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0. Introduction

All objects which we discuss are defined over

a field k. Group algebras, enveloping algebras

of Lie algebras, quantized enveloping algebras,

and the small quantum groups of Lusztig are

examples of pointed Hopf algebras. These be-

long to a rather extensive class of pointed Hopf

algebras. The classification of the Hopf al-

gebras in this class is nearing completion and

their representation theory is being developed.

We discuss aspects of the theory of pointed

Hopf algebras as it has unfolded over the past

forty years with emphasis on algebraic tech-

niques which have played an important role in

its development. We will describe classifica-

tion results for the pointed Hopf algebras men-

tioned above and some of the recent results on

their representations.



1. Basic definitions and examples

An associative algebra with unity over k can

be thought of as a vector space A over k with

linear maps m : A⊗A −→ A and η : k −→ A

which determine the product and unity 1. The

dual notion of associative algebra is coalgebra;

a vector space C over k with linear maps

∆ : C −→ C⊗C, ε : C −→ k

which satisfy the “duals” of the axioms for an

associative algebra. The maps ∆ and ε are

called the coproduct and counit.

Let c ∈ C. Then ∆(c) ∈ C⊗C is usually de-

noted by the Heyneman-Sweedler notation

∆(c) = c(1)⊗c(2).



For example, the counit laws

(ε⊗IdC)∆ = IdC = (IdC⊗ε)∆

and coassociative law

(IdC⊗∆)∆ = (∆⊗IdC)∆

are expressed as

ε(c(1))c(2) = c = c(1)ε(c(2))

and

c(1)⊗c(2)(1)⊗c(2)(2) = c(1)(1)⊗c(1)(2)⊗c(2)

for all c ∈ C. The expression c(1)⊗c(2)⊗c(3) is

used to represent either side of the preceding

equation.

To say that c ∈ C is cocommutative is ex-

pressed c(1)⊗c(2) = c(2)⊗c(1); the coalgebra C

is cocommutative if all of its elements are. In

this notation calculations are based on formal

manipulations of subscripts.



Example 1 Let C be a coalgebra. The linear

dual C∗ is an algebra with unity ε, where

ab(c) = a(c(1))b(c(2)) (1)

for all a, b ∈ C∗ and c ∈ C.

The product in C∗ is a convolution product.

A Hopf algebra is an associative algebra H with

unity 1 which has a coalgebra structure, such

that ∆, ε are algebra maps, and a certain alge-

bra anti-endomorphism S : H −→ H, which is

called an antipode. Throughout C denotes a

coalgebra and H denotes a Hopf algebra.

Example 2 Let G be a group. The group al-

gebra k[G] is a cocommutative Hopf algebra

where

∆(g) = g⊗g, ε(g) = 1, (2)

and S(g) = g−1 for all g ∈ G.



An element g ∈ C which satisfies (2) is called

grouplike. The set of grouplike elements G(C)

of C is linearly independent and G(H) is a

group under multiplication with neutral ele-

ment 1. The inverse of g ∈ G(H) is S(g). In

particular the linear span of G(H) is the group

algebra k[G(H)], thus:

Example 3 k[G(H)] is a cocommutative sub-

Hopf algebra of H.

Also, G(k[G]) = G. Thus G is recovered from

the coalgebra structure of k[G].

Example 4 Let L be a Lie algebra over k. The

universal enveloping algebra U(L) of L is a co-

commutative Hopf algebra where

∆(e) = 1⊗e + e⊗1, ε(e) = 0, (3)

and S(e) = −e for e ∈ L.



For any Hopf algebra H over k an element

e ∈ H which satisfies (3) is called primitive.

Generally the set of primitive elements P (H)

of H is a subspace which is a Lie algebra un-

der associative bracket.

Also, P (U(L))) = L when L is finite-dimensional

and the characteristic of k is zero. Thus L is

recovered from the coalgebra structure of U(L)

in this case.

A subcoalgebra of H is a subspace D of H such

that ∆(D) ⊆ D⊗D. If g ∈ G(H) then D = kg is

a subcoalgebra of H which is simple, meaning

D contains exactly 2 subcoalgebras. The Hopf

algebra H is pointed if k[G(H)] is the sum of

the simple subcoalgebras of H and is pointed

irreducible if it is pointed and G(H) = {1}.

Both U(L) and k[G] are pointed; indeed U(L)

is pointed irreducible. Note that U(L) gener-

ated as an algebra by its primitive elements.



Observe that k[G] is generated by its grouplike

elements.

The quantized enveloping algebras and “small

quantum groups”, fundamental examples of

quantum groups, are pointed Hopf algebras

generated by their grouplike elements together

by their skew-primitive elements. An element

e of a Hopf algebra H is called skew-primitive

if

∆(e) = g⊗e + e⊗h (4)

for some g, h ∈ G(H). Thus primitive elements

are skew-primitive with g = h = 1. Generally

quantum groups are neither commutative nor

cocommutative. If H is generated (as an alge-

bra) by grouplike and skew primitive elements

then H is pointed.

Open Question 1 When is a pointed Hopf al-

gebra generated (as an algebra) by its group-

like and skew-primitive elements?



2. Hopf modules

The theory of (left) Hopf modules is very use-

ful in understanding the structure of finite-

dimensional pointed Hopf algebras. A left H-

Hopf module is a left H-module M with a left

H-comodule structure ρ : M −→ H⊗M such

that

ρ(hm) = ∆(h)ρ(m) (5)

∈ (H⊗H)(H⊗M)

= H⊗M

for all h ∈ H and m ∈ M . Notice the similarity

between the multiplicative formula for the co-

product ∆(h`) = ∆(h)∆(`) for all h, ` ∈ H and

the preceding for ρ.

A non-zero left H-Hopf module is always free

as an H-module. Any linear basis of

M \ = {m ∈ M | ρ(m) = 1⊗m}



is an H-module basis for M . This is really
the sum and substance of the theory of Hopf
modules. Its importance lies in applications.

3. The coradical filtration

Let J = Rad(C∗) be the Jacobson radical of
C∗. For n ≥ 0 let Cn = (Jn+1)⊥ ⊆ C be the
set of common zeros of the elements (func-
tionals) of Jn+1. Then C0, C1, C2, . . . is the
coradical filtration of C. The sum of the sim-
ple subcoalgebras of C is C0,

C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ ∪∞n=0Cn = C,

and

∆(Cn) ⊆
n∑

i=0

Cn−i⊗Ci (6)

for all n ≥ 0. In particular Cn is a subcoalgebra
of C for all n ≥ 0. The coradical filtration can
be defined from C0 inductively by

Cn = ∆−1(C0⊗C + C⊗Cn−1) (7)



for all n ≥ 1. Since Cn is a subcoalgebra

of C it is a left C-comodule under ∆. Let

n ≥ 1. Then the quotient comodule structure

ρ : Cn/Cn−1 −→ C⊗(Cn/Cn−1) satisfies Im ρ ⊆
C0⊗(Cn/Cn−1) by (6). Therefore Cn/Cn−1 is

a left C0-comodule.

Suppose that H0 is a sub-Hopf algebra of H,

as is the case when H is pointed by Exam-

ple 3. Then Hn is a left H0-submodule under

multiplication by (7). The H0 quotient struc-

tures on Hn/Hn−1 are a left H0-Hopf module

structure. Therefore the quotient is a free left

H0-module; consequently H is a free left H0-

module. As H0 = k[G(H)] when H is pointed:

Corollary 1 A pointed Hopf algebra is a free

left k[G(H)]-module. ¤

There is a Hopf algebra analog of Lagrange’s

Theorem for finite groups.



Theorem 1 A finite-dimensional Hopf algebra

is a free module over its sub-Hopf algebras.

The proof, which is quite subtle, is based on

the notion of relative Hopf module, a general-

ization of Hopf module.

Suppose that H is pointed. Then H1 is spanned

by the grouplike and skew-primitive elements

of H. Thus Open Question (1) can be refor-

mulated: When is a pointed Hopf algebra H

generated as an algebra by H1?

4. Finite-dimensional simple-pointed Hopf

algebras

First some general remarks. Suppose z ∈ H is

skew-primitive. Then



∆(z) = g⊗z + z⊗h

for some g, h ∈ G(H). Since ∆ is multiplicative

∆(zg−1) = ∆(z)∆(g−1)

= (g⊗z + z⊗h)(g−1⊗g−1)

= 1⊗zg−1 + zg−1⊗hg−1.

Let x = zg−1 and a = hg−1 ∈ G(H). Then

∆(x) = 1⊗x + x⊗a. (8)

Let V be the subspace of all v ∈ H which sat-

isfy (8). If g ∈ G(H) commutes with a then

gV g−1 ⊆ V as

∆(gvg−1) = g1g−1⊗gvg−1 + gvg−1⊗gag−1

for v ∈ V .

Further assume that k is algebraically closed of

characteristic zero and H is finite-dimensional.

Let G be a commutative subgroup of G(H)



which contains a. Then G is finite and conju-
gation by elements of G on V induces a weight
space decomposition V =

⊕
χ∈Ĝ Vχ. Replac-

ing x by a weight vector of Vχ we have that
gxg−1 = χ(g)x, or equivalently gx = χ(g)xg,
for all g ∈ G. In particular

∆(x) = 1⊗x + x⊗a and ax = qxa, (9)

where q = χ(a) and is therefore a root of unity.

Let H be the subalgebra of H generated by G
and x and set B = k[G]. Then

H =
∞⊕

i=0

Bxi.

Let H(n) = B+ · · ·+ Bxn for n ≥ 0. Then

H(0) ⊆ H(1) ⊆ H(2) ⊆ ∪∞n=0H(n) = H,

H(m)H(n) ⊆ H(m+n) and for all m, n ≥ 0,

∆(H(n)) ⊆
n∑

i=0

H(n−i)⊗H(i)



for all n ≥ 0.

For each n > 1 either H(n)/H(n−1) is (0) or

is a free left module over H(0) = B with basis

xn + H(n−1). The argument follows the one

found at the end of Section 3.

Using these ideas, and the nature if the expan-

sion of ∆(xm), we can analyze finite-dimensional

simple-pointed Hopf algebras. Note that

∆(xm) = (∆(x))m

= (1⊗x + x⊗a)m

=
m∑

i=0

(
m
i

)

q

xm−i⊗am−ixi

has a q-binomial expansion since

(x⊗a)(1⊗x) = (x1⊗ax)

= q(1x⊗xa)

= q(1⊗x)(x⊗a).



Lemma 1 Suppose k has characteristic zero

and x ∈ H is a non-zero primitive. Then the

set of all non-negative powers {1, x, x2, . . .} is

linearly independent.

Sketch of proof. Assume there is a minimal

dependency relation and apply ∆ to it using

the q-binomial expansion on the powers of x.

Here q = 1 and the (binomial) coefficients are

not zero.

H is simple-pointed if:

(SP.1) pointed,

(SP.2) not cocommutative, and

(SP.3) any proper sub-Hopf algebra of H is con-

tained in H0 = k[G(H)].



Example 5 Hq,α,n,m, where n, m are positive
integers, n > 1 and n|m, q ∈ k is a primitive nth

root of unity, and α ∈ k. As an algebra Hq,α,n,m

is generated by a, x subject to the relations

xa = qax, xn = α(an − 1), and am = 1

and whose coproduct is determined by

∆(a) = a⊗a and ∆(x) = 1⊗x + x⊗a.

We note that DimHq,α,n,m = mn.

Suppose that k is algebraically closed of char-
acteristic zero. Then the finite-dimensional
simple-pointed Hopf algebras are those Hopf
algebras of Example 5; we may take α = 0,1.

For a given dimension there are a finite number
of isomorphism types of simple-pointed Hopf
algebras. This is not true without the simple-
pointed assumption. There are examples re-
sulting from a construction of a sequence of
Ore extensions.



Finite-dimensional simple pointed Hopf alge-

bras have a finite number of sub-Hopf algebras

since k[G(H)] does. There are examples of

finite-dimensional pointed Hopf algebras which

have infinitely many sub-Hopf algebras.

Example 6 Let k be any field and H as an

algebra be generated by a, x, y subject to the

relations

xa = −ax, ya = −ay, yx = −xy,

x2 = y2 = 0,and a2 = 1

and whose coproduct is determined by

∆(a) = a⊗a and ∆(z) = 1⊗z + z⊗a,

where z = x, y. Then dimH = 8 and for α ∈ k

the subalgebra Hα of H generated by a and

x + αy is a 4-dimensional sub-Hopf algebra of

H. Note that Hα ' H0 as Hopf algebras and

Hα = Hα′ implies α = α′. Take k to be infinite.



Open Question 2 Which of the finite-dimensional

pointed Hopf algebras have only finitely many

sub-Hopf algebras?

To continue with analogs of results about groups

in the theory of pointed Hopf algebras. Re-

garding Cauchy’s Theorem:

Open Question 3 If p is a positive prime which

divides the dimension of a finite-dimensional

pointed Hopf algebra is there a sub-Hopf alge-

bra of dimension p?

In regard to the Sylow Theorems:

Example 7 Let r, s be distinct positive primes.

Then H = Hq,α,rs,rs has dimension (rs)2 and

sub-Hopf algebras have dimension 1, r, s, rs or

(rs)2. Therefore H has no sub-Hopf algebras

of dimension r2 or s2.



Open Question 4 Is there a good analog of

the Sylow Theorems for finite-dimensional pointed

Hopf algebras?

5. Characters of one-dimensional

representations of H

These are simply the algebra homomorphisms

η : H −→ k. The set Alg (H, k) of them is

a multiplicative subgroup of H∗ with neutral

element ε and the restriction map

res : Alg (H, k) −→ Ĝ(H), η 7→ η|G(H)

is a group homomorphism. Note that Ker res

consists of all η such that η(g) = 1 for all g ∈
G(H).

Many pointed Hopf algebras, including the ex-

amples mentioned in Section 1, are generated

by grouplikes and skew primitives x such that

gx = χ(g)xg for all g ∈ G(H), where χ ∈ Ĝ(H)



is non-trivial. Applying η as above to the pre-

ceding equation results for all g ∈ G(H) in

η(g)η(x) = χ(g)η(x)η(g), and thus η(x) = χ(g)η(x)

since g is invertible. As χ is non-trivial η(x) =

0. Thus for these Hopf algebras Ker res = {ε};
that is η is determined by its action on G(H).

In light of Open Question 1 the following is

interesting.

Proposition 1 Suppose that H is pointed, fi-

nitely generated as a left H0-module, and k has

characteristic zero. Then Ker res = {ε}.

Sketch of proof. Let η ∈ Ker res. Then η van-

ishes on I =
∑

g∈G(H) H(g − 1)H since η(g) =

1 = η(1) for all g ∈ G(H). For the same reason

ε vanishes on I. We show that I has codimen-

sion one, and thus Ker η = I = Ker ε whence

η = ε.



We next consider the (Hopf algebra) projec-

tion π : H −→ H/I = H. Then H is a finitely

generated module over π(H0) = k1, hence is

finite-dimensional. Now H0 ⊆ π(H0) = k1

means that H is pointed irreducible. Since the

characteristic of k is zero, H has no non-zero

(skew) primitive elements by Lemma 1. Thus

H1 = H0 which means H = H0 = k1 by (7).

Thus I has codimension one.

6. The graded Hopf algebra associated to

a pointed Hopf algebra and “lifting”

Recall J = Rad(C∗) is the Jacobson radical of

C∗. Since J is a two-sided ideal of C∗

gr(C∗) =
∞⊕

n=0

Jn/Jn+1

is a graded algebra in the usual way, where

J0 = C∗. For n ≥ 0 the rule



πn : Jn/Jn+1 −→
(
(Jn+1)⊥/(Jn)⊥

)∗
=

(
Cn/Cn−1

)∗

given by

πn(a + Jn+1)(c + Cn−1) = a(c)

for all a ∈ Jn and c ∈ Cn describes a well-

defined linear map whose image is a dense sub-

space of its codomain. There is a unique coal-

gebra structure on

gr (C) =
∞⊕

n=0

Cn/Cn−1

such that the composite

π : gr (C∗) −→ gr(C)∗

given by

∞⊕

n=0

Jn/Jn+1 ⊕∞n=0πn−→
∞⊕

n=0

(Cn/Cn−1)
∗ ⊆ gr(C)∗

is an algebra homomorphism, where C−1 =

(0). There is a concrete way of understanding



π. For n ≥ 0 let Vn be a subspace of Cn such

that Cn−1⊕Vn = Cn. Then C =
⊕∞

n=0 Vn. The

composite of projections

jn : C =
∞⊕

m=0

Vm −→ Vn ⊆ Cn −→ Cn/Cn−1

satisfies

jn|Cn : Cn −→ Cn/Cn−1

is the projection and

jn|Vn : Vn −→ Cn/Cn−1

is an isomorphism. In particular

DimC = Dimgr(C)

∆gr(c + Cn−1) =
n∑

i=0

(jn−i⊗ji)(∆(c))

and

εgr(c + Cn−1) = δn,0ε(c)

for all c ∈ Cn. We note that gr(C)0 = C0 as

coalgebras.



Suppose that H0 is a sub-Hopf algebra of H, as

is the case when H is pointed. Then HmHn ⊆
Hm+n for all m, n ≥ 0 by induction on m + n

using (6). Thus gr(H) has a natural graded al-

gebra structure which, together with the coal-

gebra structure above makes gr(H) a Hopf al-

gebra. To study H we first study gr(H).

Suppose further that H is pointed. Then gr(H)

is also since gr(H)0 = H0. We consider how

certain algebra relations are affected in replac-

ing H by gr(H). Consider, for example, the

defining relations for H = Hq,α,n,m:

xa = qax, xn = α(an − 1) , and am = 1;

∆(a) = a⊗a and ∆(x) = 1⊗x + x⊗a.

Set a = a, 1 = 1, and x = x + H0. Then in

gr(H) we have

xa = qax, xn = 0 , and am = 1;

∆(a) = a⊗a and ∆(x) = 1⊗x + x⊗a.



Now suppose x, y ∈ H, a, b ∈ G(H) commute,
and q ∈ k\0 satisfy:

xb = qbx and ya = q−1ay;

∆(x) = 1⊗x + x⊗a and ∆(y) = 1⊗y + y⊗b.

Then

∆(xy − qyx) = 1⊗(xy − qyx)− (xy − qyx)⊗ab

which is consistent with xy − qyx = α(ab− 1)
for some α ∈ k. This relation goes over to
xy − qyx = 0 in gr(H). In practice, xy − qyx

is a commutator in a certain context.

Lifting is the process of constructing, or recon-
structing, defining relations for H from defin-
ing relations for gr(H).

7. Bi-products and Nichols algebras

Suppose that H has bijective antipode, as is
the case for pointed Hopf algebras, H is a sub-
Hopf algebra of H, and π : H −→ H is a Hopf



algebra map which satisfies π(h) = h for all

h ∈ H. Let

R = {h ∈ H |h(1)⊗π(h(2)) = h⊗1}.
Then R is a subalgebra of H; usually not a

subcoalgebra of H. However there is a coalge-

bra structure on (R, δ, ε) on R and a surjective

map of coalgebras Π : H −→ R. Furthermore

R has a left H-module structure and a left H-

comodule structure (R, ρ) such that

ρ(h·m) = h(1)m(−1)S(h(3))⊗h(2)·m(0) (10)

for all h ∈ H and m ∈ R, where ρ(m) ∈ H⊗R is

written

ρ(m) = m(−1)⊗m(0)

for m ∈ R. Compare (10) with the Hopf mod-

ule condition

ρ(h·m) = ∆(h)ρ(m) = h(1)m(−1)⊗h(2)·m(0).



With the algebra and left H-module structure,

and the coalgebra and left H-comodule struc-

ture,

H = R×H (= R⊗H as a vector space)

is a bi-product. The most important example

for our purposes is H pointed and H = H0 =

k[G(H)]. Here the most important structure

to understand is R, and R is very subtle.

The compatibility condition mentioned above

defines a braided monoidal category YD, called

a Yetter-Drinfel’d category whose objects are

left H-modules and left H-comodules such that

(10) holds. The braiding isomorphisms σM,N :

M⊗N −→ N⊗M are given by

σM,N(m⊗n) = m(−1)·n⊗m(0).

R is usually not a Hopf algebra since the co-

product δ : R −→ R⊗R is usually not an algebra

map.



However, with the definition of tensor product

of algebras in the category YD, R is a Hopf

algebra in YD.

For algebras A, B over k, the product of A⊗B

is a composition of linear maps described by

(a⊗b)⊗(a′⊗b′) 7→ a⊗b⊗a′⊗b′

7→ a⊗(b⊗a′)⊗b′
I⊗τ⊗I7→ a⊗(a′⊗b)⊗b′

7→ (a⊗b)⊗(a′⊗b′)
7→ aa′⊗bb′

For algebras A, B in YD we define the ten-

sor product algebra structure in the same way,

replacing the “twist map” τ , which is usually

not a morphism, by the braiding isomorphism

σR,R. Writing A⊗B for this structure setting

a⊗b = a⊗b, note

(a⊗b)(a′⊗b′) = a(b(−1)·a′)⊗b(0)b
′.



The appropriate notion of “commutator” in A

is that of braided commutator. For a, b ∈ A

the usual commutator

ad a(b) = [a, b] = ab− ba = m(IdA − τ)(a⊗b)

where m and τ are the product and “twist”

maps respectively. Replacing τ by the braiding

isomorphism σA,A we have

adc a(b) = [a, b]c = ab− (a(−1)·b)a(0)

Now we turn to to the important case H is

pointed and G(H) is a commutative group.

Our discussion applies to gr(H) and H = k[G(H))]

with

π : gr(H) −→ gr(H)0 = H0 = k[G(H)]

the projection onto the degree zero term. In

this case:



(N.1) R =
⊕∞

n=0 R(n) is a graded pointed irre-

ducible Hopf algebra in YD;

(N.2) P (R) = R(1);

and possibly

(N.3) R(1) generates R as an algebra.

An algebra in YD which satisfies (N.1)–(N.3)

is called a Nichols algebra. The subalgebra of

R generated by V = R(1) is a Nichols algebra

denoted B(V ). It is determined by the object

V of YD.

Suppose further that V is finite-dimensional

and k is algebraically closed of characteristic

zero. Then there is a basis {x1, . . . , xn} for



V , elements g1, . . . , gn ∈ G(G), and characters
χ1, . . . , χn ∈ Ĝ(H), such that

ρ(xi) = gi⊗xi and gxig
−1 = χi(g)xi

for all 1 ≤ i ≤ n and g ∈ G. The module action
of H on V is given by

gxi = χi(g)xi

for all g ∈ G(H) and 1 ≤ i ≤ n. In particular V

is an object of YD. The braiding c = σV,V is
given by

c(xi⊗xj) = gi·xj⊗xi = χj(gi)xj⊗xi = qijxj⊗xi,

where

qij = χj(gi).

The matrix (qij) is called the infinitesimal braid-
ing matrix. The endomorphism c : V⊗V −→
V⊗V is called an infinitesimal braiding. Note
that

adc xi(xj) = [xi, xj]c
= xixj − (gi·xj)xi

= xixj − qijxjxi.



The Nichols algebra B(V ) has a more intrinsic

description which does not involve YD. Luzstig

and Rosso studied these algebras in this light

and found generators and relations in impor-

tant cases. These are deep results from quan-

tum groups and are used heavily in the classi-

fication program for pointed Hopf algebras.

We end with the simple example of the Taft

algebra H = Hq,1,n,m, where n > 1 and q ∈ k is

a primitive nth root of unity. Recall that H is

generated by a, x subject to the relations

xa = qax, xn = an − 1, and am = 1

and whose coproduct is determined by

∆(a) = a⊗a and ∆(x) = 1⊗x + x⊗a.

Here gr(H) as above with xn = an−1 replaced

by xn = 0. Note V = R(1) = kx,

a·x = q−1x, ρ(x) = a−1⊗x, and c(x⊗x) = qx⊗x.



Now δ(x) = 1⊗x + x⊗1. Thus R is not a Hopf

algebra over k since {1, x, x2, . . .} is not linearly

independent. To calculate

δ(xm) = (1⊗x + x⊗1)m

we note that

(1⊗x)(x⊗1) = 1(x(−1)·x)⊗x(0)1

= qx⊗x

= q(x⊗1)(1⊗x)

as c(1⊗1) = 1. Thus

δ(xm) =
m∑

i=0

(
m
i

)

q

xm−i⊗xi

whence δ(xn) = 1⊗xn + xn⊗1, as
(

n
i

)

q

= 0 for all 1 ≤ i ≤ n− 1,

which is compatible with xn = 0.



8. Classification results; the

finite-dimensional case

We assume that k is an algebraically closed

field of characteristic zero. Suppose that H

is finite-dimensional and pointed. Under some

mild assumptions on the infinitesimal braiding

matrix and G(H), H ' u(D, λ, µ) as a Hopf

algebras.

D = (Γ, {gi}, {χi}, (aij)) , where 1 ≤ i, j ≤ n,

is a datum of finite Cartan type: Γ is an

abelian group, gi ∈ Γ, χi ∈ Γ̂, (aij) is a matrix

of finite Cartan type and

χj(gi)χi(gj) = χ(qii)
aij and χii(gi) 6= 1. (11)

Set qij = χj(gi). Let χ be components of the

Dynkin diagram, ∼ the equivalence relation which

defines them. For J ∈ χ then common order

of the qii’s, i ∈ J, is NJ.



λ = {λij} , where 1 ≤ i, j ≤ n is a family of

linking parameters: λij ∈ k, λji = −q−1
ij λij,

and λij 6= 0 implies

i 6∼ j, gi 6= g−1
j , and χi = χ−1

j ,

.

µ = {µα}α∈Φ+ : µα ∈ k, for all J ∈ χ, α ∈ J,

µα 6= 0 implies

g
NJ
α 6= 1 and χ

NJ
α = ε.

Let V have basis {x1, . . . , xn}. Then V is an

object of YD with

g·xi = χi(g)xi and ρ(xi) = gi⊗xi

for all g ∈ Γ and 1 ≤ i ≤ n. T (V ) is an algebra

in YD.

U(D, λ) = T (V )×k[Γ] modulo the ideal gener-

ated by:



(QSR) adc (xi)
1−aij(xj) = 0, i ∼ j, i 6= j;

(LR) adc (xi)
1−aij(xj) = adc (xi)(xj) =

xixj − qijxjxi = λij(1− gigj), i 6∼ j;

and u(D, λ, µ) is U(D, λ) modulo the ideal gen-

erated by

(RVR) x
NJ
α = uα(µ), α ∈ Φ+

J , J ∈ χ.

Certain constructions produce gα ∈ Γ, χα ∈ Γ̂,

xα ∈ T (V ), and uα(µ) ∈ k[< g
N1
1 , . . . , gNn

n >]+.

Identifying cosets with representatives,

∆(g) = g⊗g, ∆(xi) = gi⊗xi + xi⊗1

for all g ∈ Γ and 1 ≤ i ≤ n. The U(D, λ)’s

account for the quantized enveloping algebras.

A huge result from quantum groups (basically):



Theorem 2 D as above, assume qij has odd

order for all 1 ≤ i, j ≤ n, and qii has order

prime to 3 if i lies in a component of G2. Then

B(V ) = T (V )/I, where I is generated by

adc (xi)
1−aij(xj) for all 1 ≤ i, j ≤ n, i 6= j

x
NJ
α for all α ∈ Φ+

J , J ∈ χ.

Theorem 3 H finite-dimensional pointed. As-

sumptions on the infinitesimal braiding above,

and the prime divisors of |G(H)| exceed 7. Then

H ' u(D, λ, µ) for some data as above.

Corollary 2 gr(u(D, λ, µ)) ' B(V )×k[Γ].

9. Generalized doubles

Our representation theory applies to U(D, λ)

and u(D, λ,0). In the latter x
NJ
α = 0 for all

α ∈ Φ+
J , J ∈ χ.



Suppose that D is generic, that is qii is not a

root of unity for all 1 ≤ i ≤ n. Then the linking

graph is bipartite. The vertices of the linking

graph are elements of χ and J, J ′ are joined by

an edge if λii′ 6= 0 for some i ∈ J and i′ ∈ J ′.

As a result there there are bi-products

U = B(U)×k[Λ] and A = B(V )×k[Γ]

and a surjective Hopf algebra map

(U⊗A)σ −→ U(D, λ)

whose kernel is generated by differences of cen-

tral grouplikes. σ : (U⊗A)⊗(U⊗A) −→ k is a

certain type of two-cocycle twist. As a coalge-

bra (U⊗A)σ = U⊗A and the product satisfies

(u⊗a)(u′⊗a′) = uu′⊗aa′ if a = 1 or u′ = 1.

(12)

Suppose further that k is algebraically closed of

characteristic zero. Then the finite-dimensional



irreducible representations of U and A are one-

dimensional. A generalized double is a Hopf

algebra of the form (U⊗A)σ, where U, A are

Hopf algebras.

10. The foundation of a representation

theory

Suppose U, A are algebra and H = U⊗A has an

algebra structure which satisfies (12). Let

ρ ∈ Alg(U, k) and χ ∈ Alg(A, k).

Classification results lead to a very general high-

est weight theory which accounts for a para-

meterization of simple modules in many cases.

The context of this theory is the class of alge-

bras of the form U⊗A, where U and A are alge-

bras over k and (u⊗a)(u′⊗a′) = uu′⊗aa′ when-

ever a = 1 or u′ = 1. The pointed Hopf alge-

bras H of interest to us are quotients of U⊗A.



Which simple H-modules are finite-dimensional

has been solved and the complete reducibil-

ity of finite-dimensional representations of H

is under investigation.


