1. (25 points total)

(a) Suppose n is a perfect square. Then $n=a^{2}$ for some $a \in \mathbf{Z}$. Write $a=5 \ell+r$, where $\ell, r \in \mathbf{Z}$ and $0 \leq r<5$. (3 points) Now

$$
n=a^{2}=(5 \ell+r)^{2}=5^{2} \ell^{2}+2 \cdot 5 \ell r+r^{2}=5\left(5 \ell^{2}+2 \ell r\right)+r^{2} .(3 \text { points })
$$

If $r=0,1$, or 2 then $n=5 m, 5 m+1$, or $5 m+4$ respectively with $m=$ $5 \ell^{2}+2 \ell r$. (3 points) If $r=3$ then $r^{2}=9=5 \cdot 1+4$ so $n=5 m+4$, where $m=5 \ell^{2}+2 \ell r+1$. (3 points) If $r=4$ then $r^{2}=16=5 \cdot 3+1$ so $n=5 m+1$, where $m=5 \ell^{2}+2 \ell r+3$. ($\mathbf{3}$ points)
(b) $288=5 \cdot 57+3$; thus 288 is not a perfect square by part (a). (5 points)
(c) $2369=5 \cdot 473+4$; thus the test for perfect square by part (a) is inconclusive. However $2369=3 \cdot 789+2$; thus 2369 is not a perfect square by Proposition 15.2.3. (5 points)
2. (25 points total) Suppose that $n \in \mathbf{Z}$ and 7 divides n^{2}. Write $n=7 m+r$, where $m, r \in \mathbf{Z}$ and $0 \leq r<7$. Then $n^{2}=(7 m+r)^{2}=7^{2} m^{2}+2 \cdot 7 m r+r^{2}=$ $7\left(7 m^{2}+2 m r\right)+r^{2}$. Since 7 divides n^{2} necessarily 7 divides r^{2}. ($\mathbf{1 5}$ points) Using the table

$$
\begin{array}{r|rrrrrrr}
r & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline r^{2} & 0 & 1 & 4 & 9 & 16 & 25 & 36
\end{array}
$$

we see that 7 divides r^{2} only when $r=0$. Therefore $r=0$ and $n=7 m$. (10 points)
3. (25 points total) (a) $293=27 \cdot 10+23 ; q=10$ and $r=23$ ($\mathbf{1 0}$ points)
(b) $-2931=17 \cdot(-173)+10 ; q=-173$ and $r=10$. (15 points)
4. (25 points total)
(a)

$$
\begin{aligned}
\mathbf{8 9} & =\mathbf{1 7} \cdot 5+\mathbf{4} \\
\mathbf{1 7} & =4 \cdot 4+\mathbf{1} \\
\mathbf{4} & =\mathbf{1} \cdot 4+0
\end{aligned}
$$

Therefore the greatest common divisor of 89 and 17 is 1 . ($\mathbf{1 5}$ points) (b)

$$
\begin{aligned}
298 & =8 \cdot 37+2 \\
8 & =2 \cdot 4+0
\end{aligned}
$$

Therefore the greatest common divisor of 298 and 8 is 2. ($\mathbf{1 0}$ points)

