Math 215

Summer 2008

Radford

Written Homework # 5

Due at the beginning of class 07/18/08

1. We define the Cartesian product of sets A_1, \ldots, A_n inductively by

$$A_1 \times \dots \times A_n = \begin{cases} A_1 & : n = 1; \\ (A_1 \times \dots \times A_{n-1}) \times A_n & : n > 1. \end{cases}$$

Suppose that A_1, \ldots, A_n are finite sets. Show, by induction, that $|A_1 \times \cdots \times A_n| = |A_1| \cdots |A_n|$ for $n \ge 1$. (You may assume this is the case for n = 2.)

2. What are the logical relationships between the following statements:

- (a) $\exists a \in A, \exists b \in B, \text{ not } P(a, b);$
- (b) $\forall a \in A, \forall b \in B, P(a, b);$
- (c) $\forall a \in A, \exists b \in B, P(a, b);$
- (d) $\exists a \in A, \forall b \in B, \text{ not } P(a, b)$?

Comment: To show that one statement does not always imply another, supply a specific counterexample. Try $P(a,b) : a^2 = 5$ or $P(a,b) : b^3 = 7$ for example, where $A = B = \mathbf{R}$.

Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be a function and $a, b \in \mathbf{R}$. The very compact definition of $\lim_{x \longrightarrow a} f(x) = b$ is

$$\forall \epsilon > 0, \exists \delta > 0, P(\epsilon, \delta),$$

where

$$P(\epsilon, \delta) : \forall x \in \mathbf{R}, (0 < |x - a| < \delta) \Rightarrow (|f(x) - b| < \epsilon).$$

3. Let $f(x) = \begin{cases} 3x + 5 & : x \neq 4 \\ -10 & : x = 4. \end{cases}$ Prove that $\lim_{x \to 4} f(x) = 17.$

4. We examine what it means for $\lim_{x \to a} f(x)$ not to exist.

(a) Using the compact definition of $\lim_{x \to a} f(x) = b$, express in the same manner "not $(\lim_{x \to a} f(x) = b)$ ". Write "not $P(\epsilon, \delta)$ " explicitly.

(b) Show that $\lim_{x \to 0} f(x) = b$ is false for all $b \in \mathbf{R}$, where $f(x) = \begin{cases} 1 & : x \ge 0 \\ -1 & : x < 0. \end{cases}$

5. Let $f: X \longrightarrow Y$ be a function. Then f is surjective means $\forall y \in Y, \exists x \in X, f(x) = y$.

- (a) In the style of the definition of surjective, express what it means for f not to be surjective.
- (b) Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be defined by $f(x) = x^2 2x + 20$. Show that f(x) is not surjective by showing that the condition of part (a) is satisfied.