Written Homework \# 5

Due at the beginning of class $07 / 18 / 08$

1. We define the Cartesian product of sets A_{1}, \ldots, A_{n} inductively by

$$
A_{1} \times \cdots \times A_{n}= \begin{cases}A_{1} & : n=1 \\ \left(A_{1} \times \cdots \times A_{n-1}\right) \times A_{n} & : n>1\end{cases}
$$

Suppose that A_{1}, \ldots, A_{n} are finite sets. Show, by induction, that $\left|A_{1} \times \cdots \times A_{n}\right|=$ $\left|A_{1}\right| \cdots\left|A_{n}\right|$ for $n \geq 1$. (You may assume this is the case for $n=2$.)
2. What are the logical relationships between the following statements:
(a) $\exists a \in A, \exists b \in B$, not $P(a, b)$;
(b) $\forall a \in A, \forall b \in B, P(a, b)$;
(c) $\forall a \in A, \exists b \in B, P(a, b)$;
(d) $\exists a \in A, \forall b \in B$, not $P(a, b)$?

Comment: To show that one statement does not always imply another, supply a specific counterexample. Try $P(a, b): a^{2}=5$ or $P(a, b): b^{3}=7$ for example, where $A=B=\mathbf{R}$.

Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ be a function and $a, b \in \mathbf{R}$. The very compact definition of $\lim _{x \rightarrow a} f(x)=b$ is

$$
\forall \epsilon>0, \exists \delta>0, P(\epsilon, \delta),
$$

where

$$
P(\epsilon, \delta): \forall x \in \mathbf{R},(0<|x-a|<\delta) \Rightarrow(|f(x)-b|<\epsilon)
$$

3. Let $f(x)=\left\{\begin{aligned} & 3 x+5: \\ &-10: \\ & x=4\end{aligned}\right.$. Prove that $\lim _{x \rightarrow 4} f(x)=17$.
4. We examine what it means for $\lim _{x \rightarrow a} f(x)$ not to exist.
(a) Using the compact definition of $\lim _{x \rightarrow a} f(x)=b$, express in the same manner "not $\left.\lim _{x \rightarrow a} f(x)=b\right)$ ". Write "not $P(\epsilon, \delta)$ " explicitly.
(b) Show that $\lim _{x \rightarrow 0} f(x)=b$ is false for all $b \in \mathbf{R}$, where $f(x)=\left\{\begin{aligned} 1 & : \\ -1 & : \\ : & x<0\end{aligned}\right.$
5. Let $f: X \longrightarrow Y$ be a function. Then f is surjective means $\forall y \in Y, \exists x \in$ $X, f(x)=y$.
(a) In the style of the definition of surjective, express what it means for f not to be surjective.
(b) Let $f: \mathbf{R} \longrightarrow \mathbf{R}$ be defined by $f(x)=x^{2}-2 x+20$. Show that $f(x)$ is not surjective by showing that the condition of part (a) is satisfied.
