1. 20 points total We first note that $n^{3}<-2 n^{2}+15 n$ is equivalent to $n(n+5)(n-3)=$ $n^{3}+2 n-15 n<0$.
(a) Since $0<n<3$, and is an integer, $n=1,2$.

Case 1: $n=1$. Here $n(n+5)(n-3)=1(6)(-2)=-12<0$. (3 points)
Case 2: $n=2$. Here $n(n+5)(n-3)=2(7)(-1)=-14<0$. ($\mathbf{3}$ points)
(b) A "working backwards" solution is:

$$
\begin{aligned}
& n^{3}<-2 n^{2}+15 n \\
& n^{3}+2 n-15 n<0 \\
& n(n+5)(n-3)<0 \\
& n, n+5>0, n-3<0 \\
& n>0, n-3<0 \\
& 0<n<3 . \quad \text { (8 points) }
\end{aligned}
$$

(c) We have noted that $n^{3}<-2 n^{2}+15 n$ is equivalent to $n(n+5)(n-3)<0$. The latter is not the case if one of the factors is zero; that is if $n=0,-5$, or 3 . Recalling a bit of calculus this suggests the various other cases.

Case 1: $n<-5$. Here $n<0, n+5<0$, and $n-3<0$. Therefore the expression $n(n+5)(n-3)$ is negative.

Case 2: $-5<n<0$. Here $n<0, n+5>0$, and $n-3<0$. Therefore the expression $n(n+5)(n-3)$ is positive.
Case 3: $0<n<3$. Here $n>0, n+5>0$, and $n-3<0$. Therefore the expression $n(n+5)(n-3)$ is negative.
Case 4: $3<n$. Here $n>0, n+5>0, n-3>0$. Therefore the expression $n(n+5)(n-3)$ is positive.

Combining the results of the various cases we see that $n^{3}<-2 n^{2}+15 n$ exactly when $n<-5$ or $0<n<3$. (6 points)
2. 20 points total Note that $a^{2} \geq 7 a$ is equivalent to $a(a-7)=a^{2}-7 a \geq 0$.
(a) Suppose the hypothesis $a^{2} \geq 7 a$ is true and the conclusion $a \leq 0$ or $a \geq 7$ is false, that is $0<a<7$. Since $a>0$ and $a<7$ necessarily $a^{2}<7 a$, a direct contradiction of the hypothesis. Therefore the conclusion must be true. (6 points)
(b) We have noted that $a^{2} \geq 7 a$ is equivalent to $a(a-7) \geq 0$. This is equivalent one of three cases:

Case 1: $a=0$ or $a=7$. In either case $a \leq 0$ or $7 \leq a$. (2 points)
Case 2: $a, a-7>0$. This is the same as $a>7$. Thus $a \leq 0$ or $7 \leq a$. (3 points)
Case 3: $a, a-7<0$. This is the same as $a<0$. Thus $a \leq 0$ or $7 \leq a$. (3 points)
(c) " $0<a<7$ implies $a^{2}<7 a$ "; the translation of "not ($a \leq 0$ or $a \geq 7$) implies not ($a^{2} \geq 7 a$)". (6 points)
3. $\mathbf{2 0}$ points total Note that $a^{2}-12 a+35<0$ is equivalent to $(a-5)(a-7)<0$.
(a) Suppose the hypothesis $a^{2}-12 a+35<0$ is true and the conclusion $5 \leq a<7$ is false, that is $a<5$ or $a \geq 7$.
Case 1: $a<5$. Then $a-5, a-7<0$ which means that $(a-5)(a-7)>0$, a contradiction. (4 points)
Case 2: $a \geq 7$. Then $a-5>0, a-7 \geq 0$ which means that $(a-5)(a-7) \geq 0$ a contradiction. (4 points)

Therefore the conclusion must be true.
(b) We have noted that $a^{2}-12 a+35<0$ is equivalent to $(a-5)(a-7)<0$. Thus one of the two factors must be positive and the other negative.
Case 1: $a-5>0, a-7<0$. Thus $5<a<7$ which means $5<a \leq 7$. (3 points)
Case 2: $a-5<0, a-7>0$. Thus $a<5$ and $7<a$. This case is not possible. (3 points)
(c) The converse is " $5 \leq a<7$ implies $a^{2}-12 a+35<0$ ". This false. Take $a=5$. Then $a^{2}-12 a+35=0$. (6 points)
4. 20 points total An integer n is even if $n=2 m$ for some integer m and is odd if $n=2 m+1$ for some integer m.
(a) By cases.

Case 1: Both n, n^{\prime} even. Then $n=2 m$ and $n^{\prime}=2 m^{\prime}$ for some integers m, m^{\prime}. Thus $n+n^{\prime}=2 m+2 m^{\prime}=2\left(m+m^{\prime}\right)$ is even. ($\mathbf{3}$ points)
Case 2: Both n, n^{\prime} odd. Then $n=2 m+1$ and $n^{\prime}=2 m^{\prime}+1$ for some integers m, m^{\prime}. Thus $n+n^{\prime}=(2 m+1)+\left(2 m^{\prime}+1\right)=2\left(m+m^{\prime}+1\right)$ is even. (3 points)
Case 3: n is even and n^{\prime} odd. Then $n=2 m$ and $n^{\prime}=2 m^{\prime}+1$ for some integers m, m^{\prime}. Thus $n+n^{\prime}=2 m+\left(2 m^{\prime}+1\right)=2\left(m+m^{\prime}\right)+1$ is odd. (3 points)
Case 4: n odd and n^{\prime} even. Then $n+n^{\prime}=n^{\prime}+n$ is odd by Case 3. ($\mathbf{1}$ points)
(b) By cases.

Case 1: n even. Then $n=2 m$ for some integer m. Therefore

$$
n^{2}+5 n=(2 m)^{2}+5(2 m)=2\left(2 m^{2}+5 m\right)
$$

is even. (5 points)

Case 2: n odd. Then $n=2 m+1$ for some integer m. Therefore

$$
n^{2}+5 n=(2 m+1)^{2}+5(2 m+1)=\left(4 m^{2}+4 m+1\right)+5(2 m+1)=2\left(2 m^{2}+7 m+1\right)
$$

is even. (5 points)
5. 20 points total Here is a formal proof. Let $P(n)$ be the statement " $n^{2}+5 n$ is even", $n \geq 1$. $\mathrm{P}(1)$ is true since $n^{2}+5 n=6$ is even. (6 points)
Suppose that $n \geq 1$ and $\mathrm{P}(\mathrm{n})$ is true. Then $n^{2}+5 n=2 m$ for some integer m. We will show that $\mathrm{P}(\mathrm{n}+1)$, that is " $(n+1)^{2}+5(n+1)$ is even", is true. The calculation

$$
(n+1)^{2}+5(n+1)=\left(n^{2}+2 n+1\right)+(5 n+5)=\left(n^{2}+5 n\right)+2(n+3)=2(m+n+3)
$$

shows that $\mathrm{P}(\mathrm{n}+1)$ is true. We have shown that $\mathrm{P}(\mathrm{n})$ implies $\mathrm{P}(\mathrm{n}+1)$ for all $n \geq 1$. (10 points). Therefore $\mathrm{P}(\mathrm{n})$ is true for all $n \geq 1$ by induction. (4 points)

