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0. Introduction

Let k be an algebraically closed field of char-
acteristic 0. Recent classification results for
certain large classes of pointed Hopf algebras
by Andruskiewitsch and Schneider show that
generalizations of quantized enveloping alge-
bras and the small quantum groups of Lusztig
cover quite a bit of ground.

We discuss generalizations of complete reducibil-
ity theorems for the quantized enveloping alge-
bras. The arguments follow those in Lusztig’s
book to a good extent. We describe aspects
of nearly completed work by Andruskiewitsch,
Radford, and Schneider.

As background we will discuss the ideas behind
the classification results. We will also describe
a basic class of modules which is at the heart
of the theory of simple modules for our Hopf
algebras of interest. This is based on joint
work of Radford and Schneider.



1. The Andruskiewitsch–Schneider

Classification Program

This is a program to classify Hopf algebras

whose coradical H0 is a sub-Hopf algebra.

Step 1: Pass from H to the coradically graded

Hopf algebra gr (H).

Step 2: Determine the possible Hopf algebra

structures for gr (H).

Since gr (H)0 = H0, Step 2 is to treat the

graded case. In passing from H to gr (H) in-

formation may be lost. gr (H) = R#H0 is a

bi-product (gr (H)
←−−→ H0).

Step 3: Lifting: Given a particular Hopf alge-

bra structure for gr (H), determine the possible

Hopf algebra structures for H.



Two illustrations, where k = C. Let n, m > 1,
where n|m, and q, α ∈ k, where q = n

√
1.

∆(a) = a⊗a and ∆(z) = z⊗1 + a⊗z,

where z = x, y.
Example 1. Partial algebra structure:

In H: ax = qxa, xn = α(an − 1) , am = 1;

In gr(H): ax = qxa, xn = 0 , am = 1;

where a = a, 1 = 1, x = x + H0.
Example 2. Partial algebra structure:

In H: ax = qxa, ay = q−1ya, xy − q−1yx = a2 − 1 ;

In gr(H): ax = qxa, ay = q−1ya, xy − q−1yx = 0 ;

Remark 1. xy − q−1yx is a commutator in a

certain context.

From this point on k = k and char k = 0.



2. R

From now on: H is pointed, Γ = G(H) is

abelian, gr (H)
π−→ H0 = k[Γ] is the projection.

R = {h ∈ gr (H) |h(1)⊗π(h(2)) = h⊗1}.
R is a subalgebra of H, ∆(R) ⊆ gr (H)⊗R,

R⊗k[Γ] −→ gr (H) (r⊗h 7→ rh)

is a linear isomorphism. π(rh) = ε(r)h. Define

Π : gr (H) −→ R by Π(rh) = rε(h) .

Π2 = Π, ImΠ = R , and R is a coalgebra

∆R = (Π⊗Π)(∆|R), ε = ε|R.

Π : gr (H) −→ R is an onto coalgebra map.

• R is not always a Hopf algebra over k; the

coproduct ∆R is can fail to be an algebra map.

R is a left k[Γ]-module/comodule where



h·r = h(1)rS(h(2)),

ρ(r) = r(−1)⊗r(0) = π(r(1))⊗r(2).

ρ(h·r) = h(1)r(−1)S(h(3))⊗h(2)·r(0) (1)

for h ∈ k[Γ], r ∈ R holds. Braided monoidal

category: Γ
ΓYD = k[Γ]

k[Γ]YD: objects left k[Γ]-

modules and comodules such that (1) holds.

Braiding (iso)morphisms: M⊗N
σM,N−→ N⊗M given

by

σM,N(m⊗n) = m(−1)·n⊗m(0) .

A, B ∈ Γ
ΓYD algebras. A⊗B a k-algebra with

m = (mA⊗mB)(Id⊗σB,A⊗Id) ,

(a⊗b)⊗(a′⊗b′) 7→ aa′⊗bb′, 1k 7→ 1A⊗1B.

Write A⊗B for this structure, a⊗b = a⊗b.

(a⊗b)(a′⊗b′) = a(b(−1)·a′)⊗b(0)b
′.



• The coproduct R
∆R−→ R⊗R is an algebra

morphism and R is a Hopf algebra of Γ
ΓYD.

The bi-product R#k[Γ]
v.s.
= R⊗k[Γ] is defined,

the smash product and coproduct, and is a

Hopf algebra over k. The linear isomorphism

R#k[Γ] −→ gr (H) (r#h = r⊗h 7→ rh)

is an isomorphism of Hopf algebras.

The appropriate notion of “commutator” in
Γ
ΓYD is braided commutator. For a, b ∈ R the

usual commutator

ad a (b) = [a, b] = ab− ba = mR(Id−τR,R)(a⊗b).

Replacing τR,R by σR,R

adc a (b) = [a, b]c = ab− (a(−1)·b)a(0)

and adc a is a morphism.



3. Nichols Algebras

For n ≥ 0 set gr (H)(n) = Hn/Hn−1 and

R(n) = R∩gr (H)(n).

Then R =
⊕∞

n=0 R(n) is a coradically graded
Hopf algebra of Γ

ΓYD.

(N.1) R =
⊕∞

n=0 R(n) is a graded pointed

irreducible Hopf algebra in Γ
ΓYD;

(N.2) P (R) = R(1); and possibly

(N.3) R(1) generates R as an algebra.

An algebra in Γ
ΓYD satisfying (N.1)–(N.3) is a

Nichols algebra. [Nichols 78, A-S 02]

• The subalgebra of R generated by V = R(1)

is a Nichols algebra B(V ).

• Determining whether or not R = B(V ) is

a major problem in the classification pro-

gram.



If W ∈ Γ
ΓYD there exists B(W ) ∈ Γ

ΓYD with

W = B(W )(1).

Let Γ = G(H). Then V =
⊕

g∈Γ Vg, where

Vg = {v ∈ V | ρ(v) = g⊗v}.
Suppose V is finite-dimensional and Γ acts on

V as diagonalizable operators, e.g. H f-dim.

The module/comodule condition for h ∈ Γ and

v ∈ Vg is ρ(h·v) = hgh−1⊗h·v = g⊗h·v . Vg is

a Γ-submodule; has weight space decomposi-

tion. There exists a basis {x1, . . . , xn} for V ,

and g1, . . . , gn ∈ Γ, characters χ1, . . . , χn ∈ Γ̂,

such that for 1 ≤ i ≤ n and g ∈ Γ

ρ(xi) = gi⊗xi and g·xi = χi(g)xi. (2)

c := σV,V and qij := χj(gi).

c(xi⊗xj) = gi·xj⊗xi = χj(gi)xj⊗xi = qijxj⊗xi;



c(xi⊗xj) = qijxj⊗xi.

(qij) := infinitesimal braiding matrix.

c : V⊗V −→ V⊗V := infinitesimal braiding.

adc xi (xj) = [xi, xj]c = xixj − qijxjxi.

Remark 2. Γ an abelian group, g1, . . . , gn ∈ Γ

and χ1, . . . , χn ∈ Γ̂. W with basis {x1, . . . , xn}
such that (2) is satisfied for 1 ≤ i ≤ n and g ∈ Γ

is an object of Γ
ΓYD and thus determines the

Nichols algebra B(W ).

A braiding matrix (qij) is of Cartan type if

qijqji = q
aij
ii , qii 6= 1

for all i, j where aij are integers with aii = 2

and −ord(qii) < aij ≤ 0 for all i 6= j. [A-S 00]

Example 3. From Uq(g), g a semisimple Lie

algebra with Cartan matrix (aij), qij = qdiaij.



.

4. Classification Results

Theorem 1 (6.2, A-S 07). H f.-d. pointed,

Γ = G(H) abelian, ∀ i ord(qii) > 7 is odd,

qi`q`i = q−3
ii , q−3

`` for some ` implies 3 - ord(qii).

Then H ' u(D, λ, µ) for some D, λ, µ.

i, j ∈ I = {1, . . . , n}. Parameters of u(D, λ, µ):

Datum of finite Cartan type D(Γ, {gi}, {χi}, (aij)).

qij = χj(gi), χj(gi)χi(gj) = χi(gi)
aij , χi(gi) 6= 1.

I := {points of Dynkin diagram}, ∼ on I de-

fines components, X := {components}.

Linking parameters λ = {λij} ⊆ k. λji = −q−1
ij λij;

λij 6= 0 implies i 6∼ j, gi 6= g−1
j , and χi = χ−1

j .

Root vector parameters µ = {µα}α∈Φ+ ⊆ k.



V with basis {x1, . . . , xn}. Then V ∈ Γ
ΓYD where

g·xi = χi(g)xi and ρ(xi) = gi⊗xi for all g ∈ Γ,

i ∈ I. T (V ) is an algebra in Γ
ΓYD.

U(D, λ) := T (V )#k[Γ] mod the relations

(QSR) (adc xi)
1−aij(xj) = 0, i ∼ j, i 6= j;

(LR) (adc xi)
1−aij(xj) = [xi xj]c

= xixj − qijxjxi = λij(1− gigj), i 6∼ j.

gxig
−1 = χi(g)xi,∆(g) = g⊗g,∆(xi) = xi⊗1+gi⊗xi

for g ∈ Γ, i ∈ I.

u(D, λ, µ) := U(D, λ) mod the relations

(RV R) x
NJ
α = uα(µ) ∈ k[G(H)], α ∈ Φ+

J , J ∈ X.



U(D, λ)’s account for Uq(g)’s, g a semisimple

Lie algebra, in the generic case; χi(gi) = qii

is not a root of unity for i ∈ I.

D = (Γ, {gi}, {χi}, (ai j)) is a datum of finite

Cartan type. [A-S 07]

• If ord(qi i) is prime to 2,3 then •
gr(u(D, λ, µ)) ' B(V )#k[Γ]. [A-S 07]

U(D, λ) is a quotient of a generalized dou-

ble when the linking graph is bipartite, for

example

• in the generic case, or

• when the Cartan matrix is simply laced and

ord(qi i) is odd for i ∈ I, or

• for all i ∈ I there is a j ∈ I with λij 6= 0 and

ord(qi i) > 3. [Radford-Schneider 07]



The linking graph G(λ,D): points = compo-

nents x of the Dynkin diagram of (aij); edge

x− y if λij 6= 0 for some i ∈ x, j ∈ y.

Assume that λ 6= 0 and G(λ,D) is bipartite.

Let X = X−∪X+ be a bipartite decomposition.

Let Λ be the free abelian group on {zi}i∈I, let

I− =
⋃

x∈X−
x and I+ =

⋃

x∈X+

x;

• ηi ∈ Λ̂ ηi(zj) = χi(gj), i, j ∈ I−;

• D− = D(Λ, {zi}i∈I−, {ηi}i∈I−, (aij)i,j∈I−)

• D+ = D(Γ, {gi}i∈I+, {χi}i∈I+, (aij)i,j∈I+),

• U = B(V −)#k[Λ] and A = B(V +)#k[Γ].

Restrictions Alg (A, k) −→ Γ̂, Alg (U, k) −→ Λ̂

are bijective. For χ ∈ Γ̂ let L(χ) = L(χ, ρ) ∈
U(D,λ)M be as defined in §5, where

ρ(zi) = χ(gi) for i ∈ I−.



The character χ is dominant for (D, λ, I+) if
for all there are integers mi ≥ 0 for i ∈ I− such
that j ∈ I+ and λi j 6= 0 implies χ(gigj) = q

mi
ij .

[R-S 07]

Theorem 2 (R-S 07). In the generic case

U(D, λ) ' (U⊗A)σ/(zi⊗gi − 1⊗1 | i ∈ I−),

where σ is a 2-cocycle for U⊗A. χ 7→ [L(χ)]

determines a bijection between the dominant

characters and the isomorphism classes of

finite-dimensional left U(D, λ)-modules.

There is a similar result for u(D, λ,0); here

x
NJ
α = 0 for all α ∈ Φ+

J , J ∈ X. “the charac-
ters” replaces “dominant characters”.

The linking graph of u(D, λ,0) may not be bi-
partite; however u(D, λ,0) can be replaced with
u(D′, λ′,0) which has the same finite-dimensional
irreducibles and whose linking graph is bipar-
tite.



5. Generalized Doubles

U , A are Hopf algebras and U⊗A
τ−→ k satisfies

τ` : U −→ A∗ and τr : A −→ U∗ op

are algebra maps, where

τ`(u)(a) = τ(u, a) = τr(a)(u)

for u ∈ U , a ∈ A. Then (U⊗A)⊗(U⊗A)
σ−→ k,

(u⊗a)⊗(u′⊗a′) 7→ ε(u)τ(u′, a)ε(a′)

is a 2-cocycle and thus determines a Hopf al-

gebra (U⊗A)σ = U⊗A as a coalgebra with mul-

tiplication given by

(u⊗a)(u′⊗a′)
= uτ(u′(1), a(1))u

′
(2)⊗a(2)τ

−1(u′(3), a(3))a
′

for all u, u′ ∈ U and a, a′ ∈ A. This product

satisfies

(u⊗a)(u′⊗a′) = uu′⊗aa′ when a = 1 or u′ = 1.



Example 4 (Doi-Takeuchi 94). H f.-d., U =

(Hop)∗, A = H, and τ(p, a) = p(a) for all p ∈
U and a ∈ A. Then (U⊗A)σ = D(H) is the

quantum double of H.

Hopf algebras of the type (U⊗A)σ are gener-

alized doubles. [Doi-Takeuchi 94, Joseph

95] The representation theory of §6 applies to

generalized doubles.



6. An Abstract Highest Weight Theory

[R-S 07] H is an algebra with subalgebras U, A

U⊗A
µ−→ H (u⊗a 7→ ua) (3)

is bijective. Commutation rule:

au =
∑n

i=1 uiai where µ−1(au) =
∑n

i=1 ui⊗ai.

With the identification of (3) the vector space

U⊗A has an algebra structure such that

(u⊗a)(u′⊗a′) = uu′⊗aa′ when a = 1 or u′ = 1.

Let ρ ∈ Alg (U, k). Then (A, Cρ) ∈MH, where

a Cρ ua′ =
(
(ρ⊗Id)(µ−1(au)

)
a′ =

(∑n
i=1 ρ(ui)ai

)
a′

for all a, a′ ∈ A and u ∈ U . If au = ua observe

that a Bρ ua′ = ρ(u)aa′. The module structure

results from regarding k ∈ MU by 1·u = ρ(u)1

and identifying A with k⊗UH by

k⊗UH ' k⊗U(U⊗A) ' (k⊗UU)⊗A ' k⊗A ' A.



Let χ ∈ Alg (A, k). Then (U, Bχ) ∈ HM, where

ua Bχ u′ = u
(
(Id⊗χ)(µ−1(au′))

)
= u

(∑n
i=1 u′iχ(ai)

)

for all u, u′ ∈ U and a ∈ A. If au′ = u′a then

ua Bχ u′ = χ(a)uu′. In particular

u Bχ u′ = uu′ and a Bχ 1 = χ(a)1.

Let I(ρ, χ) be the largest H-submodule of U

contained in Ker ρ and set

L(ρ, χ) = U/I(ρ, χ) ∈ HM.

Then L(ρ, χ) has a codim. one U-submodule

N , where U acts on L(ρ, χ)/N by ρ, and L(ρ, χ)

is a cyclic H-module generated by a dim. one

A-submodule km, where A acts on km by χ.

These assertions follow since the same are true

for (U, Bχ) with N = Ker ρ and m = 1.

Reversing the roles of χ and ρ we obtain J(χ, ρ)

and R(χ, ρ) = A/J(χ, ρ) ∈ MH of a similar de-

scription.



Define a bilinear form A×U
Ψ−→ k by

Ψ(a, u) = (ρ⊗χ)(µ−1(au)) =
n∑

i=1

ρ(ui)χ(ai)

for all a ∈ A and u ∈ U .

Lemma 1. The following hold for the form:

(a) Ψ(a Cρ h, u) = Ψ(a, h Bχ u) for all a ∈ A,

h ∈ H, and u ∈ U ; that is Ψ is H-balanced.

(b) A⊥ = {u ∈ U |Ψ(A, u) = (0)} = I(ρ, χ).

(c) U⊥ = {a ∈ A |Ψ(a, U) = (0)} = J(χ, ρ).

Denote the form A/U⊥×U/A⊥ −→ k by Ψ also.

Since R(ρ, χ)×L(χ, ρ)
Ψ−→ k is non-singular and

H-balanced we may regard R(ρ, χ) as a sub-

module of L(χ, ρ)∗ and L(χ, ρ) as a submodule

of R(ρ, χ)∗. This is useful for computation.



Lemma 2. Suppose there are subalgebras U ′
of U and A′ of A such that:

(a) a Bχ u′ = χ(a)u′ for all a ∈ A, u′ ∈ U ′
and Alg (U, k) → Alg (U ′, k) (η 7→ η|U ′) is

injective.

(b) a′ Cρ u = ρ(u)a′ for all a′ ∈ A′, u ∈ U

and Alg (A, k) → Alg (A′, k) (η 7→ η|A′) is

injective.

Then L(ρ, χ) contains a unique dim. one

A-submodule and a unique codim. one U-

submodule and R(χ, ρ) contains a unique dim.

one U-submodule and a unique codim. one

A-submodule.

Let HM be the full subcategory of HM whose
modules M are

(1) generated by a dim. one left A-submodule

km and

(2) have a codim. one left U-submodule which

contains no non-zero H-submodules.



L(χ, ρ) ∈ HM and every object is isomorphic to

an L(χ, ρ).

Theorem 3.Assume the hypothesis of the pre-

ceding lemma. Then the map

Alg (U, k)×Alg (A, k) → [HM], (ρ, χ) 7→ [L(ρ, χ)]

is bijective.

Corollary 1. Assume the hypothesis of the

preceding lemma and also that the finite

dimensional simple left U-modules and A-

modules have dimension one. Then the

finite-dimensional L(ρ, χ)’s and the finite-

dimensional simple H-modules are one in the

same.

Reversing roles of U and A we can define MH
and develop a duality between HM and MH.



7. Perfect Linkings and Reduced Data

A linking parameter λ of a datum D is perfect

if any vertex is linked.

Any linking parameter λ the Hopf algebra U(D, λ)

has a natural quotient Hopf algebra U(D′, λ′)
with perfect linking parameter λ′. This is the

special case of

A reduced datum is

Dred = D(Γ, (Li)1≤i≤θ, (Ki)1≤i≤θ, (χi)1≤i≤θ),

where Γ is an abelian group, θ is a positive

integer, Ki, Li ∈ Γ, χi ∈ Γ̂ for all 1 ≤ i ≤ θ

satisfy

χj(Ki) = χi(Lj) for all 1 ≤ i, j ≤ θ, (4)

KiLi 6= 1 for all 1 ≤ i ≤ θ. (5)

A reduced datum Dred is called generic if for

all 1 ≤ i ≤ θ, χi(Ki) is not a root of unity.



A linking parameter l for a reduced datum Dred

is a family l = (li)1≤i≤θ of non-zero elements

in k.

Lemma 3. Let

D = D(Γ, (gi)1≤i≤θ, (χi)1≤i≤θ)

be a datum satisfying χj(gi)χi(gj) 6= χi(gi)
2

for all i 6= j, and let λ be a perfect linking

parameter for D. Then there are a reduced

datum Dred and a linking parameter l for Dred

such that

U(D, λ) ∼= U(Dred, l)

as Hopf algebras.

Set

U = U(Dred, l).

Let adl and adr be the adjoint actions of the

Hopf algebra k〈u1, . . . , aθ〉#k[Γ]. Then U(Dred, l)



is generated by Γ and E1, . . . , Eθ, F1, . . . , Fθ sub-
ject to the relations for Γ and

adl(Ei)
1−aij(Ej) = 0, ∀ 1 ≤ i, j ≤ θ, i 6= j,

adr(Fi)
1−aij(Fj) = 0, ∀ 1 ≤ i, j ≤ θ, i 6= j,

EiFj − FjEi = δijli(Ki − L−1
i ), ∀ 1 ≤ i, j ≤ θ.

Explicitly ∀ i ∈ J, J ∈ X and 1 ≤ j ≤ θ, i 6= j,

adl(Ei)
1−aij(Ej)

=

1−aij∑

s=0

(−pij)
s

[
1− aij

]
q
di
J

E
1−aij−s
i EjE

s
i ,

adr(Fi)
1−aij(Fj)

=

1−aij∑

s=0

(−pij)
s

[
1− aij

]
q
di
J

F s
i FjF

1−aij−s
i .

The action of Γ is given for all g ∈ Γ and all
1 ≤ i ≤ θ by

gEig
−1 = χi(g)Ei,

gFig
−1 = χ−1

i (g)Fi,



and the comultiplication by

∆(Ei) = Ki ⊗ Ei + Ei ⊗ 1,

∆(Fi) = 1⊗ Fi + Fi ⊗ L−1
i .

U+ is generated by the Ei’s and U− by the
Fi’s; Γ the group generated by the Ki’s, Li’s.

Corollary 2. The multiplication map

U− ⊗U+ ⊗ k[Γ] → U

is an isomorphism of vector spaces. Further-

more U− = B(W ) and U+ = B(V ) for some

V, W ∈Γ
Γ YD.

Set I = {1, . . . , θ}. Let Z[I] be a free abelian
group of rank θ with fixed basis α1, . . . , αθ, and
N[I] = {α =

∑θ
i=1 niαi | n1, . . . , nθ ∈ N}.

For α =
∑θ

i=1 niαi ∈ Z[I], n1, . . . , nθ ∈ Z, let
|α| = ∑θ

i=1 ni, and

χα = χ
n1
1 · · ·χnθ

θ , Kα = K
n1
1 · · ·Knθ

θ , Lα = L
n1
1 · · ·Lnθ

θ .



There is a k-bilinear form ( , ) : U−⊗U+ → k,
non-degenerate on U−

−α ×U+
α .

For all α ∈ N[I], let xk
α,1 ≤ k ≤ dα = dimU−

−α,

be a basis of U−
−α, and yk

α,1 ≤ k ≤ dα, the dual

basis of U+
α with respect to ( , ). Set

θα =
dα∑

k=1

xk
α ⊗ yk

α.

We will set θα = 0 for all α ∈ Z[I] and α /∈ N[I].
Ω =

∑
α∈N[I]

∑dα
k=1 S(xk

α)yk
α =

∑
α∈N[I] θα is the

quasi-R-matrix.

Theorem 4. Let α ∈ N[I] and 1 ≤ i ≤ θ. Then

in U⊗U,

(Ei ⊗ 1)θα + (Ki ⊗ Ei)θα−αi

= θα(Ei ⊗ 1) + θα−αi(L
−1
i ⊗ Ei),

(1⊗ Fi)θα + (Fi ⊗ L−1
i )θα−αi

= θα(1⊗ Fi) + θα−αi(Fi ⊗Ki).



8. Classes of U-modules

Dred is generic, regular, and of Cartan type,

and U = U(Dred, l). Regular means: Let Q

be the subgroup of Γ̂ generated by χ1, . . . , χθ.

Then

Z[I]
∼=−→ Q, α 7→ χα,

is an isomorphism.

C is the full subcategory of UM of all left U-

modules M which are direct sums of 1-dim.

Γ-modules; i.e. have a weight space decom-

position M = ⊕
χ∈Γ̂

Mχ,

Mχ = {m ∈ M | gm = χ(g)m for all g ∈ Γ}
Weight for M : a character χ ∈ Γ̂ with Mχ 6= 0.

Chi the full subcategory of C; M ∈ Chi if for any

m ∈ M , ∃ N ≥ 0 such that U+
α m = 0 for all

α ∈ N[I] with |α| ≥ N .



Both C and Chi are closed under sub-objects

and quotient objects of U-modules.

χ ∈ Γ̂. The Verma module

M(χ) = U/(
θ∑

i=1

UEi +
∑

g∈Γ

U(g − χ(g)).

The inclusion U− ⊂ U defines a U−-module

isomorphism

U− ∼=−→ M(χ) = U/(
θ∑

i=1

UEi +
∑

g∈Γ

U(g − χ(g)))

(6)

by the triangular decomposition of U.

The Verma module M(χ) and all its quotients

belong to the category Chi.

Regularity allows a partial order ≤ on Γ̂. For all

χ, χ′ ∈ Γ̂, χ′ ≤ χ if χ = χ′χα for some α ∈ N[I].
If χ′ ≤ χ then χ and χ′ are in the same Q-coset

of Γ̂.



Lemma 4. Let χ ∈ Γ̂, and M ∈ C. Suppose χ

is a maximal weight for M and m ∈ Mχ. Then

Eim = 0 for all 1 ≤ i ≤ θ, and Um is a quotient

of M(χ).

Let M ∈ C and C be a coset of Q in Γ̂. Then

MC = ⊕χ∈CMχ ∈ C. Note M = ⊕CMC, where

C runs over the Q-cosets of Γ̂.

Lemma 5. Suppose M ∈ Chi is a fin.-gen. U-

module.

1. DimMχ < ∞ for all χ ∈ Γ̂.

2. For all χ′ ∈ Γ̂ there are only finitely many

weights χ for M with χ′ ≤ χ.

3. Every non-empty set of weights for M has

a maximal element.

M ∈ C is integrable for all m ∈ M and 1 ≤ i ≤ θ,

En
i m = Fn

i m = 0 for some n ≥ 1.



χ ∈ Γ̂ is dominant if for all 1 ≤ i ≤ θ there

are mi ≥ 0 such that χ(KiLi) = q
mi
ii for all

1 ≤ i ≤ θ. Γ̂+ = dominant characters of Γ̂.

Let χ ∈ Γ̂+, and mi ≥ 0 for all 1 ≤ i ≤ θ such

that χ(KiLi) = q
mi
ii for all 1 ≤ i ≤ θ. Set

L(χ) = U/(
θ∑

i=1

UEi+
θ∑

i=1

UF
mi+1
i +

∑

g∈Γ

U(g−χ(g))).

A universal property of the Verma module with

respect to integrable modules in C:

Proposition 1. Let M ∈ C be integrable and

χ ∈ Γ̂. Assume that there exists an element

0 6= m ∈ Mχ such that Eim = 0 for all 1 ≤
i ≤ θ. Then χ is dominant, and there is a

unique U-linear map t : L(χ) → M such that

t(lχ) = m.



Corollary 3. Under the assumptions above:

1. Let χ be dominant. Then

U−/(
θ∑

i=1

U−F
mi+1
i ) ' L(χ),

L(χ) is integrable, and L(χ)χ is a one-

dimensional vector space with basis lχ.

2. Let χ, χ′ ∈ Γ̂+. Then L(χ) ' L(χ′) iff χ =

χ′.



9. The quantum Casimir Operator

Again, Dred is generic, regular, and of Cartan

type, and U = U(Dred, l). In addition we as-

sume that the family (qii)1≤i≤θ of scalars in k
is N-linearly independent with respect to mul-

tiplication.

The qii’s are N-linearly independent if I is con-

nected, that is if the Cartan matrix of Dred is

indecomposable.

Lemma 6. Let C be a coset of Q in Γ̂.

1. There is a function G : C → k× such that

for all χ ∈ C and 1 ≤ i ≤ θ, G(χ) =

G(χχ−1
i )χ(KiLi). G is uniquely determined

up to multiplication by a non-zero constant

in k.
2. Let G be as in (1). If χ, χ′ ∈ Γ̂+ are dom-

inant characters with χ ≥ χ′ and G(χ) =

G(χ′), then χ = χ′.



Proposition 2. Let C be a coset of Q in Γ̂,

and M = MC ∈ Chi. Choose a function G as in

Lemma 6 and define a k-linear map ΩG : M →
M by ΩG(m) = G(χ)Ω(m) for all m ∈ Mχ, χ ∈
C.

1. ΩG is U-linear and locally finite.

2. Suppose 0 6= m ∈ M generates a quotient

of a Verma module M(χ), χ ∈ Γ̂. Then

χ ∈ C, and ΩG(m) = G(χ)m.

3. The eigenvalues of ΩG are the G(χ)′s,
where χ runs over the maximal weights

of the submodules N of M (in which case

ΩG(n) = G(χ)n for all n ∈ Nχ).

The function ΩG : M → M in Proposition 2 is

called the quantum Casimir operator.



11. Complete Reducibility Theorems

Dred is generic, regular, and of Cartan type,

and U = U(Dred, l).

Theorem 5. Let χ ∈ Γ̂+.

1. L(χ) is a simple U-module.

2. Any weight vector of L(χ) which is annihi-

lated by all Ei,1 ≤ i ≤ θ, is a scalar multiple

of lχ.

Theorem 6. Let M be an integrable module

in Chi. Then M is completely reducible and M

is a direct sum of L(χ)′s where χ ∈ Γ̂+.

Corollary 4. U is Γ-reductive.

Recall that Γ2 denotes the subgroup of Γ gen-

erated by the products K1L1, . . . , KθLθ.



Theorem 7. Assume that Dred is regular.

Then the following are equivalent:

1. U is reductive.

2. [Γ : Γ2] is finite.

If U is reductive, then the Cartan matrix of

Dred is invertible.



11. Reductive Pointed Hopf Algebras

B ⊆ A a subalgebra. A is B-reductive if every

fin.-dim. left A-module which is B-semisimple

(on restriction) is A-semisimple. A pointed,

Γ = G(A); Γ-reductive means k[Γ]-reductive.

Theorem 8.Let D be a generic datum of finite

Cartan type.

1. The following are equivalent:

(a) U(D, λ) is Γ-reductive.

(b) The linking parameter λ of D is perfect.

2. The following are equivalent:

(a) U(D, λ) is reductive.

(b) The linking parameter λ of D is perfect

and [Γ : Γ2] is finite.


