Math 215 Written Homework 6 Solution (REVISION) 07/28/08

Slightly revised and more detailed point distributions are given and several
more comments are included.

1. (20 points total) Here A is any subset of the set of real numbers R and
is not necessarily finite.

(a) Suppose that aj,ay € A are maxima for A. Then a < a; and a < a
for all a € A. Since ay € A, as < a;. Since a; € A, a; < ay. Therefore
as < a; < ay which means a; = as. (6 points)

Comment: The assertion of part (a) is a uniqueness statement, a statement
which asserts “at most one”. An existence statement is one which asserts “at
least one”. An existence and uniqueness statement asserts “exactly one”.

(b) a € A by assumption.

“Only if”. Suppose that a is a minimum for A. Since a € A, —a € —A.
Let + € —A. Then x = —b for some b € A. Therefore b < a which means
x = —b > —a. We have shown that —a is a maximum for —A. (4 points)

“If”. Suppose that —a is a maximum for —A. Let b € A. Then —b € —A.
Therefore —b < —a which means b > a. Therefore a is a maximum for A. (4
points)

Comment: Part (b) relates maxima and minima.
(c) Suppose that aj, as are minima for A. Then —ay, —ay are maxima for — A

by part (b). Therefore —a; = —ay by part (a). From this equation a; = as
follows. Thus A has at most one minimum. (6 points)

2. (20 points total) We investigate when AUB has a maximum.

(a) Suppose A, B C R and AUB has a maximum c¢. Since ¢ € AUB, by
definition ¢ € A or ¢ € B.

Assume first of all that ¢ € A (the first set listed in AUB). Let a € A.
Since a € AUB, a < c. Therefore ¢ is a maximum for A.



If c € Athen ¢ € B. As AUB = BUA, and thus ¢ is a maximum for
BUA, the preceding argument shows that ¢ is a maximum for B. (8 points)

(b) Suppose that a € A is a maximum for A and b € B is a maximum for
B. Let ¢ be the maximum of a,b. Since a,b € AUB, and ¢ = a or ¢ = b, it
follows that ¢ € AUB.

Suppose that d € AUB. Then d € A, in which case d < a < ¢ and hence
d < ¢, ord € B, in which case d < b < ¢, and consequently d < c¢. Therefore
¢ is a maximum for AUB. (12 points)

Comment: Problems 1 and 2 are good exercises in simple proofs, ones which
follow from definitions and a few basic axioms.

3. (20 points total)
(a) From the table

r€A zeB|lxeA x€B xe€ ANB
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we derive the table

x€A xze€B|xalr) xs(®) xans(®) xalx)xs(z)
T T 1 1 1 1-1 =
T F 1 0 0 1-0 =
F T 0 1 0 0-1=
F F 0 0 0 0-0 =

from which we deduce that yanp(x) = xa(z)xs(x) for all € U. Therefore
XanB = XaXs- (7 points)

Comment: The preceding proof is somewhat elaborate; it shows the con-
nection between the tables involved in showing that two sets are equal and
the equality of characteristic functions. In any event, a proof should in-
volve various cases. Let x € U. For example; z € A and x ¢ B. Thus
xa(z) =1 and xp(x) = 0 which means xaxp(z) = xa(x)xs(z) = 1.0 = 0.
Now x ¢ B means x ¢ ANB. Therefore xanp(x) = 0. We have shown



XaXB(z) =0 = xanp(z); hence xaxp(z) = xanp(z) in this case. (It would
not be correct to write x axXp = Xanp to summarize this case.) This comment
applies to part (b) and to part (a) of Problem 4 as well.

Comment: Some solutions were of the form: Case 1 ... Therefore for all
x € U, xanp(z) = 1 if and only if xaxs(z) = 1. Case 2 .... Therefore for
all x € U, xanp(x) = 0 if and only if xaxp(x) = 0. The conclusion of Case
2 is equivalent to conclusion of Case 1 as “P if and only if Q7 is logically
equivalent to “(not P) if and only if (not Q)”; consider the contrapositives.
Thus Case 1 (or Case 2) is sufficient for showing that x ans = xaX5B-

(b) From the table

reA ‘ reA zeA°
T T F
F F T

we derive the table

v €Al xa(®) xac(r) 1-xa(2)
T 1 0 1-1=0
F 0 1 1-0=1

which shows that x4c(x) = 1 — xa(x) for all z € U. Therefore y4c = 1 — xa.
(7 points)

(c) Note that A — B = ANB° (a short proof would be good). Thus
Xa-B = Xanpe = XaXse = Xa(l = XB).

(6 points)

4. (20 points total)

a) Let « € U. From the table

r€EA zeB|xeA ze€B xe ANB x € AUB
T T T T T T
T F T F F T
F T F T F T
F F F F F F

we derive the table



v€A zeB|xalr) xp(@) xanp(r) xaus(®) xalz)+xs(r) — xans(@)
T T 1 1 1 1 1+1-1=1
T F 1 0 0 1 1+0-0=1
F T 0 1 0 1 0+1-0=1
F F 0 0 0 0 0+0-0=0

which shows that xaus(z) = xa(x) + x5(z) — xanp(z) for all x € U. There-
fore X auB = X4 + XB — Xanp. (8 points)

(b) By part (b) of Problem 3 and part (a)

XauB)ye =1 —xaup =1— x4 — XB+ XaXB
and by parts (a) and (b) of Problem 3

Xaenpe = Xaexpe = (1 —xa)(1 —xB) =1—xa — X5+ XaXB-

Thus X(auBye = Xaenpe Which implies (AUB)® = A°NB°. (12 points)

Comment: If one of De Morgan’s laws (they are equivalent to each other)
was used to prove part (a), then one can not prove the conclusion of part
(b) as required. For then the proof would be a tautology; De Morgan’s Law
implies De Morgan’s Law.

5. (20 points total) In each case we compute D(a) for the smaller value of
a of the pair. Note that if 0 < b < a and divides a then b < a/2.

(a) D(22) = {1,2,11,22,—-1,—2, —11,—22}. Thus the greatest common di-
visor of 22 and 234 is 1, 2, 11, or 22. Since 2 divides 234 and 11 does not,
and therefore 22 does not, the greatest common divisor of 22 and 234 is 2.
(7 points)

(b) D(39) = {1,3,13,39, —1,—3,—13}. Thus the greatest common divisor
of 39 and 385 is 1, 3, 13, or 39. Since 1 divides 385 and 3, 13 do not, and
therefore 39 does not, the greatest common divisor of 39 and 385 is 1. (7
points)

(c) D(16) = {1,2,4,8,16,—1,—2,—4, —8,—16}. Thus the greatest common
divisor of 16 and 120 is 1, 2, 4, 8, or 16. Since 8 divides 120 and 16 does not,
8 is the greatest common divisor of 16 and 120. (6 points)



