1. 20 points total We prove the formula $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$ holds for all $n \ge 1$ by induction on n.

Suppose that n = 1. Then $\sum_{i=1}^{n} i^3 = \sum_{i=1}^{1} i^3 = 1^3 = 1$ and $\frac{n^2(n+1)^2}{4} = \frac{1^2(1+1)^2}{4} = \frac{1\cdot 4}{4} = 1$. Therefore the formula holds when n = 1. (5 points)

Suppose that $n \ge 1$ and the assertion holds for n; that is $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$. We will show that the assertion holds for n + 1; that is $\sum_{i=1}^{n+1} i^3 = \frac{(n+1)^2((n+1)+1)^2}{4}$, or equivalently $\sum_{i=1}^{n+1} i^3 = \frac{(n+1)^2(n+2)^2}{4}$. Since $\sum_{i=1}^{n+1} i^3 = \sum_{i=1}^{n} i^3 + (n+1)^3 \quad (5 \text{ points})$ $= \frac{n^2(n+1)^2}{4} + (n+1)^3$ $= \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$ $= \frac{(n+1)^2[n^2 + 4(n+1)]}{4}$ $= \frac{(n+1)^2[n^2 + 4n + 4]}{4} \quad (5 \text{ points})$ $= \frac{(n+1)^2(n+1)^2}{4}. \quad (5 \text{ points})$

We have shown that if the formula is true for $n \ge 1$ then it is true for n+1. Therefore the formula is true for all $n \ge 1$.

2. 20 points total Part (a) is to make part (b) easier.

(a) The statement we are to prove is $n + 1 \leq 2^{n-1}$ for $n \geq 3$. When n = 3, $n + 1 = 4 = 2^2 = 2^{3-1} = 2^{n-1}$; thus the statement is true in the base case. (2 points)

Suppose $n \ge 3$ and the statement is true. The statement for n+1 is $(n+1)+1 < 2^{(n+1)-1}$ or $(n+1)+1 < 2^n$. The calculation

$$(n+1)+1 < (n+1) + (n+1) \le 2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$$
 (3 points)

shows that the statement holds for n + 1. Therefore the statement is true for all $n \ge 3$. (3 points)

(b) The statement we are to prove is $n^2 < 2^n$ for n > 4, or equivalently $n \ge 5$. When n = 5, $n^2 = 5^2 = 25 < 32 = 2^5$; thus the statement holds for n = 5, the base case. (2 points)

Suppose that $n \ge 5$ and the statement is true. The statement for n+1 is $(n+1)^2 < 2^{n+1}$. Using part (a) (2 points) we calculate

$$(n+1)^2 = n^2 + 2n + 1 < n^2 + 2(n+1) < 2^n + 2 \cdot 2^{n-1} = 2 \cdot 2^n = 2^{n+1}$$
 (3 points)

which means that the statement is true for n + 1. Thus the statement holds for all $n \ge 5$. (2 points)

(c) n = 1: $1^2 < 2 = 2^1$, true; n = 2: $2^2 = 4 \not< 4 = 2^2$, false; n = 3: $3^2 = 9 \not< 8 = 2^3$, false; n = 34: $4^2 = 16 \not< 16 = 2^4$, false; $n \ge 5$, true by part (a). n = 2, 3, 4. (3 points)

3. 20 points total " $A \cup B \subseteq A$ only if $B \subseteq A$ " is the same as " $A \cup B \subseteq A$ implies $B \subseteq A$ ". Assume that $A \cup B \subseteq A$. The implication follows once we show $B \subseteq A$. Let $x \in B$. (5 points) Then $x \in A$ or $x \in B$ which means $x \in A \cup B$ by definition of union. (5 points) Since $A \cup B \subseteq A$, $x \in A$ by definition of set inclusion. We have shown that $x \in B$ implies $x \in A$. (5 points) Therefore $B \subseteq A$. (5 points)

4. 40 points total " $B \subseteq A \cap B$ if and only if $B \subseteq A$ ".

Only if: ' $B \subseteq A \cap B$ implies $B \subseteq A$ ''. (5 points)

Assume $B \subseteq A \cap B$ and let $x \in B$. (5 points) Since $B \subseteq A \cap B$, $x \in A \cap B$. Thus $x \in A$ and $x \in B$; in particular $x \in A$. (5 points) We have shown $x \in B$ implies $x \in A$. Therefore $B \subseteq A$. (5 points)

If: " $B \subseteq A$ " implies " $B \subseteq A \cap B$. (5 points)

Assume that $B \subseteq A$ and let $x \in B$. (5 points) Then $x \in A$, since $x \in B$, which means $x \in A$ and $x \in B$. Therefore $x \in A \cap B$. (5 points) We have shown $x \in B$ implies $x \in A \cap B$. Therefore $B \subseteq A \cap B$. (5 points)