Written Homework \# 6

Due at the beginning of class 07/25/08

Let A be a subset of the real numbers \mathbf{R}. A maximum for A is a number $a \in A$ such that $a^{\prime} \leq a$ for all $a^{\prime} \in A$. A minimum for A is a number $a \in A$ such that $a \leq a^{\prime}$ for all $a^{\prime} \in A$. We set $-A=\{-a \mid a \in A\}$.

1. Suppose that A is a subset of \mathbf{R}.
(a) Show that A has at most one maximum.
(b) Let $a \in A$. Show that a is a minimum for A if and only if $-a$ is a maximum for $-A$.
(c) Use parts (a) and (b) to show that A has at most one minimum.
2. Suppose that A, B are subsets of \mathbf{R}.
(a) Suppose that $A \cup B$ has a maximum. Show that either A has a maximum or B has a maximum.
(b) Suppose that A and B each has a maximum. Show that $A \cup B$ has a maximum.
3. Let U be a universal set and $A, B \subseteq U$.
(a) Show that $\chi_{A \cap B}=\chi_{A} \chi_{B}$.
(b) Show that $\chi_{A^{c}}=1-\chi_{A}$.
(c) Use parts (a) and (b) to show that $\chi_{A-B}=\chi_{A}\left(1-\chi_{B}\right)$.
4. We continue with Problem 3.
(a) Show that $\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A \cap B}\left(=\chi_{A}+\chi_{B}-\chi_{A} \chi_{B}\right.$ by part (a) of Problem 3).
(b) Using the fact that $A=B$ if and only if $\chi_{A}=\chi_{B}$, use parts (a) and (b) of Problem 3 and part (a) to prove De Morgan's Law $(A \cup B)^{c}=A^{c} \cap B^{c}$.
5. Find the greatest common divisor of
(a) 22 and 234 ;
(b) 39 and 385 ;
(c) 16 and 120 .
