $x \in K \cap H$ follow from the second and third equations. From the fourth and third we deduce $k^{\prime}=\left(h^{-1} h^{\prime}\right)^{-1} k=\left(k k^{\prime-1}\right)^{-1} k=x^{-1} k$. Therefore $\left(h^{\prime}, k^{\prime}\right)=\left(h x, x^{-1} k\right)$. We have shown

$$
f^{-1}(h k) \subseteq\left\{\left(h x, x^{-1} k\right) \mid x \in H \cap K\right\} .
$$

(b) (5) For fixed $h \in h$ and $k \in K$ show that the function

$$
b: H \cap K \longrightarrow f^{-1}(h k)
$$

defined by $b(x)=\left(h x, x^{-1} k\right)$ for all $x \in H \cap K$ is a bijection.
Solution: By part (a) the problem is to show that

$$
b: H \cap K \longrightarrow\left\{\left(h x, x^{-1} k\right) \mid x \in H \cap K\right\}
$$

defined by $b(x)=\left(h x, x^{-1} k\right)$ for all $x \in H \cap K$ is injective. Suppose that $x, x^{\prime} \in H \cap K$ and $b(x)=b\left(x^{\prime}\right)$. Then $\left(h x, x^{-1} k\right)=\left(h x^{\prime}, x^{\prime-1} k\right)$ which implies $h x=h x^{\prime}$. By left cancellation $x=x^{\prime}$. Thus b is injective.
(c) (5) Now suppose that H, K are finite. Use parts (a)-(b) to show that

$$
|H||K|=|H K||H \cap K| .
$$

Solution: (5) Suppose that X is a finite set and $f: X \longrightarrow Y$ is surjective. Then

$$
|X|=\sum_{y \in Y}\left|f^{-1}(y)\right|
$$

since the fibers of f partition X. Thus by parts (a) and (b)

$$
|H||K|=|H \times K|=\sum_{x \in H K}\left|f^{-1}(x)\right|=\sum_{x \in H K}|H \cap K|=|H K||H \cap K| .
$$

Remark: The conclusion of part (c) is an important counting principle stated in the text and proved there somewhat differently. Here we base a proof on fibers which is an idea emphasized in the text discussion of cosets and quotient groups.
3. (20 total) Suppose that H is a non-empty subset of G.
(a) (6) Show that $H \leq G$ if and only if $H H=H$ and $H^{-1}=H$.

Solution: Suppose $H \leq G$. Then $H H=\left\{h h^{\prime} \mid h, h^{\prime} \in H\right\} \subseteq H$ since H is closed under products. Thus $H H \subseteq H$. Since $h=h e \in H H$ for all $h \in H$ it follows that $H \subseteq H H$. Therefore $H H=H$.
Now $h^{-1} \in H$ for all $h \in H$. Therefore $H^{-1} \subseteq H$. As $\left(a^{-1}\right)^{-1}=a$ for all $a \in G$, the inclusion $H^{-1} \subseteq H$ implies $H=\left(H^{-1}\right)^{-1} \subseteq H^{-1}$. Therefore $H^{-1}=H$.

Conversely, suppose that $H H=H$ and $H^{-1}=H$. Let $a, b \in H$. Then $a b^{-1} \in H H^{-1}=H H=H$. By assumption $H \neq \emptyset$. Therefore $H \leq G$.
(b) (6) Suppose that $H, K \leq G$. Using part (a), show that $H K \leq G$ if and only if $H K=K H$.

Solution: Suppose that $H K \leq G$. Then, using part (a), $K H=$ $K^{-1} H^{-1}=(H K)^{-1}=H K$. Therefore $K H=H K$.
Conversely, suppose that $H K=K H$. Then, using part (a) again,

$$
(H K)(H K)=H(K H) K=H(H K) K=H H K K=H K
$$

and

$$
(H K)^{-1}=K^{-1} H^{-1}=K H=H K .
$$

Thus $H K \leq G$ by part (a).
(c) (7) Suppose that H is finite. Show that $H \leq G$ if and only if $H H \subseteq$ H. [Hint: Suppose that $H H \subseteq H$ and $a \in H$. Show that the list a, a^{2}, a^{3}, \ldots must have a repetition.]

Solution: If $H \leq G$ then $H H=H$ by part (a); hence $H H \subseteq H$. Conversely, suppose that $H \subseteq G$ and $H H \subseteq H$. Let $a \in H$. Then

$$
a, a^{2}, a^{3}, \ldots
$$

is a sequence of elements which lie in H since H is closed under the group operation. Since H is finite there must be a repetition in this sequence. Thus $a^{\ell} e=a^{\ell}=a^{m}$ for some $1 \leq \ell<m$. By left cancellation $e=a^{m-\ell}$. Since $m-\ell>0$ it follows that $a^{0}=e \in H$ and, as $m-\ell-1 \geq 0, a^{-1}=a^{m-\ell-1} \in H$.

Remark Part (a) gives a very important way of saying what it means to be a subgroup in terms of sets instead of elements. Part (c) shows that "finite" can be a rather powerful assumption.
4. (20 total) Suppose that $|G|=6$.
(a) (4) Use Exercise 1 to show that $a^{2} \neq e$ for some $a \in G$.

Solution: Suppose that $a^{2}=e$ for all $a \in G$. Then $|G|$ is a power of 2 by Exercise 1, a contradiction. Therefore $a^{2} \neq e$ for some $a \in G$.
(b) (4) Use Exercise 2 to show that G has at most one subgroup of order 3. (Thus if G has a subgroup N of order 3 then $N \unlhd G$.)

Solution: Suppose that $H, K \leq G$ are subgroups of order 3. Since $H \cap K \leq H$, it follows by Lagrange's Theorem that $|H \cap K|=1,3$. By the formula of Exercise 2

$$
9=|H||K|=|H K||H \cap K| .
$$

Since $|H K| \leq 6$ necessarily $|H \cap K| \neq 1$; thus $|H \cap K|=3$. Since $H \cap K \subseteq H, K$, and $|H|,|H \cap K|,|K|$ are all equal, we deduce $H=$ $H \cap K=K$.
(c) (4) Use Lagrange's Theorem and parts (a) and (b) to show that G has an element a of order 2 and an element b of order 3 .

Solution: By Lagrange's Theorem an element of G has order $1,2,3$ or 6 as these are the divisors of $|G|=6$.
Suppose that $x \in G$ has order 6 . Then $a=x^{3}$ has order 2 and $b=x^{2}$ has order 3 . Thus we may assume that G has no elements of order 6 .
Since $|G|$ is not a power of 2 , by part (a) there is some element of G whose order is not 1 or 2 . Let b be such an element. Then b must have order 3. Let $a \notin H=\langle b\rangle$. Since a does not have order 3 by part (b), and a does not have order 1 since $a \neq e$, necessarily a has order 2 .
(d) (4) Let $N=\langle b\rangle$. Show that $|G: N|=2$. (Thus $N \unlhd G$.) Show that $a b=b a$ or $a b=b^{2} a=b^{-1} a$.

Solution: $N=\langle b\rangle$ has order 3 since b does. Since $|G|=|G: N||N| \mid$ we have $6=|G: N| 3$ so $|G: N|=2$. (Thus $N \unlhd G$.) Now $\left\{a e, a b, a b^{2}\right\}=a N=N a=\left\{e a, b a, b^{2} a\right\}$ since $N \unlhd G$. If $a b \neq b a, b^{2} a$ then $a b=e a=a e$ which means $b=e$ by left cancellation, contradiction. Thus $a b=b a$ or $a b=b^{2} a$.
(e) (4) Suppose that $a b=b a$. Use Lagrange's Theorem to show that G is cyclic. [Hint: Consider $\langle a b\rangle$.]

Solution: Since $a b=b a$ it follows that $(a b)^{m}=a^{m} b^{m}$ for all $m \geq 0$.
The calculations

$$
\begin{gathered}
(a b)^{0}=e,(a b)^{1}=a b,(a b)^{2}=a^{2} b^{2}=e b^{2}=b^{2}, \\
(a b)^{3}=a^{3} b^{3}=a^{2} a e=e a e=a,(a b)^{6}=a^{6} b^{6}=e e=e
\end{gathered}
$$

and

$$
(a b)^{6}=a^{6} b^{6}=e e=e
$$

show that $b^{2}=b^{-1}, a \in\langle a b\rangle$ and $|\langle a b\rangle| \leq 6$. By Lagrange's Theorem $2=|a|, 3=\left|b^{-1}\right|$ divide $|\langle a b\rangle|=|a b| \leq 6$. Therefore 6 divides $|a b|$ which means $|a b|=6$; thus $G=\langle a b\rangle$.

Remark: A more efficient way to do this exercise would be to use Cauchy's theorem. As it turns out we can use more elementary arguments since 6 is such a small size for group.
5. ($\mathbf{2 0}$ total) We continue Exercise 4.
(a) (10) Show that $G=\left\{e, b, b^{2}, a, a b, a b^{2}\right\}$.

Solution: $N=\left\{e, b, b^{2}\right\}$ has 3 elements; thus $a N=\left\{a e, a b, a b^{2}\right\}$ does also since the left cosets of a subgroup of a finite group have the same number of elements. Since a does not have order 1 or 3 it follows $a \notin H$. As $|G: H|=2$ it follows that H and $a H$ are the left cosets of G. Since the left cosets partition $G, G=H \cup a H$ is a disjoint union.
(b) (10) Suppose that $a b=b^{2} a$. Complete the multiplication table

	e	b	b^{2}	a	$a b$	$a b^{2}$
e						
b						
b^{2}						
a						
$a b$						
$a b^{2}$						

for G.
[Hint: Let $N=\langle b\rangle=\left\{e, b, b^{2}\right\}$. Then $N \unlhd G$ and $|G / N|=2$. Note that $G / N=\{N, a N\}$ by part (a). Since $a N$ has order 2 the multiplication table for G / N is given by

$$
\begin{array}{r|rrr}
& N & a N & \\
\hline N & \mathrm{~N} & \mathrm{aN} & \\
a N & \mathrm{aN} & \mathrm{~N} &
\end{array}
$$

You can ignore this hint and simply use the relations

$$
a^{2}=e, \quad b^{3}=e, \quad a b=b^{2} a
$$

to compute all of the products. However, it would be very illuminating to use the hint and see how many calculations you then need to make using the relations.

Comment: The relations $a^{2}=e=b^{3}$ and $a b=b^{2} a$ completely determine the group table in Exercise 5. In light of Exercise 4 there is at most one non-abelian group G (up to isomorphism) of order 6 . Since S_{3} has order 6 and is non-abelian, $G \simeq S_{3}$.
Solution: $b^{2} a=a b$ and $(a b)^{2}=a b a b=b^{2} a a b=b^{2} e b=b^{3}=e$. Coset multiplication is multiplication of sets. Using the relations $a^{2}=e, b^{3}=e$, the results of the two preceding calculations, the multiplication table for G / N, and the fact that each element of G must appear once in each row and column of the multiplication table for G, we must have:

	e	b	b^{2}	a	$a b$	$a b^{2}$
e	e	b	b^{2}	a	$a b$	$a b^{2}$
b	b	b^{2}	e	$a b^{2}$	a	$a b$
b^{2}	b^{2}	e	b	$\mathbf{a b}$	$a b^{2}$	a
a	a	$a b$	$a b^{2}$	e	b	b^{2}
$a b$	$a b$	$a b^{2}$	a	b^{2}	\mathbf{e}	b
$a b^{2}$	$a b^{2}$	a	$a b$	b	b^{2}	e

The single lines are not part of the table; they indicate the role the table for G / N plays in the construction of the table for G.

One further comment. From our solution of part (c) of Exercise 4 we know that any element not in N must have order 2. Thus the calculation which shows $(a b)^{2}=e$ was not necessary. It was, of course, a good exercise in the use of the relation $a b=b^{2} a$.

