1. 20 points total Part (b) is a direct consequence of part (a).
(a) Suppose that $C \subseteq A, B$. Let $x \in C$. Then $x \in A$ since $C \subseteq A$ and $x \in B$ since $C \subseteq B$. (2 points) Since $x \in A$ and $x \in B$ we conclude $x \in A \cap B$. (2 points) We have shown that $x \in C$ implies $x \in A \cap B$. (2 points) Therefore $C \subseteq A \cap B$. (2 points)
(b) Suppose that C is a set, $n \geq 1$ and A_{1}, \ldots, A_{n} are sets such that $C \subseteq A_{1}, \ldots, A_{n}$. Then $C \subseteq A_{1} \cap \cdots \cap A_{n}$. We prove this assertion by induction on n.

Suppose that $n=1$. Then $A_{1} \cap \cdots \cap A_{n}=A_{1}$. Since $C \subseteq A_{1}$ by assumption, $C \subseteq$ $A_{1} \cap \cdots \cap A_{n}$. Thus the assertion is true for $n=1$. (2 points)

Suppose that $n \geq 1$ and the assertion holds for n (induction hypothesis). Let A_{1}, \ldots, A_{n+1} be sets such that $C \subseteq A_{1}, \ldots, A_{n+1}$. Then $C \subseteq A_{1}, \ldots, A_{n}$ and therefore $C \subseteq A_{1} \cap \cdots \cap A_{n}$ by the induction hypothesis. (4 points) Since $C \subseteq A_{n+1}$ by assumption, by part (a)

$$
C \subseteq\left(A_{1} \cap \cdots \cap A_{n}\right) \cap A_{n+1}=A_{1} \cap \cdots \cap A_{n+1} . \quad(2 \text { points })
$$

We have shown that if the assertion holds for $n \geq 1$ then it holds for $n+1$. (2 points) Therefore the assertion holds for all $n \geq 1$. (2 points)
2. 20 points total In tabulated form:
(a) $P(\emptyset)=\{\emptyset\}$
(b) $P(\{7\})=\{\emptyset,\{7\}\}$
(c) $P(\{\emptyset\})=\{\emptyset,\{\emptyset\}\}$
(d) $P(\{6,9\})=\{\emptyset,\{6\},\{9\},\{6,9\}\}$
3. $\mathbf{2 0}$ points total

$x \in A$	$x \in B$	$x \in C$	$x \in A \cup B$	$x \in(A \cup B) \cup C$	$x \in B \cup C$	$x \in A \cup(B \cup C)$
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	T	T	T
T	F	F	T	T	F	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	F	T	T	T
F	F	F	F	F	F	F

(10 points)
Since the columns under $x \in(A \cup B) \cup C$ and $x \in A \cup(B \cup C)$ are identical, $x \in(A \cup B) \cup C$ implies $x \in A \cup(B \cup C)$ (4 points) and $x \in A \cup(B \cup C)$ implies $x \in(A \cup B) \cup C$ (4 points). Therefore $A \cup(B \cup C)=A \cup(B \cup C)$ by definition of equality of sets. (2 points)
4. $\mathbf{2 0}$ points total The completed table is

$x \in A$	$x \in B$	$x \in A \cap B$	$x \in(A \cap B)^{c}$	$x \in A^{c}$	$x \in B^{c}$	$x \in A^{c} \cup B^{c}$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T.

(10 points)

Since the columns under $x \in(A \cap B)^{c}$ and $x \in A^{c} \cup B^{c}$ are identical, $x \in(A \cap B)^{c}$ implies $x \in A^{c} \cup B^{c}$ (4 points) and $x \in A^{c} \cup B^{c}$ implies $x \in(A \cap B)^{c}$ (4 points). Therefore $(A \cap B)^{c}=A^{c} \cup B^{c}$ by definition of equality of sets. (2 points)
5. $\mathbf{2 0}$ points total We are assuming that

$$
\begin{equation*}
\left(A^{c}\right)^{c}=A^{c c}=A \tag{1}
\end{equation*}
$$

for all subsets $A \subseteq U$ and that

$$
\begin{equation*}
(A \cap B)^{c}=A^{c} \cup B^{c} \tag{2}
\end{equation*}
$$

for all subsets $A, B \subseteq U$.
Let $A, B \subseteq U$. Then applying (2) to A^{c} and B^{c}, and then applying (1) gives

$$
\begin{aligned}
(A \cup B)^{c} & =\left(\left(A^{c}\right)^{c} \cup\left(B^{c}\right)^{c}\right)^{c} & & (7 \text { points }) \\
& =\left(\left(A^{c} \cap B^{c}\right)^{c}\right)^{c} & & (7 \text { points }) \\
& =A^{c} \cap B^{c} & & (6 \text { points }) .
\end{aligned}
$$

