Summer 2008

Radford

Written Homework # 6

Due at the beginning of class 07/25/08

Let A be a subset of the real numbers **R**. A maximum for A is a number $a \in A$ such that $a' \leq a$ for all $a' \in A$. A minimum for A is a number $a \in A$ such that $a \leq a'$ for all $a' \in A$. We set $-A = \{-a \mid a \in A\}$.

- 1. Suppose that A is a subset of \mathbf{R} .
 - (a) Show that A has at most one maximum.
 - (b) Let $a \in A$. Show that a is a minimum for A if and only if -a is a maximum for -A.
 - (c) Use parts (a) and (b) to show that A has at most one minimum.
- 2. Suppose that A, B are subsets of **R**.
 - (a) Suppose that $A \cup B$ has a maximum. Show that either A has a maximum or B has a maximum.
 - (b) Suppose that A and B each has a maximum. Show that $A \cup B$ has a maximum.
- 3. Let U be a universal set and $A, B \subseteq U$.
 - (a) Show that $\chi_{A \cap B} = \chi_A \chi_B$.
 - (b) Show that $\chi_{A^c} = 1 \chi_A$.
 - (c) Use parts (a) and (b) to show that $\chi_{A-B} = \chi_A(1-\chi_B)$.
- 4. We continue with Problem 3.

- (a) Show that $\chi_{A\cup B} = \chi_A + \chi_B \chi_{A\cap B}$ ($= \chi_A + \chi_B \chi_A \chi_B$ by part (a) of Problem 3).
- (b) Using the fact that A = B if and only if $\chi_A = \chi_B$, use parts (a) and (b) of Problem 3 and part (a) to prove De Morgan's Law $(A \cup B)^c = A^c \cap B^c$.
- 5. Find the greatest common divisor of
 - (a) 22 and 234;
 - (b) 39 and 385;
 - (c) 16 and 120.