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0. Introduction

Hopf algebras are named after Heinz Hopf who

discovered them the last century in the context

of algebraic topology [Hopf 1941]. They

arise in many areas of mathematics. Group

algebras, enveloping algebras of Lie algebras,

and quantum groups are examples of Hopf al-

gebras. Certain Hopf algebras give rise to in-

variants of knots and links. We will describe

Hopf algebras, discuss basic examples and fun-

damental results, and trace the development of

the theory.

The Hopf algebras we discuss here are tech-

nically different from those coming from alge-

braic topology. See the very interesting dis-

cussion in [Haz 2008].

Objects are vector spaces over a field k and

maps are k-linear. ⊗ = ⊗k. “f-d” = finite-

dimensional.



1. A Basic Example and Definitions

G is a group and A = kG is the group algebra of

G over k. Let g, h ∈ G. The algebra structure:

kG⊗ kG m−→ kG m(g ⊗ h) = gh

k
η−→ kG η(1k) = e = 1kG

The coalgebra structure:

kG ∆−→ kG⊗ kG ∆(g) = g ⊗ g

kG ε−→ k ε(g) = 1k

The map which accounts for inverses:

kG S−→ kG S(g) = g−1



Observe that

∆(gh) = gh⊗ gh = (g⊗ g)(h⊗ h) = ∆(g)∆(h),

ε(gh) = 1k = 1k1k = ε(g)ε(h),

S(gh) = (gh)−1 = h−1g−1 = S(h)S(g),

gS(g) = gg−1 = 1kG = 1k1kG = ε(g)1kG,

and

S(g)g = g−1g = 1kG = ε(g)1kG.

In particular ∆, ε are algebra maps and S is

determined by

gS(g) = ε(g)1kG = S(g)g.

We generalize the system (kG, m, η,∆, ε, S).



A Hopf algebra over k is a tuple (A, m, η,∆, ε, S),
where (A, m, η) is an algebra over k:

A⊗A
m−→ A m(a⊗ b) = ab

k
η−→ A η(1k) = 1A

(A,∆, ε) is a coalgebra over k:

A
∆−→ A⊗A ∆(a) = a(1) ⊗ a(2)

A
ε−→ k

and A
S−→ A is an ”antipode” where certain

axioms are satisfied.

Comments: ∆(a) ∈ A ⊗ A is usually a sum of
tensors; thus ∆(a) = a(1)⊗a(2) is a notation,
called the Heyneman-Sweedler notation. ∆ is
called the coproduct and ε the counit.

The axioms for a Hopf algebra:



(A, m, η) is an (associative) algebra:

(ab)c = a(bc), 1a = a = a1

(A,∆, ε) is a (coassociative) coalgebra:

a(1)(1) ⊗ a(1)(2) ⊗ a(2) = a(1) ⊗ a(2)(1) ⊗ a(2)(2),

ε(a(1))a(2) = a = a(1)ε(a(2))

∆ is an algebra map:

∆(ab) = a(1)b(1) ⊗ a(2)b(2), ∆(1) = 1⊗ 1,

ε is an algebra map:

ε(ab) = ε(a)ε(b), ε(1) = 1, and

a(1)S(a(2)) = ε(a)1 = S(a(1))a(2))

for all a, b ∈ A. From now on A denotes a Hopf
algebra over k.



2. Basic Properties and More Definitions

1. A has a unique antipode and

S(ab) = S(b)S(a), S(1) = 1. Also

∆(S(a)) = S(a(2))⊗ S(a(1)), ε(S(a)) = ε(a).

2. a ∈ A is cocommutative if a(1) ⊗ a(2) =
a(2) ⊗ a(1); A is cocommutative if all a ∈ A

are. kG is cocommutative. A is commutative
if ab = ba for all a, b ∈ A. kG is commutative if
and only if G is.

3. a ∈ A is grouplike if ∆(a) = a ⊗ a and
ε(a) = 1. 1 ∈ A is grouplike. The set G(A) of
grouplike elements of A is linearly independent
(coalgebra fact). G(kG) = G.

4. G(A) is a group under multiplication and
S(g) = g−1 for g ∈ G(A). Thus if A is f-d then
G(A) is a finite group.



5. Let M, N be left A-modules (regard A as an
algebra). Then M⊗N is a left A-module where
a·(m⊗ n) = a(1)·m⊗ a(2)·n. For g ∈ G ⊆ kG
note g·(m⊗ n) = g·m⊗ g·n.

6. If S is bijective then (A, mop, η,∆, ε, S−1),
(A, m, η,∆cop, ε, S−1) are Hopf algebras, where
mop(a ⊗ b) = ba and ∆cop(a) = a(2) ⊗ a(1).
(A, mop, η,∆cop, ε, S) is a Hopf algebra.

7. If A is f-d then S is bijective.

8. If (A, m, η,∆, ε, S) is f-d (A∗,∆∗, ε∗, m∗, η∗, S∗)
is a f-d Hopf algebra over k.

9. Let C be a (coassociative) coalgebra. Every
f-d subspace of C generates a f-d subcoalgebra.
Thus A has simple subcoalgebras, and all are
f-d. k1, more generally kg for g ∈ G(A), is a
simple subcoalgebra of A.

The reader is referred to any basic text on Hopf
algebras: [Swe 1967], [Abe 1980], [Mont 1993],
[D−N−Rai 2001].



3. The Enveloping Algebra

L is a Lie algebra over k. Then the enveloping

algebra U(L) is a cocommutative Hopf algebra

over k where

∆(`) = 1⊗ ` + `⊗ 1, (1)

ε(`) = 0, and S(`) = −` for ` ∈ L. An ` ∈ A

such that (1) holds is primitive. The set of

primitives P (A) of A is a subspace and a a Lie

algebra under associative bracket. A = U(L)

is pointed irreducible meaning k1 is the only

simple subcoalgebra of A.

Assume k has characteristic 0. Then P (U(L))) =

L and the Milnor-Moore Theorem [Mil−Mo 1965]

characterizes the finitely generated graded pointed

irreducible Hopf algebras over the field k as the

enveloping algebras of f-d Lie algebras over k.
See [Haz 2008] also.



4. Affine Algebraic Groups

Coalgebras C over k provide many examples of

algebras. The linear dual C∗ = Homk(C, k) is

an algebra over k with convolution product:

1C∗ = ε and ab(c) = a(c(1))b(c(2))

for all a, b ∈ C∗ and c ∈ C.

Example 1 C has basis c0, c1, c2, . . . and

∆(cn) =
∑n

`=0 cn−` ⊗ c`, ε(cn) = δn,0.

As (ab)(cn) =
n∑

`=0

a(cn−`)b(c`),

C∗ ' k[[x]], a 7→
∞∑

n=0

a(cn)x
n.

Example 1 suggests coalgebra connections with

combinatorics [Rom−Rota 1978], [Rota 1978].



Example 2 Let n ≥ 1 and C(n, k) have basis

xi,j, 1 ≤ i, j ≤ n and

∆(xi,j) =
∑n

`=1 xi,` ⊗ x`,j, ε(xi,j) = δi,j.

As (ab)(xi,j) =
n∑

`=1

a(xi,`)b(x`,j),

C∗ ' M(n, k), a 7→ (ai,j), where ai,j = a(xi,j).

We now continue. B = S(C(n, k)) is the free

commutative k-algebra on C(n, k). Now let

∆ : B −→ B ⊗ B and ε : B −→ k be the al-

gebra maps determined on xi,j as in Example

2. Algk(B, k) is closed under the convolution

product, contains ε, and

Algk(B, k) ' M(n, k), α 7→ (α(xi,j)),

as (multiplicative) monoids.

Det =
∑

σ∈Sn

x1,σ(1) · · ·xn,σ(n) ∈ G(B),



A = B[Det−1] is a Hopf algebra, Algk(A, k) is

a group under convolution, and

Algk(A, k) ' GL(n, k) as groups.

An affine algebraic group is a pair (G, A), where

G is a group, A is a certain commutative Hopf

algebra over k, and G ' Algk(A, k). We write

A = A(G). A determines (G, A).



5. The General Theory of Hopf Algebras

Begins

With Sweedler’s book [Swe 1969b] the study

of Hopf algebras in general was just under-

way. Previously Hopf algebras of interest were

either cocommutative or commutative. kG,

U(L) are cocommutative, as are formal groups

when thought of as Hopf algebras, and A(G)

is commutative. U(L) and A(G) are precursors

of quantum groups.

Efforts were made to prove know results, or

discover new ones, for affine groups using Hopf

algebra methods, see [Swe 1969a], [Sul 1971],

[Sul 1973], [Tak 1972a], [Tak 1972b]. The study

of cocommutative Hopf algebras was pursued

[Swe 1967], [New−Swe 1979].

Connections were made with many aspects of

algebra. Hopf algebras were seen as rings which



were interesting in their own right. There was

an effort to generalize results about the group

algebras of finite groups to f-d Hopf algebras.

For these generalizations would hold for both

these group algebras and restricted enveloping

algebras.

The Galois group (algebra) was replaced by a

Hopf algebra and a general Hopf Galois theory

was eventually developed [Chase−Swe 1969],

[Krei−Tak 1981], [Schauen 2004]. For an up

to date survey see [Mont 2009].

Hopf algebras were constructed as vector spaces

on certain diagrams, such as rooted trees, which

can be combined (accounting for a product)

and decomposed (accounting for a coproduct);

see [Gross−Lar 1989]. See [Connes−Krei 2001]

for such Hopf algebras related to Feynman graphs.

The antipode was scrutinized since it is such

an important part of the structure of a Hopf



algebra. In [Tak 1971] a Hopf algebra is given

where S is not bijective. If A is commutative

or cocommutative S2 = IdA and therefore S is

bijective.

In [Taft 1971] f-d examples Tn, where n ≥ 1,

are given where S2 has finite order n. T2 is

Sweedler’s example. DimTn = n2.

Example 3 Let n ≥ 1 and suppose q ∈ k is a

primitive nth root of unity. Tn is generated as

an algebra by a, x subject to the relations

xa = qax , xn = 0, and an = 1

and the coalgebra structure is determined by

∆(a) = a⊗ a and ∆(x) = 1⊗ x + x⊗ a. (2)

Necessarily ε(a) = 1, thus A ∈ G(Tn), and

ε(x) = 0. An x ∈ A such that (2) is satisfied

for some a ∈ G(A) is skew-primitive. Compare



with (1). When a = 1 note x is primitive. The

boxed expressions are basic types of defining

relations for the quantized enveloping algebras

(here q is not a root of unity).

In 1975 Kaplansky postulated 10 conjectures

[Kap 1975] about Hopf algebras some of which

are open. They have focused the research of

many.



6. Some Fundamental Results for F-D

Hopf Algebras

G is a finite group. Λ =
∑

h∈G

h satisfies

gΛ =
∑

h∈G

gh = Λ = 1kΛ = ε(g)Λ

for g ∈ G and

ε(Λ) =
∑

h∈G

ε(h) =
∑

h∈G

1k = |G|1k.

Maschke’s Theorem can be formulated: All

left kG-modules are completely reducible if and

only if ε(Λ) 6= 0.

Λ ∈ A is a left (resp. right) integral for A if

aΛ = ε(a)Λ (resp. Λa = ε(a)Λ ) for all a ∈ A.

There is non-zero (left) integral Λ for A iff

A is f-d [Swe 1969c] in which case any (left)

integral for A is a scalar multiple of Λ.



Now suppose A is f-d. All left A-modules are
completely reducible if and only if ε(Λ) 6= (0)
[Lar−Swe 1969c].

There is a g ∈ G(A) which relates left and right
integrals for A and an α ∈ G(A∗) which does
the same for A∗. Let A

σg−→ A, A∗ σα−→ A∗
denote conjugation by g, α respectively. Then
σg, σ∗α commute and

S4 = σg◦σ∗α .

Thus S has finite order. See [Rad 1976].

There is a Hopf algebra analog of Lagrange’s
Theorem for a finite group G. Let H be a
subgroup of G. Then |H| divides |G| if and
only if kG is a free left kH-module. A most
sought after result was finally established in
[Nic−Zel 1989]:

Theorem 1 A f-d Hopf algebra is a free (left)
module over its sub-Hopf algebras.



The proof, which was very elusive and is rather

subtle, is based on the notion of relative Hopf

module, a generalization of Hopf module.

Now let A be any Hopf algebra over k. Then a

left A-Hopf module is a triple (M, µ, ρ), where

A⊗M
µ−→ M is a left A-module, M

ρ−→ A⊗M

is a left A-comodule which satisfy a certain

compatibility. Writing µ(a ⊗ m) = am and

ρ(m) = m(−1) ⊗m(0) this is

ρ(am) = a(1)m(−1) ⊗ a(2)m(0) = ∆(a)ρ(m).

All left A-Hopf modules are free and have a

special basis [Swe 1969c]. This result is one

of the most important in the theory of Hopf

algebras. In particular it accounts for basic

results about integrals.

Suppose A is semisimple (as an algebra). Then

A is f-d [Swe 1969c]. If the characteristic of k



is 0 then A∗ is also semisimple and S2 = IdA

[Lar−Rad 1988a, 1988b]. If the characteristic

is positive and A, A∗ are semisimple S2 = IdA

[Eting−Gel 1998].



7. With the Advent of Quantum Groups

an Explosion of Activity

Drinfel’d’s paper [Drinfel′d 1987] presented at

the Inernational Congress of Mathematicians

held at Berkeley, CA, in 1986 described new

classes of non-commutative, non-commutative

Hopf algebras, which we refer to as quantum

groups, which are derived from commutative or

cocommutative ones through ”quantization”.

This paper pointed to connections between

quantum groups and physics, representation

theory, algebra, non-commutative geometry, and

topology.

For connections with representation theory see

[Lusztig 1993] and [Char−Press 1994]. For

connections with non-commutative geometry

see [Manin 1988, 1991], and for connections

with invariants of knots, links, and 3-manifolds

see [Kassel−Rosso−Tur 1997].



There are general text books on quantum groups.
These include [Char−Press 1994], [Kassel 1995],
and [Majid 1995].

Important consequences for Hopf algebras were
the introduction of the quantized enveloping
algebras, of quasitriangular Hopf algebras, an
important example of which is the Drinfel’d
double, and later introduction of Lusztig’s small
quantum groups. The paper [Majid 1990] is a
good entry point for Hopf algebraists to make
first foray into quantum groups.

There was an intense flurry of activity to find
quantizations of Hopf algebras associated with
certain affine groups. Sometime later quasitri-
angular Hopf algebras were seen to account for
regular isotopy invariants of oriented knots and
links in a very concrete manner [Kauff−Rad 2001].

For us a quasitriangular Hopf algebra over k is
a pair (A, R), where A is a Hopf algebra over



k, and R ∈ A⊗A satisfies certain axioms which

guarantee that it satisfies algebraists’ Yang–

Baxter equation. When A is f-d the Drinfel’d

double (D(A), R) can be constructed. Both

of A and A∗ cop are subHopf algebras of D(A)

and multiplication A∗ ⊗ A −→ D(A) is a linear

isomorphism.

Thus f-d quasitriangular Hopf algebras abound.

The invariants they produce remain a mys-

tery for the most part. Concerning the dou-

ble, there is a rather remarkable connection

between the formula for S4 and when a cer-

tain 3-manifold invariant arises from D(A), R)

in [Kauff−Rad 1993]. The invariant was first

described in [Henn 1996].

When A is f-d the category of left D(A)-modules

is equivalent to the Yetter-Drinfel’d category

AYD [Yetter 1990], [Majid 1991]. Its objects

are triples (M, µ, ρ), where A ⊗ M
µ−→ M is a



left A-module structure and M
ρ−→ A⊗M is a

left A-comodule structure on M which satisfy

the compatibility condition

a(1)m(−1)⊗a(2)m(0) = (a(1)m)(−1)a(2)⊗(a(1)m)(0),

or equivalently

ρ(am) = a(1)m(−1)S(a(2)(2))⊗ a(2)(1)m(0),

a reflection of the commutation relation for

multiplication in D(A).

This condition is quite different from the Hopf

module compatibility condition. Certain Hopf

algebras in this category are important for the

classification of f-d Hopf algebras when A = kG
is the group algebra of a finite abelian group.



8. Classification of Pointed Hopf Algebras

Let A be any Hopf algebra. A0 denotes the

sum of all the simple subcoalgebras of A and

A is pointed if these are 1-dimensional. In this

case A0 = kG(A) and is a subHopf algebra of

A. The quantized enveloping algebras, and the

small quantum groups of Lusztig, are pointed.

Suppose A0 is a subHopf algebra of A. There

is a graded pointed irreducible Hopf algebra

gr(A) with gr(A)0 = gr(A)(0) = A0. We now

outline the strategy of [Andrus−Schn 2002]

for determining the structure of A.

Let gr(A)
π−→ A0 be the projection. The right

covariants R = gr(A)co π form a graded pointed

irreducible Hopf algebra in the category A0
YD

and there is an isomorphism of gr(A) ' R×A0

with a canonical biproduct [Rad 1985].



For a discussion of Hopf algebras in A0
YD and

related categories see [Majid 1992]. We have

R(0) = k1 and R(1) = P (R). The Nichols

algebra associated with V = P (R) is B(V ), the

subalgebra of R generated by V . We note B(V )

is analogous the enveloping algebra of a Lie

algebra. Steps for classification of A:

(1) Determine the structure of B(V );

(2) Determine all Hopf algebras B over k such

that gr(B) ' B(V )×A0;

(3) Determine whether or not B(V ) = R (in

which case A = B for some B of (2)).

Let B be a Hopf algebra over k. Then for any

object V of BYD there is a graded pointed ir-

reducible Hopf algebra B(V ) in BYD which is



determined by B(V )(1) = V and V generates

B(V ) as an algebra. These are the Nichols al-

gebras [Nic 1978]. They have been described

in many ways in important cases which have

been studied in [Lusztig 1993], [Rosso 1995, 1998],

[Heck 2004]. Basic results about them are

nontrivial.

Andruskiewitsch and Schneider have used them

in classifying f-d pointed Hopf algebras when

k is algebraically closed of characteristic 0 and

G(A) is commutative with mild restrictions on

|G(A)| [Andrus−Schn 2010]. The similarities

between these Hopf algebras and Lustig’s small

quantum groups are striking.



9. Semisimple Hopf Algebras

The theory of Hopf algebras and their related

structures has developed in many directions. A

major one is the classification of the f-d Hopf

algebras. For some techniques used for low

dimensions see [Andrus−Nat 2001]. An indi-

cation of how results about group algebras in

characteristic 0 can be extended to results on

Hopf algebras is given by [Kas−Som−Zhu 2006].

Generally classification has focused on two types

of Hopf algebras, the pointed Hopf algebras

and the semisimple Hopf algebras, when k has

characteristic 0. In the pointed case efforts are

now focused on the case kG(A) is not abelian

[Heck−Sch 2008], [Andrus−Fan−Gra−Ven 2010].

There are various types of results concerning

semisimple Hopf algebras. Surveys on aspects



of semisimple Hopf algebras include [Mas 1996],

[Mont 2001], [Nat 2007].

From this point on k has characteristic 0 and

A is a semisimple Hopf algebra over k. Recall

A must be f-d and cosemisimple.

A consideration for an A is how closely it is

related to the group algebra of a finite group

or its dual. A is trivial if A ' kG, or A ' kG∗,
for some finite group G, surely a notion group

theorists are not too happy with. [Ng 2004]

shows that A is trivial if DimA = 2p, where

p is an odd prime. [Ng 2008] establishes the

same if DimA = pq, where p, q are primes with

2 < p < q ≤ 4p + 11.

Another measure of how close A is to being

a group algebra is whether or not its category

of representations is that of the group algebra

of a finite group. If this is the case A is said



to be group theoretical. Just recently an A

was discovered which is not group theoretical

[Nyk2008].

If A is altered by a Drinfel’d twist (dual 2-

cocycle twist) then the resulting Hopf algebra

A′ is semisimple with the same algebra struc-

ture. Thus the representations of the algebras

A and A′ are the same. In [Eting−Gel 2000] all

semisimple, cosemisimple, and triangular Hopf

algebras are shown to be Drinfel’d twists of

group algebras (the field need only be alge-

braically closed).

Another research direction is to classify semisim-

ple Hopf algebras A of a given dimension. See

[Mas 1995a, 1995b, 1995c, 1996a, 1996b] for a va-

riety of cases. My hope is that this line of re-

search will lead to new techniques for the study

of Hopf algebras.
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