
Math 516 Fall 2006 Radford

Written Homework # 2 Solution
10/09/06

Let G be a non-empty set with binary operation. For non-empty subsets
S, T ⊆ G we define the product of the sets S and T by

ST = {st | s ∈ S, t ∈ T}.
If S = {s} is a singleton then we set

sT = {s}T = {st | t ∈ T}
and if T = {t} is a singleton we set

St = S{t} = {st | s ∈ S}.
We denote the set of inverses of elements of S by S−1.

You may assume multiplication of sets is associative and (ST )−1 = T−1S−1.
From this point on G is a group, not necessarily finite.

1. (20 total) Suppose that H ≤ G.

(a) (5) Suppose that G is abelian. Show that H £ G.

Solution: Let g ∈ G and h ∈ H. Since G is abelian ghg−1 = hgg−1 =
he = h ∈ H. Therefore H £ G.

(b) (5) Suppose that a2 = e for all a ∈ G. Show that G is abelian.

Solution: Let a, b ∈ G. Then e = (ab)2 = (ab)(ab) shows that e =
abab. Multiplying both sides of this equation on the left by a and on the
right by b gives ab = aeb = a(abab)b = a2bab2 = ebae = ba. Therefore
ab = ba which shows that G is abelian.
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(c) (10) Suppose that G is finite and a2 = e for all a ∈ G. Show, by
induction, that |G| = 2n for some n ≥ 0. [Hint: Suppose e 6= a ∈ G
and consider the quotient G/H, where H = <a>.]

Solution: We give a very formal, and detailed, proof by induction.
For m ≥ 1 let Pm be the statement:

“If G is a group which satisfies a2 = e for all a ∈ G and |G| ≤ m then
|G| is a power of 2.”

We will show that P1 is true and for m ≥ 1 if Pm is true then Pm+1 is
true (that is Pm implies Pm+1).

P1 is true; for in this case |G| = 1 = 20.

Suppose m ≥ 1 and Pm is true (our induction hypothesis). We need to
show that Pm+1 is true.

Let G be a group which satisfies a2 = e for all a ∈ G and |G| ≤ m + 1.
We must show that |G| is a power of 2.

Now G is a abelian by part (b). Since P1 is true we may assume |G| > 1.
In this case there exists x ∈ H, x 6= e. Choose such an element a and
set H = <a>. Then H £ G by part (a). Since a2 = e 6= a it follows
that |H| = 2.

Consider the quotient G/H. Note |G/H| = |G|/|H| = |G|/2. Now
|G/H| ≤ m; otherwise (m + 1)/2 ≥ |G|/2 > m which implies m + 1 >
2m, or 1 > m, a contradiction. Since (aH)2 = a2H = eH = H for all
a ∈ G, by the induction hypothesis |G/H| is a power of 2. Therefore
|G| = 2·|G/H| is a power of 2. We have shown that Pm implies Pm+1.

We have shown that P1 is true and that Pm implies Pm+1 for all m ≥ 1.
Therefore Pm is true for all m ≥ 1 by the Principle of Mathematical
Induction.

Remark: Part (a) is rather trivial but is included for part (c).

2. (20 total) Suppose that H,K ≤ G and let f : H×K −→ HK be the set
map defined by f((h, k)) = hk for all (h, k) ∈ H×K.
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(a) (10) For fixed h ∈ H and k ∈ K show that

f−1(hk) = {(hx, x−1k) |x ∈ H∩K}.

Solution: Let x ∈ H∩K. Then (hx, x−1k) ∈ H×K since H,K ≤ G.
Since f((hx, x−1k)) = hxx−1k = hek = hk we have shown that

{(hx, x−1k) | x ∈ H∩K} ⊆ f−1(hk).

To complete part (a) we need only establish the other inclusion.

Suppose that (h′, k′) ∈ f−1(hk). Then h′k′ = f((h′, k′)) = hk. From
the equation hk = h′k′ we derive h(kk′−1) = h′, thus kk′−1 = h−1h′, and
k′ = (h′−1h)k. Let x = kk′−1. Then h′ = hx and x ∈ K∩H follow from
the second and third equations. From the fourth and third we deduce
k′ = (h−1h′)−1k = (kk′−1)−1k = x−1k. Therefore (h′, k′) = (hx, x−1k).
We have shown

f−1(hk) ⊆ {(hx, x−1k) |x ∈ H∩K}.

(b) (5) For fixed h ∈ h and k ∈ K show that the function

b : H∩K −→ f−1(hk)

defined by b(x) = (hx, x−1k) for all x ∈ H∩K is a bijection.

Solution: By part (a) the problem is to show that

b : H∩K −→ {(hx, x−1k) |x ∈ H∩K}

defined by b(x) = (hx, x−1k) for all x ∈ H∩K is injective. Suppose that
x, x′ ∈ H∩K and b(x) = b(x′). Then (hx, x−1k) = (hx′, x′−1k) which
implies hx = hx′. By left cancellation x = x′. Thus b is injective.

(c) (5) Now suppose that H, K are finite. Use parts (a)–(b) to show that

|H||K| = |HK||H∩K|.
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Solution: (5) Suppose that X is a finite set and f : X −→ Y is
surjective. Then

|X| = ∑

y∈Y

|f−1(y)|

since the fibers of f partition X. Thus by parts (a) and (b)

|H||K| = |H×K| = ∑

x∈HK

|f−1(x)| = ∑

x∈HK

|H∩K| = |HK||H∩K|.

Remark: The conclusion of part (c) is an important counting principle
stated in the text and proved there somewhat differently. Here we base a
proof on fibers which is an idea emphasized in the text discussion of cosets
and quotient groups.

3. (20 total) Suppose that H is a non-empty subset of G.

(a) (6) Show that H ≤ G if and only if HH = H and H−1 = H.

Solution: Suppose H ≤ G. Then HH = {hh′ |h, h′ ∈ H} ⊆ H since
H is closed under products. Thus HH ⊆ H. Since h = he ∈ HH for
all h ∈ H it follows that H ⊆ HH. Therefore HH = H.

Now h−1 ∈ H for all h ∈ H. Therefore H−1 ⊆ H. As (a−1)−1 = a
for all a ∈ G, the inclusion H−1 ⊆ H implies H = (H−1)−1 ⊆ H−1.
Therefore H−1 = H.

Conversely, suppose that HH = H and H−1 = H. Let a, b ∈ H. Then
ab−1 ∈ HH−1 = HH = H. By assumption H 6= ∅. Therefore H ≤ G.

(b) (6) Suppose that H, K ≤ G. Using part (a), show that HK ≤ G if
and only if HK = KH.

Solution: Suppose that HK ≤ G. Then, using part (a), KH =
K−1H−1 = (HK)−1 = HK. Therefore KH = HK.

Conversely, suppose that HK = KH. Then, using part (a) again,

(HK)(HK) = H(KH)K = H(HK)K = HHKK = HK

and
(HK)−1 = K−1H−1 = KH = HK.

Thus HK ≤ G by part (a).
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(c) (7) Suppose that H is finite. Show that H ≤ G if and only if HH ⊆
H. [Hint: Suppose that HH ⊆ H and a ∈ H. Show that the list
a, a2, a3, . . . must have a repetition.]

Solution: If H ≤ G then HH = H by part (a); hence HH ⊆ H.
Conversely, suppose that H ⊆ G and HH ⊆ H. Let a ∈ H. Then

a, a2, a3, . . .

is a sequence of elements which lie in H since H is closed under the
group operation. Since H is finite there must be a repetition in this
sequence. Thus a`e = a` = am for some 1 ≤ ` < m. By left cancellation
e = am−`. Since m − ` > 0 it follows that a0 = e ∈ H and, as
m− `− 1 ≥ 0, a−1 = am−`−1 ∈ H.

Remark Part (a) gives a very important way of saying what it means to be
a subgroup in terms of sets instead of elements. Part (c) shows that “finite”
can be a rather powerful assumption.

4. (20 total) Suppose that |G| = 6.

(a) (4) Use Exercise 1 to show that a2 6= e for some a ∈ G.

Solution: Suppose that a2 = e for all a ∈ G. Then |G| is a power of
2 by Exercise 1, a contradiction. Therefore a2 6= e for some a ∈ G.

(b) (4) Use Exercise 2 to show that G has at most one subgroup of order
3. (Thus if G has a subgroup N of order 3 then N £ G.)

Solution: Suppose that H, K ≤ G are subgroups of order 3. Since
H∩K ≤ H, it follows by Lagrange’s Theorem that |H∩K| = 1, 3. By
the formula of Exercise 2

9 = |H||K| = |HK||H∩K|.

Since |HK| ≤ 6 necessarily |H∩K| 6= 1; thus |H∩K| = 3. Since
H∩K ⊆ H, K, and |H|, |H∩K|, |K| are all equal, we deduce H =
H∩K = K.
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(c) (4) Use Lagrange’s Theorem and parts (a) and (b) to show that G has
an element a of order 2 and an element b of order 3.

Solution: By Lagrange’s Theorem an element of G has order 1, 2, 3 or
6 as these are the divisors of |G| = 6.

Suppose that x ∈ G has order 6. Then a = x3 has order 2 and b = x2

has order 3. Thus we may assume that G has no elements of order 6.

Since |G| is not a power of 2, by part (a) there is some element of G
whose order is not 1 or 2. Let b be such an element. Then b must have
order 3. Let a 6∈ H = <b>. Since a does not have order 3 by part (b),
and a does not have order 1 since a 6= e, necessarily a has order 2.

(d) (4) Let N = <b>. Show that |G : N | = 2. (Thus N £ G.) Show that
ab = ba or ab = b2a = b−1a.

Solution: N = <b> has order 3 since b does. Since |G| = |G : N ||N ||
we have 6 = |G : N |3 so |G : N | = 2. (Thus N £ G.) Now
{ae, ab, ab2} = aN = Na = {ea, ba, b2a} since N £ G. If ab 6= ba, b2a
then ab = ea = ae which means b = e by left cancellation, contradic-
tion. Thus ab = ba or ab = b2a.

(e) (4) Suppose that ab = ba. Use Lagrange’s Theorem to show that G is
cyclic. [Hint: Consider <ab>.]

Solution: Since ab = ba it follows that (ab)m = ambm for all m ≥ 0.
The calculations

(ab)0 = e, (ab)1 = ab, (ab)2 = a2b2 = eb2 = b2,

(ab)3 = a3b3 = a2ae = eae = a, (ab)6 = a6b6 = ee = e,

and
(ab)6 = a6b6 = ee = e

show that b2 = b−1, a ∈ <ab> and |<ab>| ≤ 6. By Lagrange’s Theorem
2 = |a|, 3 = |b−1| divide |<ab>| = |ab| ≤ 6. Therefore 6 divides |ab|
which means |ab| = 6; thus G = <ab>.
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Remark: A more efficient way to do this exercise would be to use Cauchy’s
theorem. As it turns out we can use more elementary arguments since 6 is
such a small size for group.

5. (20 total) We continue Exercise 4.

(a) (10) Show that G = {e, b, b2, a, ab, ab2}.
Solution: N = {e, b, b2} has 3 elements; thus aN = {ae, ab, ab2} does
also since the left cosets of a subgroup of a finite group have the same
number of elements. Since a does not have order 1 or 3 it follows a 6∈ H.
As |G : H| = 2 it follows that H and aH are the left cosets of G. Since
the left cosets partition G, G = H∪aH is a disjoint union.

(b) (10) Suppose that ab = b2a. Complete the multiplication table

e b b2 a ab ab2

e
b
b2

a
ab
ab2

for G.

[Hint: Let N = <b> = {e, b, b2}. Then N £G and |G/N | = 2. Note that
G/N = {N, aN} by part (a). Since aN has order 2 the multiplication table
for G/N is given by

N aN
N N aN

aN aN N
. ]

You can ignore this hint and simply use the relations

a2 = e, b3 = e, ab = b2a

to compute all of the products. However, it would be very illuminating to
use the hint and see how many calculations you then need to make using the
relations.
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Comment: The relations a2 = e = b3 and ab = b2a completely determine
the group table in Exercise 5. In light of Exercise 4 there is at most one
non-abelian group G (up to isomorphism) of order 6. Since S3 has order 6
and is non-abelian, G ' S3.

Solution: b2a = ab and (ab)2 = abab = b2aab = b2eb = b3 = e. Coset
multiplication is multiplication of sets. Using the relations a2 = e, b3 = e,
the results of the two preceding calculations, the multiplication table for
G/N , and the fact that each element of G must appear once in each row and
column of the multiplication table for G, we must have:

e b b2 a ab ab2

e e b b2 a ab ab2

b b b2 e ab2 a ab
b2 b2 e b ab ab2 a
a a ab ab2 e b b2

ab ab ab2 a b2 e b
ab2 ab2 a ab b b2 e

The single lines are not part of the table; they indicate the role the table for
G/N plays in the construction of the table for G.

One further comment. From our solution of part (c) of Exercise 4 we
know that any element not in N must have order 2. Thus the calculation
which shows (ab)2 = e was not necessary. It was, of course, a good exercise
in the use of the relation ab = b2a.
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