Math 215 Written Homework 6 Solution (REVISION) 07/28/08

Slightly revised and more detailed point distributions are given and several more comments are included.

1. (20 points total) Here A is any subset of the set of real numbers \mathbf{R} and is not necessarily finite.
(a) Suppose that $a_{1}, a_{2} \in A$ are maxima for A. Then $a \leq a_{1}$ and $a \leq a_{2}$ for all $a \in A$. Since $a_{2} \in A, a_{2} \leq a_{1}$. Since $a_{1} \in A, a_{1} \leq a_{2}$. Therefore $a_{2} \leq a_{1} \leq a_{2}$ which means $a_{1}=a_{2}$. (6 points)
Comment: The assertion of part (a) is a uniqueness statement, a statement which asserts "at most one". An existence statement is one which asserts "at least one". An existence and uniqueness statement asserts "exactly one".
(b) $a \in A$ by assumption.
"Only if". Suppose that a is a minimum for A. Since $a \in A,-a \in-A$. Let $x \in-A$. Then $x=-b$ for some $b \in A$. Therefore $b \leq a$ which means $x=-b \geq-a$. We have shown that $-a$ is a maximum for $-A$. (4 points)
"If". Suppose that $-a$ is a maximum for $-A$. Let $b \in A$. Then $-b \in-A$. Therefore $-b \leq-a$ which means $b \geq a$. Therefore a is a maximum for A. (4 points)
Comment: Part (b) relates maxima and minima.
(c) Suppose that a_{1}, a_{2} are minima for A. Then $-a_{1},-a_{2}$ are maxima for $-A$ by part (b). Therefore $-a_{1}=-a_{2}$ by part (a). From this equation $a_{1}=a_{2}$ follows. Thus A has at most one minimum. (6 points)
2. (20 points total) We investigate when $A \cup B$ has a maximum.
(a) Suppose $A, B \subseteq \mathbf{R}$ and $A \cup B$ has a maximum c. Since $c \in A \cup B$, by definition $c \in A$ or $c \in B$.

Assume first of all that $c \in A$ (the first set listed in $A \cup B$). Let $a \in A$. Since $a \in A \cup B, a \leq c$. Therefore c is a maximum for A.

If $c \notin A$ then $c \in B$. As $A \cup B=B \cup A$, and thus c is a maximum for $B \cup A$, the preceding argument shows that c is a maximum for B. (8 points)
(b) Suppose that $a \in A$ is a maximum for A and $b \in B$ is a maximum for B. Let c be the maximum of a, b. Since $a, b \in A \cup B$, and $c=a$ or $c=b$, it follows that $c \in A \cup B$.

Suppose that $d \in A \cup B$. Then $d \in A$, in which case $d \leq a \leq c$ and hence $d \leq c$, or $d \in B$, in which case $d \leq b \leq c$, and consequently $d \leq c$. Therefore c is a maximum for $A \cup B$. ($\mathbf{1 2}$ points)
Comment: Problems 1 and 2 are good exercises in simple proofs, ones which follow from definitions and a few basic axioms.

3. (20 points total)

(a) From the table

$x \in A$	$x \in B$	$x \in A$	$x \in B$	$x \in A \cap B$
T	T	T	T	T
T	F	T	F	F
F	T	F	T	F
F	F	F	F	F

we derive the table

$x \in A$	$x \in B$	$\chi_{A}(x)$	$\chi_{B}(x)$	$\chi_{A \cap B}(x)$	$\chi_{A}(x) \chi_{B}(x)$
T	T	1	1	1	$1 \cdot 1=1$
T	F	1	0	0	$1 \cdot 0=0$
F	T	0	1	0	$0 \cdot 1=0$
F	F	0	0	0	$0 \cdot 0=0$

from which we deduce that $\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x)$ for all $x \in U$. Therefore $\chi_{A \cap B}=\chi_{A} \chi_{B} .(7$ points)

Comment: The preceding proof is somewhat elaborate; it shows the connection between the tables involved in showing that two sets are equal and the equality of characteristic functions. In any event, a proof should involve various cases. Let $x \in U$. For example; $x \in A$ and $x \notin B$. Thus $\chi_{A}(x)=1$ and $\chi_{B}(x)=0$ which means $\chi_{A} \chi_{B}(x)=\chi_{A}(x) \chi_{B}(x)=1 \cdot 0=0$. Now $x \notin B$ means $x \notin A \cap B$. Therefore $\chi_{A \cap B}(x)=0$. We have shown
$\chi_{A} \chi_{B}(x)=0=\chi_{A \cap B}(x)$; hence $\chi_{A} \chi_{B}(x)=\chi_{A \cap B}(x)$ in this case. (It would not be correct to write $\chi_{A} \chi_{B}=\chi_{A \cap B}$ to summarize this case.) This comment applies to part (b) and to part (a) of Problem 4 as well.
Comment: Some solutions were of the form: Case $1 \ldots$ Therefore for all $x \in U, \chi_{A \cap B}(x)=1$ if and only if $\chi_{A} \chi_{B}(x)=1$. Case $2 \ldots$. Therefore for all $x \in U, \chi_{A \cap B}(x)=0$ if and only if $\chi_{A} \chi_{B}(x)=0$. The conclusion of Case 2 is equivalent to conclusion of Case 1 as " P if and only if Q " is logically equivalent to "(not P) if and only if (not Q)"; consider the contrapositives. Thus Case 1 (or Case 2) is sufficient for showing that $\chi_{A \cap B}=\chi_{A} \chi_{B}$.
(b) From the table

$$
\begin{array}{r|rr}
x \in A & x \in A & x \in A^{c} \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T}
\end{array}
$$

we derive the table

$$
\begin{array}{r|rrr}
x \in A & \chi_{A}(x) & \chi_{A^{c}}(x) & 1-\chi_{A}(x) \\
\hline \mathrm{T} & 1 & 0 & 1-1=0 \\
\mathrm{~F} & 0 & 1 & 1-0=1
\end{array}
$$

which shows that $\chi_{A^{c}}(x)=1-\chi_{A}(x)$ for all $x \in U$. Therefore $\chi_{A^{c}}=1-\chi_{A}$. (7 points)
(c) Note that $A-B=A \cap B^{c}$ (a short proof would be good). Thus

$$
\chi_{A-B}=\chi_{A \cap B^{c}}=\chi_{A} \chi_{B^{c}}=\chi_{A}\left(1-\chi_{B}\right) .
$$

(6 points)

4. (20 points total)
(a) Let $x \in U$. From the table

$x \in A$	$x \in B$	$x \in A$	$x \in B$	$x \in A \cap B$	$x \in A \cup B$
T	T	T	T	T	T
T	F	T	F	F	T
F	T	F	T	F	T
F	F	F	F	F	F

we derive the table

$x \in A$	$x \in B$	$\chi_{A}(x)$	$\chi_{B}(x)$	$\chi_{A \cap B}(x)$	$\chi_{A \cup B}(x)$	$\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)$
T	T	1	1	1	1	$1+1-1=1$
T	F	1	0	0	1	$1+0-0=1$
F	T	0	1	0	1	$0+1-0=1$
F	F	0	0	0	0	$0+0-0=0$

which shows that $\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)$ for all $x \in U$. Therefore $\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A \cap B}$. (8 points)
(b) By part (b) of Problem 3 and part (a)

$$
\chi_{(A \cup B)^{c}}=1-\chi_{A \cup B}=1-\chi_{A}-\chi_{B}+\chi_{A} \chi_{B}
$$

and by parts (a) and (b) of Problem 3

$$
\chi_{A^{c} \cap B^{c}}=\chi_{A^{c}} \chi_{B^{c}}=\left(1-\chi_{A}\right)\left(1-\chi_{B}\right)=1-\chi_{A}-\chi_{B}+\chi_{A} \chi_{B} .
$$

Thus $\chi_{(A \cup B)^{c}}=\chi_{A^{c} \cap B^{c}}$ which implies $(A \cup B)^{c}=A^{c} \cap B^{c} .(12$ points)
Comment: If one of De Morgan's laws (they are equivalent to each other) was used to prove part (a), then one can not prove the conclusion of part (b) as required. For then the proof would be a tautology; De Morgan's Law implies De Morgan's Law.
5. (20 points total) In each case we compute $D(a)$ for the smaller value of a of the pair. Note that if $0<b<a$ and divides a then $b \leq a / 2$.
(a) $D(22)=\{1,2,11,22,-1,-2,-11,-22\}$. Thus the greatest common divisor of 22 and 234 is $1,2,11$, or 22 . Since 2 divides 234 and 11 does not, and therefore 22 does not, the greatest common divisor of 22 and 234 is 2 .

(7 points)

(b) $D(39)=\{1,3,13,39,-1,-3,-13\}$. Thus the greatest common divisor of 39 and 385 is $1,3,13$, or 39 . Since 1 divides 385 and 3,13 do not, and therefore 39 does not, the greatest common divisor of 39 and 385 is 1. ($\mathbf{7}$ points)
(c) $D(16)=\{1,2,4,8,16,-1,-2,-4,-8,-16\}$. Thus the greatest common divisor of 16 and 120 is $1,2,4,8$, or 16 . Since 8 divides 120 and 16 does not, 8 is the greatest common divisor of 16 and 120. (6 points)

