1. (20 points total) The number of m-element subset of an n-element set, where $0 \leq m \leq n$, is $\binom{n}{m}=\frac{n!}{m!(n-m)!}$.
(a) $\binom{10}{6}=\frac{10!}{6!4!}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1}=10 \cdot 3 \cdot 7=210 .(3$ points $)$
(b) Since two particular individuals are to be included on the committee, these committees are formed by choosing $6-2=4$ from the remaining $10-$ $2=8$. Thus the number is $\binom{10-2}{6-2}=\binom{8}{4}=\frac{8!}{4!4!}=\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}=7 \cdot 2 \cdot 5=70$.

(3 points)

(c) Since two particular individuals are to be excluded from the committee, these committees are formed by choosing 6 from the remaining $10-2=8$. Thus the number is $\binom{10-2}{6}=\binom{8}{6}=\frac{8!}{6!2!}=\frac{8 \cdot 7}{2 \cdot 1}=4 \cdot 7=28$. (3 points)
(d) See part (c). Thus the number is $\binom{10-1}{6}=\binom{9}{6}=\frac{9!}{6!3!}=\frac{9 \cdot 8 \cdot 7}{3 \cdot 2 \cdot 1}=3 \cdot 4 \cdot 7=84$.

(3 points)

(e) Let X be the set of committees of 6 with the first individual excluded and Y be the set of committees of 6 with the second excluded. Then $X \cup Y$ is the set of committees with one or the other excluded and $X \cap Y$ is the set of committees with both excluded. Thus
$|X \cup Y|=|X|+|Y|-|X \cap Y|$ (4 points) $=84+84-28=140$. (4 points)
2. ($\mathbf{2 0}$ points total) This exercise is best done by systematic listings.
(a) Isomorphisms $f:\{3,5,7\} \longrightarrow\{3,5,7\}$:

$$
\begin{array}{r|lll}
x & 3 & 5 & 7 \\
\hline f_{1}(x) & 3 & 5 & 7
\end{array} \quad \begin{array}{r|rrr}
x & 3 & 5 & 7 \\
\hline f_{2}(x) & 3 & 7 & 5
\end{array}
$$

$$
\begin{array}{r|lll}
x & 3 & 5 & 7 \\
\hline f_{3}(x) & 5 & 3 & 7 \\
x & 3 & 5 & 7 \\
\hline f_{5}(x) & 7 & 3 & 5
\end{array} \quad \begin{array}{r|rrr}
x & 3 & 5 & 7 \\
\hline f_{4}(x) & 5 & 7 & 3 \\
x & 3 & 5 & 7 \\
\hline f_{6}(x) & 7 & 5 & 3
\end{array}
$$

Note that each of these functions is its own inverse, except for f_{4} and f_{5} which are inverses of each other. (8 points)
(b) Surjections $f:\{3,5,7\} \longrightarrow\{a, b\}:$

$$
\begin{array}{r|lll}
x & 3 & 5 & 7 \\
\hline f_{1}(x) & a & b & b
\end{array} \quad \begin{array}{r|r|lll}
x & 3 & 5 & 7 \\
x & 3 & 5 & 7 \\
\hline f_{4}(x) & b & b & a & b
\end{array} \quad \begin{array}{r|rll}
x & a
\end{array} \quad \begin{array}{rllll}
x & 3 & 5 & 7 \\
\hline f_{3}(x) & b & b & a \\
f_{5}(x) & a & b & a
\end{array} \quad \begin{array}{r|rrr}
x & 3 & 5 & 7 \\
\hline f_{6}(x) & a & a & b
\end{array}
$$

(6 points)

(c) Injections $f:\{a, b\} \longrightarrow\{3,5,7\}$:

$$
\begin{array}{r|rl}
x & a & b \\
\hline f_{1}(x) & 3 & 5
\end{array} \quad \begin{array}{r|rrr}
x & a & b \\
\hline x & a & b \\
\hline f_{2}(x) & 3 & 7 \\
\hline f_{3}(x) & 5 & 3
\end{array} \quad \begin{array}{r|rr}
x & a & b \\
\hline x & a & b \\
\hline f_{4}(x) & 5 & 7 \\
\hline f_{5}(x) & 7 & 3
\end{array} \quad \begin{array}{r|rr}
& x & a \\
\hline f_{6}(x) & 7 & 5
\end{array}
$$

(6 points)

3. ($\mathbf{2 0}$ points total) Let X be the set of residents of this small town.
(a) For $x \in X$ let $f(x)$ be the number of denominations resident x is carrying. Then $f(x) \in\{0,1, \ldots, 6\}$ as there are 6 denominations. The question can be rephrased as how large does $|X|$ have to be to guarantee that $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1} \neq x_{2}$; that is for f not to be injective. Answer: $|X|>7$. (10 points)
(b) Let $f(x)$ be the set of types of denominations resident x is carrying. Then $f(x) \in P(\{\$ 1, \$ 5, \$ 10, \$ 20, \$ 50, \$ 100\})$ which has $2^{6}=64$ elements. In light of the solution to part (a), $|X|>64$. (10 points)
4. (20 points total) f is surjective. Suppose $n \in \mathbf{Z}^{+}$. If $n=2 m$ for some $m \in \mathbf{Z}$, then $m>0$ and thus $f(m)=2 m=n$ by definition of f. If $n=2 m+1$ for some $m \in \mathbf{Z}$, then $m \geq 0$ which means $-m \leq 0$ and $f(-m)=-2(-m)+1=2 m+1=n$ by definition of f. We have shown that f is surjective. (8 points)
f is injective. Let $n, n^{\prime} \in \mathbf{Z}$ and suppose that $f(n)=f\left(n^{\prime}\right)$.
Case 1: $f(n)$ is even. Then so is $f\left(n^{\prime}\right)$ and thus $n, n^{\prime}>0$ and $2 n=f(n)=$ $f\left(n^{\prime}\right)=2 n^{\prime}$. But $2 n=2 n^{\prime}$ implies $n=n^{\prime}$. (6 points)

Case 2: $f(n)$ is not even. Consequently $f(n)$ is odd. Then so is $f\left(n^{\prime}\right)$ and thus $n, n^{\prime} \leq 0$ and $-2 n+1=f(n)=f\left(n^{\prime}\right)=-2 n^{\prime}+1$. But then $2(-n)+1=2\left(-n^{\prime}\right)+1$ which implies $n=n^{\prime}$. (6 points)

We have shown in all cases that $f(n)=f\left(n^{\prime}\right)$ implies $n=n^{\prime}$. Therefore f is injective.
5. (20 points total) The Principle of Inclusion-Exclusion: If X, Y are finite sets then $|X \cup Y|=|X|+|Y|-|X \cap Y|$.
(a) Using DeMorgan's Law $\left|A^{c} \cap B^{c}\right|=\left|(A \cup B)^{c}\right|=|U|-|A \cup B|$. (4 points) Since $|A \cup B|=|A|+|B|-|A \cap B|=8+7-3=12$ (4 points) and $|U|=21$, $\left|A^{c} \cap B^{c}\right|=21-12=9$. (2 points)
(b) Let S and C be the sets of square tiles and circular tiles respectively, and let Let R and G be the sets of red tiles and green tiles respectively. Let U be the set of tiles. Then $S \cup C=U=G \cup R$ and these are disjoint unions. Thus by the Addition Principle (a special case of the Inclusion-Exclusion Principle)

$$
|S|+|C|=|U|=|G|+|R| .
$$

Since we are given that $|U|=22,|S|=9$, and $|R|=11$, we conclude that $|C|=13$ and $|G|=11$.
(i) $|S \cup G|=|S|+|G|-|S \cap G|=9+11-6=14$ (3 points) as $|S \cap G|=6$ (given).
(ii) $S=(S \cap G) \cup(S \cap R)$ and is a disjoint union. Therefore

$$
|S|=|S \cap G|+|S \cap R|,
$$

or $9=6+|S \cap R|$ which means $|S \cap R|=3$.
Now $R=(R \cap S) \cup(R \cap C)$ and is a disjoint union. Therefore

$$
|R|=|S \cap R|+|C \cap R|
$$

or $11=3+|C \cap R|$ which means $|C \cap R|=8$. (3 points)
(iii) $|C \cup R|=|C|+|R|-|C \cap R|=13+11-8=16$. (4 points)

