1. 20 points total We prove the formula $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$ holds for all $n \geq 1$ by induction on n.

Suppose that $n=1$. Then $\sum_{i=1}^{n} i^{3}=\sum_{i=1}^{1} i^{3}=1^{3}=1$ and $\frac{n^{2}(n+1)^{2}}{4}=\frac{1^{2}(1+1)^{2}}{4}=\frac{1 \cdot 4}{4}=1$. Therefore the formula holds when $n=1$. (5 points)

Suppose that $n \geq 1$ and the assertion holds for n; that is $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$. We will show that the assertion holds for $n+1$; that is $\sum_{i=1}^{n+1} i^{3}=\frac{(n+1)^{2}((n+1)+1)^{2}}{4}$, or equivalently $\sum_{i=1}^{n+1} i^{3}=\frac{(n+1)^{2}(n+2)^{2}}{4}$. Since

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{3} & =\sum_{i=1}^{n} i^{3}+(n+1)^{3} \quad(5 \text { points }) \\
& =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
& =\frac{n^{2}(n+1)^{2}+4(n+1)^{3}}{4} \\
& =\frac{(n+1)^{2}\left[n^{2}+4(n+1)\right]}{4} \\
& =\frac{(n+1)^{2}\left[n^{2}+4 n+4\right]}{4} \quad(5 \text { points }) \\
& =\frac{(n+1)^{2}(n+1)^{2}}{4} . \quad(5 \text { points })
\end{aligned}
$$

We have shown that if the formula is true for $n \geq 1$ then it is true for $n+1$. Therefore the formula is true for all $n \geq 1$.
2. 20 points total Part (a) is to make part (b) easier.
(a) The statement we are to prove is $n+1 \leq 2^{n-1}$ for $n \geq 3$. When $n=3, n+1=4=$ $2^{2}=2^{3-1}=2^{n-1}$; thus the statement is true in the base case. (2 points)

Suppose $n \geq 3$ and the statement is true. The statement for $n+1$ is $(n+1)+1<2^{(n+1)-1}$ or $(n+1)+1<2^{n}$. The calculation

$$
(n+1)+1<(n+1)+(n+1) \leq 2^{n-1}+2^{n-1}=2 \cdot 2^{n-1}=2^{n} \quad(\mathbf{3} \text { points })
$$

shows that the statement holds for $n+1$. Therefore the statement is true for all $n \geq 3$. (3 points)
(b) The statement we are to prove is $n^{2}<2^{n}$ for $n>4$, or equivalently $n \geq 5$. When $n=5, n^{2}=5^{2}=25<32=2^{5}$; thus the statement holds for $n=5$, the base case. (2 points)

Suppose that $n \geq 5$ and the statement is true. The statement for $n+1$ is $(n+1)^{2}<2^{n+1}$. Using part (a) (2 points) we calculate

$$
(n+1)^{2}=n^{2}+2 n+1<n^{2}+2(n+1)<2^{n}+2 \cdot 2^{n-1}=2 \cdot 2^{n}=2^{n+1} \quad(\mathbf{3} \text { points })
$$

which means that the statement is true for $n+1$. Thus the statement holds for all $n \geq 5$. (2 points)
(c) $n=1: 1^{2}<2=2^{1}$, true; $n=2: 2^{2}=4 \nless 4=2^{2}$, false; $n=3: 3^{2}=9 \nless 8=2^{3}$, false; $n=34: 4^{2}=16 \nless 16=2^{4}$, false; $n \geq 5$, true by part (a). $n=2,3,4$. (3 points)
3. 20 points total " $A \cup B \subseteq A$ only if $B \subseteq A$ " is the same as " $A \cup B \subseteq A$ implies $B \subseteq A$ ". Assume that $A \cup B \subseteq A$. The implication follows once we show $B \subseteq A$. Let $x \in B$. (5 points) Then $x \in A$ or $x \in B$ which means $x \in A \cup B$ by definition of union. (5 points) Since $A \cup B \subseteq A, x \in A$ by definition of set inclusion. We have shown that $x \in B$ implies $x \in A$. (5 points) Therefore $B \subseteq A$. (5 points)
4. 40 points total " $B \subseteq A \cap B$ if and only if $B \subseteq A$ ".

Only if: ' $B \subseteq A \cap B$ implies $B \subseteq A$ '. (5 points)
Assume $B \subseteq A \cap B$ and let $x \in B$. (5 points) Since $B \subseteq A \cap B, x \in A \cap B$. Thus $x \in A$ and $x \in B$; in particular $x \in A$. (5 points) We have shown $x \in B$ implies $x \in A$. Therefore $B \subseteq A$. (5 points)

If: " $B \subseteq A$ " implies " $B \subseteq A \cap B$. (5 points)
Assume that $B \subseteq A$ and let $x \in B$. (5 points) Then $x \in A$, since $x \in B$, which means $x \in A$ and $x \in B$. Therefore $x \in A \cap B$. (5 points) We have shown $x \in B$ implies $x \in A \cap B$. Therefore $B \subseteq A \cap B$. (5 points)

