1. 20 points total Part (b) is a direct consequence of part (a).

(a) Suppose that $C \subseteq A, B$. Let $x \in C$. Then $x \in A$ since $C \subseteq A$ and $x \in B$ since $C \subseteq B$. (2 points) Since $x \in A$ and $x \in B$ we conclude $x \in A \cap B$. (2 points) We have shown that $x \in C$ implies $x \in A \cap B$. (2 points) Therefore $C \subseteq A \cap B$. (2 points)

(b) Suppose that C is a set, $n \ge 1$ and A_1, \ldots, A_n are sets such that $C \subseteq A_1, \ldots, A_n$. Then $C \subseteq A_1 \cap \cdots \cap A_n$. We prove this assertion by induction on n.

Suppose that n = 1. Then $A_1 \cap \cdots \cap A_n = A_1$. Since $C \subseteq A_1$ by assumption, $C \subseteq A_1 \cap \cdots \cap A_n$. Thus the assertion is true for n = 1. (2 points)

Suppose that $n \ge 1$ and the assertion holds for n (induction hypothesis). Let A_1, \ldots, A_{n+1} be sets such that $C \subseteq A_1, \ldots, A_{n+1}$. Then $C \subseteq A_1, \ldots, A_n$ and therefore $C \subseteq A_1 \cap \cdots \cap A_n$ by the induction hypothesis. (4 **points**) Since $C \subseteq A_{n+1}$ by assumption, by part (a)

$$C \subseteq (A_1 \cap \cdots \cap A_n) \cap A_{n+1} = A_1 \cap \cdots \cap A_{n+1}.$$
 (2 points)

We have shown that if the assertion holds for $n \ge 1$ then it holds for n + 1. (2 points) Therefore the assertion holds for all $n \ge 1$. (2 points)

2. 20 points total In tabulated form:

	(a) (b) (c) (d)	$ P(\emptyset) P(\{7\}) P(\{\emptyset\}) P(\{6,9\}) $	$= \{ \emptyset \\ = \{ \emptyset \\ = \{ \emptyset \\ = \{ \emptyset \\ = \{ \emptyset \} \}$	$\left. \left. \left\{ 7 \right\} \right\} \\ , \left\{ 7 \right\} \\ , \left\{ \emptyset \right\} \\ , \left\{ 6 \right\}, \left\{ 9 \right\}, \left\{ 6 \right\} \\$	(5 points (5 points (5 points (5 points (5 points	s) s) s)								
3. 20 points total														
	$x \in A$	A $x \in B$	$x \in C$	$x \in A \cup B$	$x \in (A \cup B) \cup C$	$x\in B\cup C$	$x \in A \cup (B \cup C)$							
	Т	Т	Т	Т	Т	Т	Т							
	Т	Т	F	Т	Т	Т	Т							
	Т	F	Т	Т	Т	Т	Т							
	Т	F	F	Т	Т	F	Т							
	F	Т	Т	Т	Т	Т	Т							
	F	Т	F	Т	Т	Т	Т							
	F	F	Т	F	Т	Т	Т							
	F	\mathbf{F}	F	F	F	F	F							
				-										

(10 points)

Since the columns under $x \in (A \cup B) \cup C$ and $x \in A \cup (B \cup C)$ are identical, $x \in (A \cup B) \cup C$ implies $x \in A \cup (B \cup C)$ (4 points) and $x \in A \cup (B \cup C)$ implies $x \in (A \cup B) \cup C$ (4 points). Therefore $A \cup (B \cup C) = A \cup (B \cup C)$ by definition of equality of sets. (2 points)

4. 20 points total The completed table is

$x \in A$	$x \in B$	$x \in A \cap B$	$x \in (A \cap B)^c$	$x\in A^c$	$x\in B^c$	$x \in A^c {\cup} B^c$	
Т	Т	Т	F	F	F	F	-
Т	F	F	Т	\mathbf{F}	Т	Т	(10 points)
F	Т	F	Т	Т	F	Т	
F	F	F	Т	Т	Т	Т.	

Since the columns under $x \in (A \cap B)^c$ and $x \in A^c \cup B^c$ are identical, $x \in (A \cap B)^c$ implies $x \in A^c \cup B^c$ (4 points) and $x \in A^c \cup B^c$ implies $x \in (A \cap B)^c$ (4 points). Therefore $(A \cap B)^c = A^c \cup B^c$ by definition of equality of sets. (2 points)

5. 20 points total We are assuming that

$$(A^c)^c = A^{cc} = A \tag{1}$$

for all subsets $A \subseteq U$ and that

$$(A \cap B)^c = A^c \cup B^c \tag{2}$$

for all subsets $A, B \subseteq U$.

Let $A, B \subseteq U$. Then applying (2) to A^c and B^c , and then applying (1) gives

$$(A \cup B)^c = ((A^c)^c \cup (B^c)^c)^c \quad (7 \text{ points})$$

= $((A^c \cap B^c)^c)^c \quad (7 \text{ points})$
= $A^c \cap B^c \quad (6 \text{ points}).$