Written Homework \# 4

Due at the beginning of class $07 / 11 / 08$

1. We define the intersection of sets A_{1}, \ldots, A_{n} inductively by

$$
A_{1} \cap \cdots \cap A_{n}= \begin{cases}A_{1} & : n=1 \\ \left(A_{1} \cap \cdots \cap A_{n-1}\right) \cap A_{n} & : n>1 .\end{cases}
$$

(a) Suppose that A, B, and C are sets and $C \subseteq A, B$. Show that $C \subseteq A \cap B$.
(b) Suppose that C, A_{1}, \ldots, A_{n} are sets and $C \subseteq A_{1}, \ldots, A_{n}$. Construct a proof by induction that $C \subseteq A_{1} \cap \cdots \cap A_{n}$.
2. Describe the power set of S in the following cases by listing its elements:
(a) $S=\emptyset$;
(b) $S=\{7\}$;
(c) $S=\{\emptyset\} ;$
(d) $S=\{6,9\}$.
3. Let A, B, and C be sets. Complete the following truth table

| $x \in A$ | $x \in B \quad x \in C$ | $x \in A \cup B \quad x \in(A \cup B) \cup C \quad x \in B \cup C \quad x \in A \cup(B \cup C)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

and use it to explain why $(A \cup B) \cup C=A \cup(B \cup C)$.
4. Let U be a universal set and $A, B \subseteq U$. Complete the following truth table

$$
\begin{array}{ll|llll}
x \in A & x \in B & x \in A \cap B \quad x \in(A \cap B)^{c} \quad x \in A^{c} \quad x \in B^{c} \quad x \in A^{c} \cup B^{c} \\
\hline & &
\end{array}
$$

and use it to explain why $(A \cap B)^{c}=A^{c} \cup B^{c}$, one of De Morgan's Laws.
5. Let U be a universal set and $A, B \subseteq U$. Using the fact that $A^{c c}=A$, show that $(A \cap B)^{c}=A^{c} \cup B^{c}$ implies $(A \cup B)^{c}=A^{c} \cap B^{c}$, De Morgan's other law.

