Hopf Algebras and Related Topics Conference

University of Southern California February 14-16, 2009

Representations of Certain Classes of Hopf Algebras

David E. Radford

Department of Mathematics, Statistics, and Computer Science

The University of Illinois at Chicago

Chicago, IL

USA

0. Introduction

Let k be an algebraically closed field of characteristic 0. Recent classification results for certain large classes of pointed Hopf algebras by Andruskiewitsch and Schneider show that generalizations of quantized enveloping algebras and the small quantum groups of Lusztig cover quite a bit of ground.

We discuss generalizations of complete reducibility theorems for the quantized enveloping algebras. The arguments follow those in Lusztig's book to a good extent. We describe aspects of nearly completed work by Andruskiewitsch, Radford, and Schneider.

As background we will discuss the ideas behind the classification results. We will also describe a basic class of modules which is at the heart of the theory of simple modules for our Hopf algebras of interest. This is based on joint work of Radford and Schneider.

1. The Andruskiewitsch-Schneider Classification Program

This is a program to classify Hopf algebras whose coradical H_{0} is a sub-Hopf algebra.

Step 1: Pass from H to the coradically graded Hopf algebra $\operatorname{gr}(H)$.

Step 2: Determine the possible Hopf algebra structures for $\operatorname{gr}(H)$.

Since $\operatorname{gr}(H)_{0}=H_{0}$, Step 2 is to treat the graded case. In passing from H to $\operatorname{gr}(H)$ information may be lost. $\operatorname{gr}(H)=R \# H_{0}$ is a bi-product $\left(\operatorname{gr}(H) \leftrightarrows H_{0}\right)$.

Step 3: Lifting: Given a particular Hopf algebra structure for $\operatorname{gr}(H)$, determine the possible Hopf algebra structures for H.

Two illustrations, where $k=\mathbb{C}$. Let $n, m>1$, where $n \mid m$, and $q, \alpha \in k$, where $q=\sqrt[n]{1}$.

$$
\Delta(a)=a \otimes a \text { and } \Delta(z)=z \otimes 1+a \otimes z
$$

where $z=x, y$.
Example 1. Partial algebra structure:
In $H: a x=q x a, \quad x^{n}=\alpha\left(a^{n}-1\right), \quad a^{m}=1$;
In $\operatorname{gr}(H): \mathbf{a x}=q \mathbf{x a}, \quad \mathbf{x}^{n}=\mathbf{0}, \quad \mathbf{a}^{m}=1$;
where $\mathbf{a}=a, \quad 1=1, \quad \mathbf{x}=x+H_{0}$.
Example 2. Partial algebra structure:
In $H: a x=q x a, \quad a y=q^{-1} y a, \quad x y-q^{-1} y x=a^{2}-1$;
In $\operatorname{gr}(H): \mathbf{a x}=q \mathbf{x a}, \quad$ ay $=q^{-1} \mathbf{y a}, \quad \mathbf{x y}-q^{-1} \mathbf{y x}=\mathbf{0}$;

Remark 1. $x y-q^{-1} y x$ is a commutator in a certain context.

From this point on $k=\bar{k}$ and char $k=0$.

2. R

From now on: H is pointed, $\Gamma=G(H)$ is abelian, $\operatorname{gr}(H) \xrightarrow{\pi} H_{0}=k[\Gamma]$ is the projection.

$$
R=\left\{h \in \operatorname{gr}(H) \mid h_{(1)} \otimes \pi\left(h_{(2)}\right)=h \otimes 1\right\}
$$

R is a subalgebra of $H, \Delta(R) \subseteq \operatorname{gr}(H) \otimes R$,

$$
R \otimes k[\Gamma] \longrightarrow \operatorname{gr}(H) \quad(r \otimes h \mapsto r h)
$$

is a linear isomorphism. $\pi(r h)=\epsilon(r) h$. Define $\Pi: \operatorname{gr}(H) \longrightarrow R$ by $\Pi(r h)=r \epsilon(h)$.
$\Pi^{2}=\Pi, \operatorname{Im} \Pi=R$, and R is a coalgebra

$$
\Delta_{R}=(\Pi \otimes \Pi)(\Delta \mid R), \varepsilon=\epsilon \mid R
$$

$\Pi: \operatorname{gr}(H) \longrightarrow R$ is an onto coalgebra map.

- R is not always a Hopf algebra over k; the coproduct Δ_{R} is can fail to be an algebra map.
R is a left $k[\Gamma]$-module/comodule where

$$
\begin{gather*}
h \cdot r=h_{(1)} r S\left(h_{(2)}\right), \\
\rho(r)=r_{(-1)} \otimes r_{(0)}=\pi\left(r_{(1)}\right) \otimes r_{(2)} \\
\rho(h \cdot r)=h_{(1)} r_{(-1)} S\left(h_{(3)}\right) \otimes h_{(2)} \cdot r_{(0)} \tag{1}
\end{gather*}
$$

for $h \in k[\Gamma], r \in R$ holds. Braided monoidal category: $\quad \Gamma \mathcal{Y} D=k[\Gamma]=k[\Gamma]$ Objects left $k[\Gamma]-$ modules and comodules such that (1) holds. Braiding (iso)morphisms: $M \otimes N \xrightarrow{\sigma_{M, N}} N \otimes M$ given by

$$
\sigma_{M, N}(m \otimes n)=m_{(-1)} \cdot n \otimes m_{(0)}
$$

$A, B \in \Gamma_{\Gamma} \mathcal{Y} D$ algebras. $A \otimes B$ a k-algebra with

$$
m=\left(m_{A} \otimes m_{B}\right)\left(\mathrm{Id} \otimes \sigma_{B, A} \otimes \mathrm{Id}\right)
$$

$(a \otimes \underline{b}) \otimes\left(\underline{a}^{\prime} \otimes b^{\prime}\right) \mapsto a a^{\prime} \otimes b b^{\prime}, 1_{k} \mapsto 1_{A} \otimes 1_{B}$.
Write $A \underline{\otimes} B$ for this structure, $a \underline{\otimes} b=a \otimes b$.

$$
(a \underline{\otimes} b)\left(a^{\prime} \underline{\otimes} b^{\prime}\right)=a\left(b_{(-1)} \cdot a^{\prime}\right) \underline{\otimes} b_{(0)} b^{\prime}
$$

- The coproduct $R \xrightarrow{\Delta_{R}} R \otimes R$ is an algebra morphism and R is a Hopf algebra of $\Gamma_{\Gamma} \mathcal{Y} D$.

The bi-product $R \# k[\Gamma] \stackrel{v . s .}{=} R \otimes k[\Gamma]$ is defined, the smash product and coproduct, and is a Hopf algebra over k. The linear isomorphism

$$
R \# k[] \longrightarrow \operatorname{gr}(H) \quad(r \# h=r \otimes h \mapsto r h)
$$

is an isomorphism of Hopf algebras.

The appropriate notion of "commutator" in $\Gamma_{\Gamma} \mathcal{Y} D$ is braided commutator. For $a, b \in R$ the usual commutator
$\operatorname{ad} a(b)=[a, b]=a b-b a=m_{R}\left(\operatorname{Id}-\tau_{R, R}\right)(a \otimes b)$. Replacing $\tau_{R, R}$ by $\sigma_{R, R}$

$$
\operatorname{ad}_{c} a(b)=[a, b]_{c}=a b-\left(a_{(-1)} \cdot b\right) a_{(0)}
$$

and $\operatorname{ad}_{c} a$ is a morphism.

3. Nichols Algebras

For $n \geq 0$ set $\operatorname{gr}(H)(n)=H_{n} / H_{n-1}$ and

$$
R(n)=R \cap \operatorname{gr}(H)(n)
$$

Then $R=\bigoplus_{n=0}^{\infty} R(n)$ is a coradically graded Hopf algebra of ${ }_{\Gamma} \mathcal{Y} D$.
(N.1) $R=\bigoplus_{n=0}^{\infty} R(n)$ is a graded pointed irreducible Hopf algebra in ${ }_{\Gamma} \mathcal{Y} D$;
(N.2) $P(R)=R(1)$; and possibly
(N.3) $R(1)$ generates R as an algebra.

An algebra in $\Gamma_{\Gamma} \mathcal{Y} D$ satisfying (N.1)-(N.3) is a Nichols algebra. [Nichols 78, A-S 02]

- The subalgebra of R generated by $V=R(1)$ is a Nichols algebra $\mathcal{B}(V)$.
- Determining whether or not $R=\mathcal{B}(V)$ is a major problem in the classification program.

If $W \in \Gamma_{\Gamma} \mathcal{Y} D$ there exists $\mathcal{B}(W) \in \Gamma_{\Gamma} \mathcal{Y} D$ with $W=\mathcal{B}(W)(1)$.

Let $\Gamma=G(H)$. Then $V=\oplus_{g \in \Gamma} V_{g}$, where

$$
V_{g}=\{v \in V \mid \rho(v)=g \otimes v\} .
$$

Suppose V is finite-dimensional and Γ acts on V as diagonalizable operators, e.g. H f-dim.

The module/comodule condition for $h \in \Gamma$ and $v \in V_{g}$ is $\rho(h \cdot v)=h g h^{-1} \otimes h \cdot v=g \otimes h \cdot v . V_{g}$ is a Γ-submodule; has weight space decomposition. There exists a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for V, and $g_{1}, \ldots, g_{n} \in \Gamma$, characters $\chi_{1}, \ldots, \chi_{n} \in \widehat{\Gamma}$, such that for $1 \leq i \leq n$ and $g \in \Gamma$

$$
\begin{equation*}
\rho\left(x_{i}\right)=g_{i} \otimes x_{i} \text { and } g \cdot x_{i}=\chi_{i}(g) x_{i} . \tag{2}
\end{equation*}
$$

$$
\begin{gathered}
\mathbf{c}:=\sigma_{\mathbf{V}, \mathbf{V}} \text { and } \mathbf{q}_{\mathbf{i j}}:=\chi_{\mathbf{j}}\left(\mathrm{g}_{\mathbf{i}}\right) . \\
c\left(\underline{x}_{i} \otimes x_{j}\right)=\underline{g}_{i} \cdot x_{j} \otimes \underline{x}_{i}=\chi_{j}\left(g_{i}\right) x_{j} \otimes x_{i}=q_{i j} x_{j} \otimes x_{i} ;
\end{gathered}
$$

$$
c\left(x_{i} \otimes x_{j}\right)=q_{i j} x_{j} \otimes x_{i}
$$

$\left(q_{i j}\right):=$ infinitesimal braiding matrix.

$c: V \otimes V \longrightarrow V \otimes V:=$ infinitesimal braiding.

$$
\mathrm{ad}_{c} x_{i}\left(x_{j}\right)=\left[x_{i}, x_{j}\right]_{c}=x_{i} x_{j}-q_{i j} x_{j} x_{i} .
$$

Remark 2. Γ an abelian group, $g_{1}, \ldots, g_{n} \in \Gamma$ and $\chi_{1}, \ldots, \chi_{n} \in \hat{\Gamma}$. W with basis $\left\{x_{1}, \ldots, x_{n}\right\}$ such that (2) is satisfied for $1 \leq i \leq n$ and $g \in \Gamma$ is an object of $\Gamma \mathcal{Y} D$ and thus determines the Nichols algebra $\mathcal{B}(W)$.

A braiding matrix $\left(q_{i j}\right)$ is of Cartan type if

$$
q_{i j} q_{j i}=q_{i i}^{a_{i j}}, q_{i i} \neq 1
$$

for all i, j where $a_{i j}$ are integers with $a_{i i}=2$ and $-\operatorname{ord}\left(q_{i i}\right)<a_{i j} \leq 0$ for all $i \neq j$. [A-S 00]

Example 3. From $\mathrm{U}_{q}(\mathfrak{g}), \mathfrak{g}$ a semisimple Lie algebra with Cartan matrix $\left(a_{i j}\right), q_{i j}=q^{d_{i} a_{i j}}$.

4. Classification Results

Theorem 1 (6.2, A-S 07). H f.-d. pointed, $\Gamma=G(H)$ abelian, $\forall i \operatorname{ord}\left(q_{i i}\right)>7$ is odd, $q_{i \ell} q_{\ell i}=q_{i i}^{-3}, q_{\ell \ell}^{-3}$ for some ℓ implies $3 \nmid \operatorname{ord}\left(q_{i i}\right)$. Then $H \simeq u(\mathcal{D}, \lambda, \mu)$ for some $\mathcal{D}, \lambda, \mu$.
$i, j \in I=\{1, \ldots, n\}$. Parameters of $u(\mathcal{D}, \lambda, \mu)$:
Datum of finite Cartan type $\mathcal{D}\left(\Gamma,\left\{g_{i}\right\},\left\{\chi_{i}\right\},\left(a_{i j}\right)\right)$.
$q_{i j}=\chi_{j}\left(g_{i}\right), \chi_{j}\left(g_{i}\right) \chi_{i}\left(g_{j}\right)=\chi_{i}\left(g_{i}\right)^{a_{i j}}, \chi_{i}\left(g_{i}\right) \neq 1$.
$I:=\{$ points of Dynkin diagram $\}, \sim$ on I defines components, $\mathbb{X}:=\{$ components $\}$.

Linking parameters $\lambda=\left\{\lambda_{i j}\right\} \subseteq k . \lambda_{j i}=-q_{i j}^{-1} \lambda_{i j}$; $\lambda_{i j} \neq 0$ implies $i \nsim j, \quad g_{i} \neq g_{j}^{-1}$, and $\chi_{i}=\chi_{j}^{-1}$.

Root vector parameters $\mu=\left\{\mu_{\alpha}\right\}_{\alpha \in \Phi} \subseteq k$.
V with basis $\left\{x_{1}, \ldots, x_{n}\right\}$. Then $V \in \Gamma \mathcal{Y} D$ where $g \cdot x_{i}=\chi_{i}(g) x_{i}$ and $\rho\left(x_{i}\right)=g_{i} \otimes x_{i}$ for all $g \in \Gamma$, $i \in I . T(V)$ is an algebra in $\ulcorner\mathcal{Y} D$.

$\underline{U(\mathcal{D}, \lambda)}:=T(V) \# k[\Gamma]$ mod the relations

(QR) $\left(\operatorname{ad}_{c} x_{i}\right)^{1-a_{i j}}\left(x_{j}\right)=0, i \sim j, i \neq j$;
$(L R)\left(\operatorname{ad}_{c} x_{i}\right)^{1-a_{i j}}\left(x_{j}\right)=\left[x_{i} x_{j}\right]_{c}$

$$
=x_{i} x_{j}-q_{i j} x_{j} x_{i}=\lambda_{i j}\left(1-g_{i} g_{j}\right), i \nsim j .
$$

$g x_{i} g^{-1}=\chi_{i}(g) x_{i}, \Delta(g)=g \otimes g, \Delta\left(x_{i}\right)=x_{i} \otimes 1+g_{i} \otimes x_{i}$ for $g \in \Gamma, i \in I$.

$\underline{u(\mathcal{D}, \lambda, \mu)}:=U(\mathcal{D}, \lambda)$ mod the relations

$(R V R) x_{\alpha}^{N_{J}}=u_{\alpha}(\mu) \in k[G(H)], \alpha \in \Phi_{J}^{+}, J \in \mathbb{X}$.
$U(\mathcal{D}, \lambda)$'s account for $U_{q}(\mathfrak{g})$'s, \mathfrak{g} a semisimple Lie algebra, in the generic case; $\chi_{i}\left(g_{i}\right)=q_{i i}$ is not a root of unity for $i \in I$.
$\mathcal{D}=\left(\Gamma,\left\{g_{i}\right\},\left\{\chi_{i}\right\},\left(a_{i j}\right)\right)$ is a datum of finite Cartan type. [A-S 07]

- If $\operatorname{ord}\left(q_{i}\right)$ is prime to 2,3 then \bullet $\operatorname{gr}(u(\mathcal{D}, \lambda, \mu)) \simeq \mathcal{B}(V) \# k[\Gamma]$. [A-S 07]
$U(\mathcal{D}, \lambda)$ is a quotient of a generalized double when the linking graph is bipartite, for example
- in the generic case, or
- when the Cartan matrix is simply laced and $\operatorname{ord}\left(q_{i i}\right)$ is odd for $i \in I$, or
- for all $i \in I$ there is a $j \in I$ with $\lambda_{i j} \neq 0$ and $\operatorname{ord}\left(q_{i i}\right)>3$. [Radford-Schneider 07]

The linking graph $\mathrm{G}(\lambda, \mathcal{D})$: points $=$ components x of the Dynkin diagram of $\left(a_{i j}\right)$; edge $\mathbf{x}-\mathbf{y}$ if $\lambda_{i j} \neq 0$ for some $i \in \mathbf{x}, j \in \mathbf{y}$.

Assume that $\lambda \neq 0$ and $\mathrm{G}(\lambda, \mathcal{D})$ is bipartite. Let $\mathbb{X}=\mathbb{X}^{-} \cup \mathbb{X}^{+}$be a bipartite decomposition. Let \wedge be the free abelian group on $\left\{z_{i}\right\}_{i \in I}$, let

$$
I^{-}=\bigcup_{\mathbf{x} \in \mathbb{X}^{-}} \mathbf{x} \text { and } I^{+}=\bigcup_{\mathbf{x} \in \mathbb{X}^{+}} \mathbf{x}
$$

- $\eta_{i} \in \widehat{\Lambda} \quad \eta_{i}\left(z_{j}\right)=\chi_{i}\left(g_{j}\right), \quad i, j \in I^{-}$;
- $\mathcal{D}^{-}=\mathcal{D}\left(\wedge,\left\{z_{i}\right\}_{i \in I^{-}},\left\{\eta_{i}\right\}_{i \in I^{-}},\left(a_{i j}\right)_{i, j \in I^{-}}\right)$
- $\mathcal{D}^{+}=\mathcal{D}\left(\Gamma,\left\{g_{i}\right\}_{i \in I^{+}},\left\{\chi_{i}\right\}_{i \in I^{+}},\left(a_{i j}\right)_{i, j \in I^{+}}\right)$,
- $U=\mathcal{B}\left(V^{-}\right) \# k[\Lambda] \quad$ and $\quad A=\mathcal{B}\left(V^{+}\right) \# k[\Gamma]$.

Restrictions $\operatorname{Alg}(A, k) \longrightarrow \hat{\Gamma}, \operatorname{Alg}(U, k) \longrightarrow \widehat{\wedge}$ are bijective. For $\chi \in \hat{\Gamma}$ let $L(\chi)=L(\chi, \rho) \in$ $U(\mathcal{D}, \lambda) \mathcal{M}$ be as defined in $\S 5$, where

$$
\rho\left(z_{i}\right)=\chi\left(g_{i}\right) \quad \text { for } i \in I^{-}
$$

The character χ is dominant for $\left(\mathcal{D}, \lambda, I^{+}\right)$if for all there are integers $m_{i} \geq 0$ for $i \in I^{-}$such that $j \in I^{+}$and $\lambda_{i j} \neq 0$ implies $\chi\left(g_{i} g_{j}\right)=q_{i j}^{m_{i}}$. [R-S 07]

Theorem 2 (R-S 07). In the generic case

$$
U(\mathcal{D}, \lambda) \simeq(U \otimes A)_{\sigma} /\left(z_{i} \otimes g_{i}-1 \otimes 1 \mid i \in I^{-}\right)
$$

where σ is a 2-cocycle for $U \otimes A . \quad \chi \mapsto[L(\chi)]$ determines a bijection between the dominant characters and the isomorphism classes of finite-dimensional left $U(\mathcal{D}, \lambda)$-modules.

There is a similar result for $u(\mathcal{D}, \lambda, 0)$; here $x_{\alpha}^{N_{J}}=0$ for all $\alpha \in \Phi_{J}^{+}, J \in \mathbb{X}$. "the characters" replaces "dominant characters".

The linking graph of $u(\mathcal{D}, \lambda, 0)$ may not be bipartite; however $u(\mathcal{D}, \lambda, 0)$ can be replaced with $u\left(\mathcal{D}^{\prime}, \lambda^{\prime}, 0\right)$ which has the same finite-dimensional irreducibles and whose linking graph is bipartite.

5. Generalized Doubles

U, A are Hopf algebras and $U \otimes A \xrightarrow{\tau} k$ satisfies

$$
\tau_{\ell}: U \longrightarrow A^{*} \quad \text { and } \quad \tau_{r}: A \longrightarrow U^{* o p}
$$

are algebra maps, where

$$
\tau_{\ell}(u)(a)=\tau(u, a)=\tau_{r}(a)(u)
$$

for $u \in U, a \in A$. Then $(U \otimes A) \otimes(U \otimes A) \xrightarrow{\sigma} k$,

$$
(u \otimes a) \otimes\left(u^{\prime} \otimes a^{\prime}\right) \mapsto \epsilon(u) \tau\left(u^{\prime}, a\right) \epsilon\left(a^{\prime}\right)
$$

is a 2-cocycle and thus determines a Hopf algebra $(U \otimes A)^{\sigma}=U \otimes A$ as a coalgebra with multiplication given by

$$
\begin{aligned}
& (u \otimes a)\left(u^{\prime} \otimes a^{\prime}\right) \\
& \quad=u \tau\left(u_{(1)}^{\prime}, a_{(1)}\right) u_{(2)}^{\prime} \otimes a_{(2)} \tau^{-1}\left(u_{(3)}^{\prime}, a_{(3)}\right) a^{\prime}
\end{aligned}
$$

for all $u, u^{\prime} \in U$ and $a, a^{\prime} \in A$. This product satisfies

$$
(u \otimes a)\left(u^{\prime} \otimes a^{\prime}\right)=u u^{\prime} \otimes a a^{\prime} \text { when } a=1 \text { or } u^{\prime}=1
$$

Example 4 (Doi-Takeuchi 94). H f.-d., $U=$ $\left(H^{o p}\right)^{*}, A=H$, and $\tau(p, a)=p(a)$ for all $p \in$ U and $a \in A$. Then $(U \otimes A)^{\sigma}=D(H)$ is the quantum double of H.

Hopf algebras of the type $(U \otimes A)_{\sigma}$ are generalized doubles. [Doi-Takeuchi 94, Joseph 95] The representation theory of $\S 6$ applies to generalized doubles.

6. An Abstract Highest Weight Theory

[R-S 07] \mathbb{H} is an algebra with subalgebras U, A

$$
\begin{equation*}
U \otimes A \xrightarrow{\mu} \mathbb{H}(u \otimes a \mapsto u a) \tag{3}
\end{equation*}
$$

is bijective. Commutation rule:
$a u=\sum_{i=1}^{n} u_{i} a_{i} \quad$ where $\quad \mu^{-1}(a u)=\sum_{i=1}^{n} u_{i} \otimes a_{i}$.
With the identification of (3) the vector space $U \otimes A$ has an algebra structure such that

$$
(u \otimes a)\left(u^{\prime} \otimes a^{\prime}\right)=u u^{\prime} \otimes a a^{\prime} \text { when } a=1 \text { or } u^{\prime}=1
$$

Let $\rho \in \operatorname{Alg}(U, k)$. Then $\left(A, \triangleleft_{\rho}\right) \in \mathcal{M}_{\mathbb{H}}$, where

$$
a \triangleleft_{\rho} u a^{\prime}=\left((\rho \otimes \mathrm{Id})\left(\mu^{-1}(a u)\right) a^{\prime}=\left(\sum_{i=1}^{n} \rho\left(u_{i}\right) a_{i}\right) a^{\prime}\right.
$$

for all $a, a^{\prime} \in A$ and $u \in U$. If $a u=u a$ observe that $a \triangleright_{\rho} u a^{\prime}=\rho(u) a a^{\prime}$. The module structure results from regarding $k \in \mathcal{M}_{U}$ by $1 \cdot u=\rho(u) 1$ and identifying A with $k \otimes_{U} \mathbb{H}$ by

$$
k \otimes_{U} \mathbb{H} \simeq k \otimes_{U}(U \otimes A) \simeq\left(k \otimes_{U} U\right) \otimes A \simeq k \otimes A \simeq A
$$

Let $\chi \in \operatorname{Alg}(A, k)$. Then $\left(U, \triangleright_{\chi}\right) \in \mathbb{H} \mathcal{M}$, where

$$
u a \triangleright_{\chi} u^{\prime}=u\left((\operatorname{Id} \otimes \chi)\left(\mu^{-1}\left(a u^{\prime}\right)\right)\right)=u\left(\sum_{i=1}^{n} u_{i}^{\prime} \chi\left(a_{i}\right)\right)
$$

for all $u, u^{\prime} \in U$ and $a \in A$. If $a u^{\prime}=u^{\prime} a$ then $u a \triangleright_{\chi} u^{\prime}=\chi(a) u u^{\prime}$. In particular

$$
u \triangleright_{\chi} u^{\prime}=u u^{\prime} \quad \text { and } \quad a \triangleright_{\chi} 1=\chi(a) 1
$$

Let $I(\rho, \chi)$ be the largest \mathbb{H}-submodule of U contained in Ker ρ and set

$$
L(\rho, \chi)=U / I(\rho, \chi) \in_{\mathbb{H}} \mathcal{M}
$$

Then $L(\rho, \chi)$ has a codim. one U-submodule N, where U acts on $L(\rho, \chi) / N$ by ρ, and $L(\rho, \chi)$ is a cyclic \mathbb{H}-module generated by a dim. one A-submodule $k m$, where A acts on $k m$ by χ. These assertions follow since the same are true for $\left(U, \triangleright_{\chi}\right)$ with $N=\operatorname{Ker} \rho$ and $m=1$.

Reversing the roles of χ and ρ we obtain $J(\chi, \rho)$ and $R(\chi, \rho)=A / J(\chi, \rho) \in \mathcal{M}_{\mathbb{H}}$ of a similar description.

Define a bilinear form $A \times U \xrightarrow{\psi} k$ by

$$
\Psi(a, u)=(\rho \otimes \chi)\left(\mu^{-1}(a u)\right)=\sum_{i=1}^{n} \rho\left(u_{i}\right) \chi\left(a_{i}\right)
$$

for all $a \in A$ and $u \in U$.

Lemma 1. The following hold for the form:
(a) $\Psi\left(a \triangleleft_{\rho} h, u\right)=\Psi\left(a, h \triangleright_{\chi} u\right)$ for all $a \in A$, $h \in \mathbb{H}$, and $u \in U$; that is Ψ is \mathbb{H}-balanced.
(b) $A^{\perp}=\{u \in U \mid \Psi(A, u)=(0)\}=I(\rho, \chi)$.
(c) $U^{\perp}=\{a \in A \mid \Psi(a, U)=(0)\}=J(\chi, \rho)$.

Denote the form $A / U^{\perp} \times U / A^{\perp} \longrightarrow k$ by Ψ also. Since $R(\rho, \chi) \times L(\chi, \rho) \xrightarrow{\Psi} k$ is non-singular and \mathbb{H}-balanced we may regard $R(\rho, \chi)$ as a submodule of $L(\chi, \rho)^{*}$ and $L(\chi, \rho)$ as a submodule of $R(\rho, \chi)^{*}$. This is useful for computation.

Lemma 2. Suppose there are subalgebras U^{\prime} of U and A^{\prime} of A such that:
(a) $a \triangleright_{\chi} u^{\prime}=\chi(a) u^{\prime}$ for all $a \in A, u^{\prime} \in U^{\prime}$ and $\operatorname{Alg}(U, k) \rightarrow \operatorname{Alg}\left(U^{\prime}, k\right) \quad\left(\eta \mapsto \eta \mid U^{\prime}\right)$ is injective.
(b) $a^{\prime} \triangleleft_{\rho} u=\rho(u) a^{\prime}$ for all $a^{\prime} \in A^{\prime}, u \in U$ and $\operatorname{Alg}(A, k) \rightarrow \operatorname{Alg}\left(A^{\prime}, k\right) \quad\left(\eta \mapsto \eta \mid A^{\prime}\right)$ is injective.

Then $L(\rho, \chi)$ contains a unique dim. one A-submodule and a unique codim. one U submodule and $R(\chi, \rho)$ contains a unique dim. one U-submodule and a unique codim. one A-submodule.

Let ${ }_{\mathbb{H}} \underline{\mathcal{M}}$ be the full subcategory of ${ }_{\mathbb{H}} \mathcal{M}$ whose modules M are
(1) generated by a dim. one left A-submodule $k m$ and
(2) have a codim. one left U-submodule which contains no non-zero \mathbb{H}-submodules.
$L(\chi, \rho) \in_{\mathbb{H}} \mathcal{M}$ and every object is isomorphic to an $L(\chi, \rho)$.

Theorem 3. Assume the hypothesis of the preceding lemma. Then the map
$\operatorname{Alg}(U, k) \times \operatorname{Alg}(A, k) \rightarrow[H \underline{\mathcal{M}}], \quad(\rho, \chi) \mapsto[L(\rho, \chi)]$ is bijective.

Corollary 1. Assume the hypothesis of the preceding lemma and also that the finite dimensional simple left U-modules and A modules have dimension one. Then the finite-dimensional $L(\rho, \chi)$'s and the finitedimensional simple \mathbb{H}-modules are one in the same.

Reversing roles of U and A we can define $\mathcal{M}_{\mathbb{H}}$ and develop a duality between $\mathbb{H} \underline{\mathcal{M}}$ and $\underline{\mathcal{M}}_{\mathbb{H}}$.

7. Perfect Linkings and Reduced Data

A linking parameter λ of a datum \mathcal{D} is perfect if any vertex is linked.

Any linking parameter λ the Hopf algebra $\mathcal{U}(\mathcal{D}, \lambda)$ has a natural quotient Hopf algebra $\mathcal{U}\left(\mathcal{D}^{\prime}, \lambda^{\prime}\right)$ with perfect linking parameter λ^{\prime}. This is the special case of

A reduced datum is

$$
\mathcal{D}_{\text {red }}=\mathcal{D}\left(\left\ulcorner,\left(L_{i}\right)_{1 \leq i \leq \theta},\left(K_{i}\right)_{1 \leq i \leq \theta},\left(\chi_{i}\right)_{1 \leq i \leq \theta}\right),\right.
$$

where Γ is an abelian group, θ is a positive integer, $K_{i}, L_{i} \in \Gamma, \chi_{i} \in \hat{\Gamma}$ for all $1 \leq i \leq \theta$ satisfy

$$
\begin{gather*}
\chi_{j}\left(K_{i}\right)=\chi_{i}\left(L_{j}\right) \text { for all } 1 \leq i, j \leq \theta, \tag{4}\\
K_{i} L_{i} \neq 1 \text { for all } 1 \leq i \leq \theta . \tag{5}
\end{gather*}
$$

A reduced datum $\mathcal{D}_{\text {red }}$ is called generic if for all $1 \leq i \leq \theta, \chi_{i}\left(K_{i}\right)$ is not a root of unity.

A linking parameter l for a reduced datum $\mathcal{D}_{\text {red }}$ is a family $l=\left(l_{i}\right)_{1 \leq i \leq \theta}$ of non-zero elements in \mathbb{k}.

Lemma 3. Let

$$
\mathcal{D}=\mathcal{D}\left(\left\ulcorner,\left(g_{i}\right)_{1 \leq i \leq \theta},\left(\chi_{i}\right)_{1 \leq i \leq \theta}\right)\right.
$$

be a datum satisfying $\chi_{j}\left(g_{i}\right) \chi_{i}\left(g_{j}\right) \neq \chi_{i}\left(g_{i}\right)^{2}$ for all $i \neq j$, and let λ be a perfect linking parameter for \mathcal{D}. Then there are a reduced datum $\mathcal{D}_{\text {red }}$ and a linking parameter lfor $\mathcal{D}_{\text {red }}$ such that

$$
\mathcal{U}(\mathcal{D}, \lambda) \cong \mathcal{U}\left(\mathcal{D}_{r e d}, l\right)
$$

as Hopf algebras.
Set

$$
\mathbf{U}=\mathcal{U}\left(\mathcal{D}_{\text {red }}, l\right)
$$

Let ad_{l} and ad_{r} be the adjoint actions of the Hopf algebra $k\left\langle u_{1}, \ldots, a_{\theta}\right\rangle \# k[\Gamma]$. Then $U\left(\mathcal{D}_{\text {red }}, l\right)$
is generated by Γ and $E_{1}, \ldots, E_{\theta}, F_{1}, \ldots, F_{\theta}$ subject to the relations for Γ and

$$
\begin{aligned}
\operatorname{ad}_{l}\left(E_{i}\right)^{1-a_{i j}}\left(E_{j}\right) & =0, \forall 1 \leq i, j \leq \theta, i \neq j \\
\operatorname{ad}_{r}\left(F_{i}\right)^{1-a_{i j}}\left(F_{j}\right) & =0, \forall 1 \leq i, j \leq \theta, i \neq j \\
E_{i} F_{j}-F_{j} E_{i} & =\delta_{i j} l_{i}\left(K_{i}-L_{i}^{-1}\right), \quad \forall 1 \leq i, j \leq \theta
\end{aligned}
$$

Explicitly $\forall i \in J, J \in \mathcal{X}$ and $1 \leq j \leq \theta, i \neq j$,

$$
\begin{aligned}
& \operatorname{ad}_{l}\left(E_{i}\right)^{1-a_{i j}}\left(E_{j}\right) \\
& \quad=\sum_{s=0}^{1-a_{i j}}\left(-p_{i j}\right)^{s}\left[1-a_{i j}\right]_{q_{J}^{d_{i}}} E_{i}^{1-a_{i j}-s} E_{j} E_{i}^{s}
\end{aligned}
$$

$$
\operatorname{ad}_{r}\left(F_{i}\right)^{1-a_{i j}}\left(F_{j}\right)
$$

$$
=\sum_{s=0}^{1-a_{i j}}\left(-p_{i j}\right)^{s}\left[1-a_{i j}\right]_{q_{J}}^{d_{i}} F_{i}^{s} F_{j} F_{i}^{1-a_{i j}-s}
$$

The action of Γ is given for all $g \in \Gamma$ and all $1 \leq i \leq \theta$ by

$$
\begin{aligned}
g E_{i} g^{-1} & =\chi_{i}(g) E_{i} \\
g F_{i} g^{-1} & =\chi_{i}^{-1}(g) F_{i}
\end{aligned}
$$

and the comultiplication by

$$
\begin{aligned}
& \Delta\left(E_{i}\right)=K_{i} \otimes E_{i}+E_{i} \otimes 1 \\
& \Delta\left(F_{i}\right)=1 \otimes F_{i}+F_{i} \otimes L_{i}^{-1}
\end{aligned}
$$

U^{+}is generated by the E_{i} 's and U^{-}by the F_{i} 's; Γ the group generated by the K_{i} 's, L_{i} 's.

Corollary 2. The multiplication map

$$
\mathbf{U}^{-} \otimes \mathbf{U}^{+} \otimes k[\Gamma] \rightarrow \mathbf{U}
$$

is an isomorphism of vector spaces. Furthermore $\mathrm{U}^{-}=\mathfrak{B}(W)$ and $\mathrm{U}^{+}=\mathfrak{B}(V)$ for some $V, W \in \Gamma \mathcal{Y} \mathcal{D}$.

Set $\mathbb{I}=\{1, \ldots, \theta\}$. Let $\mathbb{Z}[\mathbb{I}]$ be a free abelian group of rank θ with fixed basis $\alpha_{1}, \ldots, \alpha_{\theta}$, and $\mathbb{N}[\mathbb{I}]=\left\{\alpha=\sum_{i=1}^{\theta} n_{i} \alpha_{i} \mid n_{1}, \ldots, n_{\theta} \in \mathbb{N}\right\}$.

For $\alpha=\sum_{i=1}^{\theta} n_{i} \alpha_{i} \in \mathbb{Z}[\mathbb{I}], n_{1}, \ldots, n_{\theta} \in \mathbb{Z}$, let $|\alpha|=\sum_{i=1}^{\theta} n_{i}$, and $\chi_{\alpha}=\chi_{1}^{n_{1}} \cdots \chi_{\theta}^{n_{\theta}}, K_{\alpha}=K_{1}^{n_{1}} \cdots K_{\theta}^{n_{\theta}}, L_{\alpha}=L_{1}^{n_{1}} \cdots L_{\theta}^{n_{\theta}}$.

There is a \mathbb{k}-bilinear form $():, \mathbf{U}^{-} \otimes \mathbf{U}^{+} \rightarrow \mathbb{k}$, non-degenerate on $\mathbf{U}_{-\alpha}^{-} \times \mathbf{U}_{\alpha}^{+}$.

For all $\alpha \in \mathbb{N}[\mathbb{I}]$, let $x_{\alpha}^{k}, 1 \leq k \leq d_{\alpha}=\operatorname{dim} \mathrm{U}_{-\alpha}^{-}$, be a basis of $\mathrm{U}_{-\alpha}^{-}$, and $y_{\alpha}^{k}, 1 \leq k \leq d_{\alpha}$, the dual basis of \mathbf{U}_{α}^{+}with respect to (,). Set

$$
\theta_{\alpha}=\sum_{k=1}^{d_{\alpha}} x_{\alpha}^{k} \otimes y_{\alpha}^{k}
$$

We will set $\theta_{\alpha}=0$ for all $\alpha \in \mathbb{Z}[\mathbb{I}]$ and $\alpha \notin \mathbb{N}[\mathbb{I}]$. $\Omega=\sum_{\alpha \in \mathbb{N}[\mathbb{I}]} \sum_{k=1}^{d_{\alpha}} S\left(x_{\alpha}^{k}\right) y_{\alpha}^{k}=\sum_{\alpha \in \mathbb{N}[\mathbb{I}]} \theta_{\alpha}$ is the quasi-R-matrix.

Theorem 4. Let $\alpha \in \mathbb{N}[\mathbb{I}]$ and $1 \leq i \leq \theta$. Then in $\mathbf{U} \otimes \mathbf{U}$,

$$
\begin{aligned}
& \left(E_{i} \otimes 1\right) \theta_{\alpha}+\left(K_{i} \otimes E_{i}\right) \theta_{\alpha-\alpha_{i}} \\
& \quad=\theta_{\alpha}\left(E_{i} \otimes 1\right)+\theta_{\alpha-\alpha_{i}}\left(L_{i}^{-1} \otimes E_{i}\right) \\
& \left(1 \otimes F_{i}\right) \theta_{\alpha}+\left(F_{i} \otimes L_{i}^{-1}\right) \theta_{\alpha-\alpha_{i}} \\
& \quad=\theta_{\alpha}\left(1 \otimes F_{i}\right)+\theta_{\alpha-\alpha_{i}}\left(F_{i} \otimes K_{i}\right)
\end{aligned}
$$

8. Classes of U-modules

$\mathcal{D}_{\text {red }}$ is generic, regular, and of Cartan type, and $\mathbf{U}=\mathcal{U}\left(\mathcal{D}_{\text {red }}, l\right)$. Regular means: Let Q be the subgroup of $\hat{\Gamma}$ generated by $\chi_{1}, \ldots, \chi_{\theta}$. Then

$$
\mathbb{Z}[\mathbb{I}] \stackrel{\cong}{\Longrightarrow} Q, \alpha \mapsto \chi_{\alpha}
$$

is an isomorphism.
\mathcal{C} is the full subcategory of $\mathrm{u} \mathcal{M}$ of all left U modules M which are direct sums of 1-dim.「-modules; i.e. have a weight space decomposition $M=\oplus_{\chi \in \hat{\Gamma}} M^{\chi}$,

$$
M^{\chi}=\{m \in M \mid g m=\chi(g) m \text { for all } g \in \Gamma\}
$$

Weight for M : a character $\chi \in \hat{\Gamma}$ with $M \chi \neq 0$.
$\mathcal{C}^{h i}$ the full subcategory of $\mathcal{C} ; M \in \mathcal{C}^{h i}$ if for any $m \in M, \exists N \geq 0$ such that $\mathbf{U}_{\alpha}^{+} m=0$ for all $\alpha \in \mathbb{N}[\mathbb{I}]$ with $|\alpha| \geq N$.

Both \mathcal{C} and $\mathcal{C}^{h i}$ are closed under sub-objects and quotient objects of U-modules.
$\chi \in \hat{\Gamma}$. The Verma module

$$
M(\chi)=\mathbf{U} /\left(\sum_{i=1}^{\theta} \mathbf{U} E_{i}+\sum_{g \in \Gamma} \mathbf{U}(g-\chi(g))\right.
$$

The inclusion $\mathbf{U}^{-} \subset \mathbf{U}$ defines a \mathbf{U}^{-}-module isomorphism

$$
\begin{equation*}
\mathbf{U}^{-} \cong \xrightarrow{\cong} M(\chi)=\mathbf{U} /\left(\sum_{i=1}^{\theta} \mathbf{U} E_{i}+\sum_{g \in \Gamma} \mathbf{U}(g-\chi(g))\right) \tag{6}
\end{equation*}
$$

by the triangular decomposition of \mathbf{U}.

The Verma module $M(\chi)$ and all its quotients belong to the category $\mathcal{C}^{h i}$.

Regularity allows a partial order \leq on $\hat{\Gamma}$. For all $\chi, \chi^{\prime} \in \hat{\Gamma}, \chi^{\prime} \leq \chi$ if $\chi=\chi^{\prime} \chi_{\alpha}$ for some $\alpha \in \mathbb{N}[\mathbb{I}]$. If $\chi^{\prime} \leq \chi$ then χ and χ^{\prime} are in the same Q-coset of $\hat{\Gamma}$.

Lemma 4. Let $\chi \in \hat{\Gamma}$, and $M \in \mathcal{C}$. Suppose χ is a maximal weight for M and $m \in M^{\chi}$. Then $E_{i} m=0$ for all $1 \leq i \leq \theta$, and $\mathrm{U} m$ is a quotient of $M(\chi)$.

Let $M \in \mathcal{C}$ and C be a coset of Q in $\hat{\Gamma}$. Then $M_{C}=\oplus_{\chi \in C} M^{\chi} \in \mathcal{C}$. Note $M=\oplus_{C} M_{C}$, where C runs over the Q-cosets of $\hat{\Gamma}$.

Lemma 5. Suppose $M \in \mathcal{C}^{h i}$ is a fin.-gen. Umodule.

1. $\operatorname{Dim} M^{\chi}<\infty$ for all $\chi \in \hat{\Gamma}$.
2. For all $\chi^{\prime} \in \hat{\Gamma}$ there are only finitely many weights χ for M with $\chi^{\prime} \leq \chi$.
3. Every non-empty set of weights for M has a maximal element.
$M \in \mathcal{C}$ is integrable for all $m \in M$ and $1 \leq i \leq \theta$, $E_{i}^{n} m=F_{i}^{n} m=0$ for some $n \geq 1$.
$\chi \in \hat{\Gamma}$ is dominant if for all $1 \leq i \leq \theta$ there are $m_{i} \geq 0$ such that $\chi\left(K_{i} L_{i}\right)=q_{i i}^{m_{i}}$ for all $1 \leq i \leq \theta . \hat{\Gamma}^{+}=$dominant characters of $\hat{\Gamma}$.

Let $\chi \in \hat{\Gamma}^{+}$, and $m_{i} \geq 0$ for all $1 \leq i \leq \theta$ such that $\chi\left(K_{i} L_{i}\right)=q_{i i}^{m_{i}}$ for all $1 \leq i \leq \theta$. Set

$$
L(\chi)=\mathbf{U} /\left(\sum_{i=1}^{\theta} \mathbf{U} E_{i}+\sum_{i=1}^{\theta} \mathbf{U} F_{i}^{m_{i}+1}+\sum_{g \in \Gamma} \mathbf{U}(g-\chi(g))\right) .
$$

A universal property of the Verma module with respect to integrable modules in \mathcal{C} :

Proposition 1. Let $M \in \mathcal{C}$ be integrable and $\chi \in \hat{\Gamma}$. Assume that there exists an element $0 \neq m \in M^{\chi}$ such that $E_{i} m=0$ for all $1 \leq$ $i \leq \theta$. Then χ is dominant, and there is a unique U-linear map $t: L(\chi) \rightarrow M$ such that $t\left(l_{\chi}\right)=m$.

Corollary 3. Under the assumptions above: 1. Let χ be dominant. Then

$$
\mathbf{U}^{-} /\left(\sum_{i=1}^{\theta} \mathbf{U}^{-} F_{i}^{m_{i}+1}\right) \simeq L(\chi)
$$

$L(\chi)$ is integrable, and $L(\chi)^{\chi}$ is a onedimensional vector space with basis l_{χ}.
2. Let $\chi, \chi^{\prime} \in \hat{\Gamma}^{+}$. Then $L(\chi) \simeq L\left(\chi^{\prime}\right)$ iff $\chi=$ χ^{\prime}.

9. The quantum Casimir Operator

Again, $\mathcal{D}_{\text {red }}$ is generic, regular, and of Cartan type, and $\mathrm{U}=\mathcal{U}\left(\mathcal{D}_{\text {red }}, l\right)$. In addition we assume that the family $\left(q_{i i}\right)_{1 \leq i \leq \theta}$ of scalars in \mathbb{k} is \mathbb{N}-linearly independent with respect to multiplication.

The $q_{i i}$'s are \mathbb{N}-linearly independent if \mathbb{I} is connected, that is if the Cartan matrix of $\mathcal{D}_{\text {red }}$ is indecomposable.

Lemma 6. Let C be a coset of Q in $\hat{\Gamma}$.

1. There is a function $G: C \rightarrow k^{\times}$such that for all $\chi \in C$ and $1 \leq i \leq \theta, G(\chi)=$ $G\left(\chi \chi_{i}^{-1}\right) \chi\left(K_{i} L_{i}\right) . G$ is uniquely determined up to multiplication by a non-zero constant in \mathbb{k}.
2. Let G be as in (1). If $\chi, \chi^{\prime} \in \hat{\Gamma}^{+}$are dominant characters with $\chi \geq \chi^{\prime}$ and $G(\chi)=$ $G\left(\chi^{\prime}\right)$, then $\chi=\chi^{\prime}$.

Proposition 2. Let C be a coset of Q in $\hat{\Gamma}$, and $M=M_{C} \in \mathcal{C}^{h i}$. Choose a function G as in Lemma 6 and define a \mathbb{k}-linear $\operatorname{map} \Omega_{G}: M \rightarrow$ M by $\Omega_{G}(m)=G(\chi) \Omega(m)$ for all $m \in M^{\chi}, \chi \in$ C.

1. Ω_{G} is U -linear and locally finite.
2. Suppose $0 \neq m \in M$ generates a quotient of a Verma module $M(\chi), \chi \in \hat{\Gamma}$. Then $\chi \in C$, and $\Omega_{G}(m)=G(\chi) m$.
3. The eigenvalues of Ω_{G} are the $G(\chi)^{\prime} s$, where χ runs over the maximal weights of the submodules N of M (in which case $\Omega_{G}(n)=G(\chi) n$ for all $\left.n \in N^{\chi}\right)$.

The function $\Omega_{G}: M \rightarrow M$ in Proposition 2 is called the quantum Casimir operator.

11. Complete Reducibility Theorems

$\mathcal{D}_{\text {red }}$ is generic, regular, and of Cartan type, and $\mathbf{U}=\mathcal{U}\left(\mathcal{D}_{\text {red }}, l\right)$.

Theorem 5. Let $\chi \in \hat{\Gamma}^{+}$.

1. $L(\chi)$ is a simple \mathbf{U}-module.
2. Any weight vector of $L(\chi)$ which is annihilated by all $E_{i}, 1 \leq i \leq \theta$, is a scalar multiple of l_{χ}.

Theorem 6. Let M be an integrable module in $\mathcal{C}^{h i}$. Then M is completely reducible and M is a direct sum of $L(\chi)^{\prime} s$ where $\chi \in \hat{\Gamma}^{+}$.

Corollary 4. U is 「-reductive.

Recall that Γ^{2} denotes the subgroup of Γ generated by the products $K_{1} L_{1}, \ldots, K_{\theta} L_{\theta}$.

Theorem 7. Assume that $\mathcal{D}_{\text {red }}$ is regular. Then the following are equivalent:

1. U is reductive.
2. $\left[\Gamma: \Gamma^{2}\right]$ is finite.

If U is reductive, then the Cartan matrix of $\mathcal{D}_{\text {red }}$ is invertible.

11. Reductive Pointed Hopf Algebras

$B \subseteq A$ a subalgebra. A is B-reductive if every fin.-dim. left A-module which is B-semisimple (on restriction) is A-semisimple. A pointed, $\Gamma=G(A) ; \Gamma$-reductive means $\mathbb{k}[\Gamma]$-reductive.

Theorem 8. Let \mathcal{D} be a generic datum of finite Cartan type.

1. The following are equivalent:
(a) $U(\mathcal{D}, \lambda)$ is Γ-reductive.
(b) The linking parameter λ of \mathcal{D} is perfect.
2. The following are equivalent:
(a) $U(\mathcal{D}, \lambda)$ is reductive.
(b) The linking parameter λ of \mathcal{D} is perfect and $\left[\Gamma: \Gamma^{2}\right]$ is finite.
