Math 215 Written Homework 6 Solution (REVISION) 07/28/08

Slightly revised and more detailed point distributions are given and several more comments are included.

1. (20 points total) Here A is any subset of the set of real numbers \mathbf{R} and is not necessarily finite.

(a) Suppose that $a_1, a_2 \in A$ are maxima for A. Then $a \leq a_1$ and $a \leq a_2$ for all $a \in A$. Since $a_2 \in A$, $a_2 \leq a_1$. Since $a_1 \in A$, $a_1 \leq a_2$. Therefore $a_2 \leq a_1 \leq a_2$ which means $a_1 = a_2$. (6 points)

Comment: The assertion of part (a) is a *uniqueness* statement, a statement which asserts "at most one". An *existence* statement is one which asserts "at least one". An *existence and uniqueness* statement asserts "exactly one".

(b) $a \in A$ by assumption.

"Only if". Suppose that a is a minimum for A. Since $a \in A$, $-a \in -A$. Let $x \in -A$. Then x = -b for some $b \in A$. Therefore $b \leq a$ which means $x = -b \geq -a$. We have shown that -a is a maximum for -A. (4 points)

"If". Suppose that -a is a maximum for -A. Let $b \in A$. Then $-b \in -A$. Therefore $-b \leq -a$ which means $b \geq a$. Therefore a is a maximum for A. (4 **points**)

Comment: Part (b) relates maxima and minima.

(c) Suppose that a_1, a_2 are minima for A. Then $-a_1, -a_2$ are maxima for -A by part (b). Therefore $-a_1 = -a_2$ by part (a). From this equation $a_1 = a_2$ follows. Thus A has at most one minimum. (6 points)

2. (20 points total) We investigate when $A \cup B$ has a maximum.

(a) Suppose $A, B \subseteq \mathbf{R}$ and $A \cup B$ has a maximum c. Since $c \in A \cup B$, by definition $c \in A$ or $c \in B$.

Assume first of all that $c \in A$ (the first set listed in $A \cup B$). Let $a \in A$. Since $a \in A \cup B$, $a \leq c$. Therefore c is a maximum for A. If $c \notin A$ then $c \in B$. As $A \cup B = B \cup A$, and thus c is a maximum for $B \cup A$, the preceding argument shows that c is a maximum for B. (8 points)

(b) Suppose that $a \in A$ is a maximum for A and $b \in B$ is a maximum for B. Let c be the maximum of a, b. Since $a, b \in A \cup B$, and c = a or c = b, it follows that $c \in A \cup B$.

Suppose that $d \in A \cup B$. Then $d \in A$, in which case $d \leq a \leq c$ and hence $d \leq c$, or $d \in B$, in which case $d \leq b \leq c$, and consequently $d \leq c$. Therefore c is a maximum for $A \cup B$. (12 points)

Comment: Problems 1 and 2 are good exercises in simple proofs, ones which follow from definitions and a few basic axioms.

3. (20 points total)

(a) From the table

$x \in A$	$x \in B$	$x \in A$	$x \in B$	$x \in A \cap B$
Т	Т	Т	Т	Т
Т	F	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	Т	F	Т	\mathbf{F}
\mathbf{F}	\mathbf{F}	F	\mathbf{F}	\mathbf{F}

we derive the table

$x \in A$	$x \in B$	$\chi_A(x)$	$\chi_B(x)$	$\chi_{A\cap B}(x)$	$\chi_A(x)\chi_B(x)$
Т	Т	1	1	1	$1 \cdot 1 = 1$
Т	\mathbf{F}	1	0	0	$1 \cdot 0 = 0$
\mathbf{F}	Т	0	1	0	$0{\cdot}1=0$
\mathbf{F}	F	0	0	0	$0 \cdot 0 = 0$

from which we deduce that $\chi_{A\cap B}(x) = \chi_A(x)\chi_B(x)$ for all $x \in U$. Therefore $\chi_{A\cap B} = \chi_A\chi_B$. (7 points)

Comment: The preceding proof is somewhat elaborate; it shows the connection between the tables involved in showing that two sets are equal and the equality of characteristic functions. In any event, a proof should involve various cases. Let $x \in U$. For example; $x \in A$ and $x \notin B$. Thus $\chi_A(x) = 1$ and $\chi_B(x) = 0$ which means $\chi_A \chi_B(x) = \chi_A(x) \chi_B(x) = 1 \cdot 0 = 0$. Now $x \notin B$ means $x \notin A \cap B$. Therefore $\chi_{A \cap B}(x) = 0$. We have shown $\chi_A \chi_B(x) = 0 = \chi_{A \cap B}(x)$; hence $\chi_A \chi_B(x) = \chi_{A \cap B}(x)$ in this case. (It would not be correct to write $\chi_A \chi_B = \chi_{A \cap B}$ to summarize this case.) This comment applies to part (b) and to part (a) of Problem 4 as well.

Comment: Some solutions were of the form: Case 1 ... Therefore for all $x \in U$, $\chi_{A \cap B}(x) = 1$ if and only if $\chi_A \chi_B(x) = 1$. Case 2 Therefore for all $x \in U$, $\chi_{A \cap B}(x) = 0$ if and only if $\chi_A \chi_B(x) = 0$. The conclusion of Case 2 is equivalent to conclusion of Case 1 as "P if and only if Q" is logically equivalent to "(not P) if and only if (not Q)"; consider the contrapositives. Thus Case 1 (or Case 2) is sufficient for showing that $\chi_{A \cap B} = \chi_A \chi_B$.

(b) From the table

$$\begin{array}{c|ccc} x \in A & x \in A & x \in A^c \\ \hline T & T & F \\ F & F & T \\ \end{array}$$

we derive the table

$$\begin{array}{c|ccccc} x \in A & \chi_A(x) & \chi_{A^c}(x) & 1 - \chi_A(x) \\ \hline T & 1 & 0 & 1 - 1 = 0 \\ F & 0 & 1 & 1 - 0 = 1 \end{array}$$

which shows that $\chi_{A^c}(x) = 1 - \chi_A(x)$ for all $x \in U$. Therefore $\chi_{A^c} = 1 - \chi_A$. (7 points)

(c) Note that $A - B = A \cap B^c$ (a short proof would be good). Thus

$$\chi_{A-B} = \chi_{A\cap B^c} = \chi_A \chi_{B^c} = \chi_A (1-\chi_B).$$

(6 points)

4. (20 points total)

(a) Let $x \in U$. From the table

$x \in A$	$x \in B$	$x \in A$	$x \in B$	$x\in A{\cap}B$	$x \in A \cup B$
Т	Т	Т	Т	Т	Т
Т	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	Т
\mathbf{F}	Т	F	Т	\mathbf{F}	Т
F	\mathbf{F}	F	F	\mathbf{F}	\mathbf{F}

we derive the table

$x \in A$	$x \in B$	$\chi_A(x)$	$\chi_B(x)$	$\chi_{A\cap B}(x)$	$\chi_{A\cup B}(x)$	$\chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$
Т	Т	1	1	1	1	1 + 1 - 1 = 1
Т	F	1	0	0	1	1 + 0 - 0 = 1
F	Т	0	1	0	1	0 + 1 - 0 = 1
F	F	0	0	0	0	0 + 0 - 0 = 0

which shows that $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x)$ for all $x \in U$. Therefore $\chi_{A\cup B} = \chi_A + \chi_B - \chi_{A\cap B}$. (8 points)

(b) By part (b) of Problem 3 and part (a)

$$\chi_{(A\cup B)^c} = 1 - \chi_{A\cup B} = 1 - \chi_A - \chi_B + \chi_A \chi_B$$

and by parts (a) and (b) of Problem 3

$$\chi_{A^c \cap B^c} = \chi_{A^c} \chi_{B^c} = (1 - \chi_A)(1 - \chi_B) = 1 - \chi_A - \chi_B + \chi_A \chi_B.$$

Thus $\chi_{(A\cup B)^c} = \chi_{A^c \cap B^c}$ which implies $(A \cup B)^c = A^c \cap B^c$. (12 points)

Comment: If one of De Morgan's laws (they are equivalent to each other) was used to prove part (a), then one can not *prove* the conclusion of part (b) as required. For then the proof would be a tautology; De Morgan's Law implies De Morgan's Law.

5. (20 points total) In each case we compute D(a) for the smaller value of a of the pair. Note that if 0 < b < a and divides a then $b \le a/2$.

(a) $D(22) = \{1, 2, 11, 22, -1, -2, -11, -22\}$. Thus the greatest common divisor of 22 and 234 is 1, 2, 11, or 22. Since 2 divides 234 and 11 does not, and therefore 22 does not, the greatest common divisor of 22 and 234 is 2. (7 points)

(b) $D(39) = \{1, 3, 13, 39, -1, -3, -13\}$. Thus the greatest common divisor of 39 and 385 is 1, 3, 13, or 39. Since 1 divides 385 and 3, 13 do not, and therefore 39 does not, the greatest common divisor of 39 and 385 is 1. (7 **points**)

(c) $D(16) = \{1, 2, 4, 8, 16, -1, -2, -4, -8, -16\}$. Thus the greatest common divisor of 16 and 120 is 1, 2, 4, 8, or 16. Since 8 divides 120 and 16 does not, 8 is the greatest common divisor of 16 and 120. (6 points)