
Math 516 Fall 2006 Radford

Written Homework # 1 Solution
10/11/06

Remark: Most of the proofs on this problem set are just a few steps from
definitions and were intended to be a good warm up for the course. Some-
times the significance of a problem is far more interesting than its solution.

1. (20 total) Let G be a group.

a) Suppose that H, K are subgroups of G. Show that H∪K is a subgroup
of G if and only if H ⊆ K or K ⊆ H.

Solution: If. Suppose H ⊆ K or K ⊆ H. Then H∪K = K or
H∪K = H. In either case H∪K ≤ G as H, K ≤ G.

Only if. Suppose that H∪K ≤ G. To show that H ⊆ K or K ⊆ H we
need only show H 6⊆ K implies K ⊆ H.

Suppose H 6⊆ K. Then there is an h ∈ H such that h 6∈ K. Let
k ∈ K. Then h, k ∈ H∪K which means hk ∈ H∪K since H∪K ≤ G.
If hk ∈ K then h = he = h(kk−1) = (hk)k−1 ∈ K, a contradiction.
Therefore hk ∈ H which means k = ek = (h−1h)k = h−1(hk) ∈ H. We
have shown K ⊆ H.

Remark: Most proved the interesting implication of part a) by con-
tradiction. The argument starts this way. Suppose that H 6⊆ K and
K 6⊆ H. Then there is an h ∈ H with h 6∈ K and a k ∈ K with k 6∈ H.
Since h, k ∈ H∪K ≤ G the product hk ∈ H∪K. ..... (contradiction in
short order).

Here are some elementary comments on the structure of compound
statements which apply to this problem in particular. “P if and only if
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Q” is a combination of two statements, “P if Q” and “P only if Q”, and
is thus logically equivalent to “(P if Q) and (P only if Q)”. “P if Q”
is logically equivalent to “Q implies P”, and “P only if Q” is logically
equivalent to “P implies Q”. To establish “P implies Q” is a matter of
showing that if P is true then Q is true.

“P or Q” is logically equivalent to “(not P) implies Q”. This equiva-
lence was used in the argument for the “only if” part in part a). The
statement “not (P or Q)” is logically equivalent to “(not P) and (not
Q)”.

b) Let I be a non-empty set and suppose that {Hi}i∈I is an indexed family
of subgroups of G which satisfies the following condition: For all i, j ∈ I
there is an ` ∈ I such that Hi, Hj ⊆ H`. Show that the union H =
∪i∈IHi is a subgroup of G.

Solution: H 6= ∅ since I 6= ∅ and at least one of the Hi’s is not empty
(in fact none of the Hi’s are empty). Let a, b ∈ H. Then a ∈ Hi

and b ∈ Hj for some i, j ∈ I. By assumption there is an ` ∈ I such
that Hi, Hj ⊆ H`. Therefore a, b ∈ H`. Since H` ≤ G it follows that
ab−1 ∈ H`. Since H` ⊆ H we have ab−1 ∈ H. Therefore H ≤ G.

Remark: The intersection of a non-empty family of subgroups is al-
ways a subgroup; this is not true of unions in general by part a). Part
b) gives an important condition under which the union is a subgroup.

2. (20 total) Suppose that G and G′ are groups.

a) Show that the Cartesian product of sets G×G′ is a group where

(g, g′)(h, h′) = (gh, g′h′)

for all (g, g′), (h, h′) ∈ G×G′.

Solution: G×G′ is not empty since G and G′ are not empty. Let
(g, g′), (h, h′), (`, `′) ∈ G×G′. The calculations

[(g, g′)(h, h′)](`, `′) = (gh, g′h′)(`, `′) = ((gh)`, (g′h′)`′) = (g(h`), g′(h′`′))
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and
(g, g′)[(h, h′)(`, `′)] = (g, g′)(h`, h′`′) = (g(h`), g′(h′`′))

show that the operation in G×G′ is associative.

The calculations

(g, g′)(e, e′) = (ge, g′e′) = (g, g′) and (e, e′)(g, g′) = (eg, e′g′) = (g, g′)

establish that (e, e′) is an identity element for G×G′. For (g, g′) ∈
G×G′ the computations

(g, g′)(g−1, g′−1) = (gg−1, g′g′−1) = (e, e′)

and
(g−1, g′−1)(g, g′) = (g−1g, g′−1g′) = (e, e′)

show that (g, g′) has an inverse.

Remark: The proof of part a) needs to be done to be certain of the
details of the direct product construction. It is straightforward and not
terribly interesting.

b) Suppose that f : G −→ G′ is a group isomorphism. Show that |g| =
|f(g)| for all g ∈ G.

Solution: Let n ∈ Z. Since f is an injective homomorphism, gn = e
if and only if f(gn) = f(e) if and only if f(g)n = e′. This is enough.
(Note that bijective is not used, just injective.)

Now let G = Z2 = {0, 1} and V = G×G.

c) Set e = (0, 0), a = (1, 0), b = (0, 1), and c = (1, 1). Write down the
table for the group structure of V .

Solution:

e a b c
e e a b c
a a e c b
b b c e a
c c b a e
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d) Show that there is no isomorphism f : V −→ Z4.

Solution: Suppose there is such an isomorphism f . Then f(x) = 1 for
some x ∈ V . Now 1 has order 4. Thus x has order 4 by part b). But
examination of the group table of part b) shows that all elements of V
have order 1 or 2. This contradiction shows that there can be no such
isomorphism.

Remark: I can not find a reference for this: A statement P about an
abstract group is a property of groups if whenever P is true for a group
G it is also true for any group isomorphic to G. Thus “G has element of
order 4” is a property of groups. Whether or not a property is true for
a particular group is a different matter. Note that “G has 3 elements
of order 2” is also a property of groups. The statement “The integer 1
belongs to G” is not.

3. (20 total) Let G be a group.

a) Suppose that X is a non-empty set and G×X −→ X is a left action of
G on X. Show that x ∼ y if and only if y = g·x for some g ∈ G defines
an equivalence relation on X and for x ∈ X the equivalence class

[x] = G·x,

the G-orbit of x.

Solution: Let x ∈ X. Then x = e·x; so x ∼ x. Suppose that x ∼ y.
Then y = g·x for some g ∈ G. Thus

g−1·y = g−1·(g·x) = (g−1g)·x = e·x = x

means that y ∼ x. Suppose that x ∼ y and y ∼ z. Then y = g·x and
z = h·y for some g, h ∈ G. Therefore

(hg)·x = h·(g·x) = h·y = z

which implies that x ∼ z. Now

[x] = {y ∈ X | y ∼ x} = {g·x | g ∈ G} = G·x
for all x ∈ X.
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Now suppose that H is a subgroup of G.

b) Show that h·g = hg, the product of h and g in G, for all h ∈ H and
g ∈ G defines a left action of the group H on the set G.

Solution: e·a = ea = a for all a ∈ G. For g, h, a ∈ G associativity
gives (gh)·a = (gh)a = g(ha) = g·(h·a).

c) Show that [x] = Hx for all x ∈ G, where Hx = {hx |h ∈ H}.

Solution: [x] = H·x = Hx for all x ∈ G by part a).

d) For x, y ∈ G show that f : [x] −→ [y] given by f(hx) = hy for all h ∈ H
is a well-defined function which is a set bijection. [Note: hy ∈ [y] for
all h ∈ H. Well-defined means that if h, h′ ∈ H then hx = h′x implies
hy = h′y.]

Solution: Well-defined. Suppose h, h′ ∈ G and hx = h′x. Then by
right cancellation h = h′. Therefore hy = h′y. We have shown that
f : [x] −→ [y] given by f(hx) = hy for h ∈ H is a well-defined function.

Interchanging the roles of x and y we conclude that g : [y] −→ [x] given
by g(hy) = hx is a well defined function. Since g(f(hx)) = g(hy) = hx
and f(g(hy)) = f(hx) = hy for all h ∈ H it follows that f and g are
inverse functions. Therefore f (and hence g) are bijective.

Remark: Well-defined is an issue when for a given input a choice needs
to be made to determine the output. In this case we let z ∈ [x]. Then
z = wx for some w ∈ H. Choose such a w, call it h, and write z = hx.

e) Now suppose that G is finite. Show that |H| divides |G|.

Solution: The equivalence classes of any equivalence relation on G
partition G. Consider the left action of part b) by H on G and the
resulting equivalence relation of part a). By part d) all classes have
the same number of elements. Therefore |[x]| divides G for all x ∈ G.
Since [e] = H by part c) it follows that |H| divides G.

4. (20 total) Let G, G′, and G′′ be groups.
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a) Show that the identity map 1G : G −→ G is an isomorphism.

Solution: 1G(ab) = ab = 1G(a)1G(b) for all a, b ∈ G. Therefore the
bijection 1G is a homomorphism of G.

b) Suppose that f : G −→ G′ and f ′ : G′ −→ G′′ are homomorphisms
(respectively isomorphisms). Show that the composite f ′◦f : G −→ G′′

is a homomorphism (respectively an isomorphism). [You may assume
that the composition of bijective functions is bijective.]

Solution: We need only show that f ′◦f is a homomorphism. This
follows by

(f ′◦f)(ab) = f ′(f(ab)) = f ′(f(a)f(b)) = f ′(f(a))f ′(f(b)) = (f ′◦f)(a)(f ′◦f)(b)

for all a, b ∈ G.

c) Suppose that f : G −→ G′ is an isomorphism. Show that its composi-
tion inverse f−1 : G′ −→ G is an isomorphism.

Solution: Since f and f−1 are inverse functions f−1(f(a)) = a for all
a ∈ G and f(f−1(x)) = x for all x ∈ G′. Therefore

f−1(xy) = f−1(f(f−1(x))f(f−1(y)))

= f−1(f(f−1(x)f−1(y)))

= f−1(x)f−1(y)

for all x, y,∈ G′.

Remark: You might think of parts a)–c) as describing an “algebra of
isomorphisms”. Reminiscent of the group axioms?

d) Show that the set Aut(G) of all isomorphisms from G to itself (that is
the set of all automorphisms of G) is a subgroup of SG = Sym(G).

Solution: By part a) 1G ∈ Aut(G). By part b) the set Aut(G) is
closed under composition. By part c) every element of Aut(G) has an
inverse in Aut(G). Therefore Aut(G) ≤ Sym(G) = SG.

e) The symbolism G ∼ G′ means there exists an isomorphism f : G −→
G′. Show that ”∼” satisfies the axioms of an equivalence relation;
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(a) G ∼ G,

(b) G ∼ G′ implies G′ ∼ G,

(c) G ∼ G′ and G′ ∼ G′′ implies G ∼ G′′.

Solution: (a) Let G be a group and take f = 1G which is an isomor-
phism by part a). (b) Suppose G ∼ G′ and let f : G −→ G′ be an iso-
morphism. Then f−1 : G′ −→ G is an isomorphism by part b). There-
fore G′ ∼ G. (c) Suppose that G ∼ G′ and G′ ∼ G′′. Let f : G −→ G′

and f ′ : G′ −→ G′′ be isomorphisms. Then f ′◦f : G −→ G′′ is an
isomorphism by c). Therefore G ∼ G′′.

Remark: Any set of groups can be partitioned by isomorphism classes.

5. (20 total) Let G be a group and Aut (G) be the group of all automor-
phisms of G under function composition; see Exercise 4.d).

a) For g ∈ G let σg : G −→ G be the function defined by σg(x) = gxg−1

for all x ∈ G. Show that σg ∈ Aut (G).

Solution: Let g, h ∈ G. Then

(σg◦σh)(x) = σg(σh(x))

= g(hxh−1)g−1

= ghxh−1g−1

= (gh)x(gh)−1

= σgh(x)

for all x ∈ G means that

σg◦σh = σgh (1)

for all g, h ∈ G. Since σe(x) = exe−1 = exe = x for all x ∈ G we have

σe = 1G. (2)

Let g ∈ G. By (1) and (2) we compute σg◦σg−1 = σgg−1 = σe = 1G;
thus σg◦σg−1 = 1G for all g ∈ G. Since (g−1)−1 = g, replacing g by g−1

in the lasrt equation gives σg−1◦σg = 1G. Therefore σg has a function
inverse which is σg−1 . We have shown that σg is an automorphism of
G.
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b) Let π : G −→ Aut (G) be the function defined by π(g) = σg for all
g ∈ G. Show that π is a group homomorphism. [Thus g·x = π(g)(x)
defines a left action of G on itself.]

Solution: Using (1) we calculate

π(gh) = σgh = σg◦σh = π(g)◦π(h)

for all g, h ∈ G. Therefore π is a homomorphism.
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