1. ($\mathbf{2 0}$ points)
(a) P is the set (subspace) of solutions to the system of linear equations $3 x+2 y-z+5 w=0$ and consists of all vectors in R^{4} perpendicular to \mathbf{u}. (10)
(b) Row reduction yields $x+\frac{2}{3} y-\frac{1}{3} z+\frac{5}{3} w=0$ and thus

$$
\begin{aligned}
x & =-\frac{2}{3} y+\frac{1}{3} z-\frac{5}{3} w \\
y & =1 y+0 z+0 w \\
z & =0 y+1 z+0 w \\
w & =0 y+0 z+1 w
\end{aligned}
$$

which in vector form is

$$
\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=y\left(\begin{array}{r}
-\frac{2}{3} \\
1 \\
0 \\
0
\end{array}\right)+z\left(\begin{array}{c}
\frac{1}{3} \\
0 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{r}
-\frac{5}{3} \\
0 \\
0 \\
1
\end{array}\right) .
$$

Thus a basis for P is

$$
\left\{\left(\begin{array}{r}
-\frac{2}{3} \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
\frac{1}{3} \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
-\frac{5}{3} \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

(10) or clearing fractions

$$
\left\{\left(\begin{array}{r}
-2 \\
3 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{r}
-5 \\
0 \\
0 \\
3
\end{array}\right)\right\} .
$$

Comment: There are many possible answers.
2. (20 points) First some very basic observations about matrix multiplication. Let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ be the standard basis for \mathbf{R}^{n}. Suppose that A is an $m \times n$ matrix (with real coefficients). Then

$$
A \mathbf{e}_{j} \quad \text { is the } j^{\text {th }} \text { column of } A \text {. }
$$

Suppose that A is an $n \times m$ matrix. Then

$$
\mathbf{e}_{i}^{t} A \quad \text { is the } i^{\text {th }} \text { row of } A \text {. }
$$

Now suppose that $m=n$, write $A=\left(a_{i j}\right)$, and consider the bilinear form on \mathbf{R}^{n} defined by

$$
\begin{equation*}
\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u}^{t} A \mathbf{v} \tag{1}
\end{equation*}
$$

for all $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$. Then the calculation

$$
<\mathbf{e}_{i}, \mathbf{e}_{j}>=\mathbf{e}_{i}^{t} A \mathbf{e}_{j}=\mathbf{e}_{i}^{t}\left(A \mathbf{e}_{j}\right)=\mathbf{e}_{i}^{t}\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{n j}
\end{array}\right)=a_{i j},
$$

where the latter is identified with the 1×1 matrix with entry $a_{i j}$, shows that

$$
<\mathbf{e}_{i}, \mathbf{e}_{j}>=a_{i j}
$$

for all $1 \leq i, j \leq n$.
Suppose that $<,>$ is symmetric. Then $a_{i j}=\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=\left\langle\mathbf{e}_{j}, \mathbf{e}_{i}\right\rangle=a_{j i}$ for all $1 \leq i, j \leq n$ shows that A is symmetric.
Comment: Some solutions ended " $\mathbf{u}^{t} A \mathbf{v}=\mathbf{u}^{t} A^{t} \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in \mathbf{R}^{n}$, and therefore $A=A^{t}$." There is a significant gap in this proof.
3. (20 points) Suppose that $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ defines an inner product on \mathbf{R}^{2} by (1). Then A is symmetric by Exercise 4.2.7. Thus $c=b$. Using the solution to Exercise 4.2.7 we observe that

$$
0 \ll \mathbf{e}_{1}, \mathbf{e}_{1}>=a_{11}=a \quad \text { and } \quad 0 \ll \mathbf{e}_{2}, \mathbf{e}_{2}>=a_{22}=d
$$

Since $b=c$ and $a, d \neq 0$ (as they are positive), it follows that

$$
\begin{equation*}
<\binom{x}{y},\binom{x}{y}>=a x^{2}+2 b x y+d y^{2}=a\left(x+\frac{b}{a} y\right)^{2}+\left(d-\frac{b^{2}}{a}\right) y^{2} \tag{2}
\end{equation*}
$$

for all $\binom{x}{y} \in \mathbf{R}^{2}$. By virtue of (2) we have

$$
0 \ll\binom{-b}{a},\binom{-b}{a}>=\left(d-\frac{b^{2}}{a}\right) a^{2}
$$

from which we deduce $d-\frac{b^{2}}{a}>0$, or equivalently $a d-b^{2}>0$, since $a^{2}>0$.
Conversely, suppose that $A=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ where $a, d, a d-b^{2}>0$. Since A is symmetric
(1) defines a symmetric bilinear form on \mathbf{R}^{2}. Let $\binom{x}{y} \in \mathbf{R}^{2}$. Then (2) holds, and the right hand expression is a non-negative real number since it is the sum of products of
non-negative real numbers. Suppose that the right hand expression is 0 . Since the two summands are non-negative, it follows that

$$
a\left(x+\frac{b}{a} y\right)^{2}=\left(d-\frac{b^{2}}{a}\right) y^{2}=0,
$$

and thus

$$
\begin{equation*}
\left(x+\frac{b}{a} y\right)^{2}=y^{2}=0 \tag{10}
\end{equation*}
$$

as $a, d-\frac{b^{2}}{a} \neq 0$. Therefore $y=0$, and hence $x^{2}=0$. We have shown that $\binom{x}{y}=\mathbf{0}$.
4. ($\mathbf{2 0}$ points) Suppose that A is a 2×2 matrix with real coefficients as in Exercise 4.2.8. Then A determines an inner product on \mathbf{R}^{2} by (1). Such a matrix is $A=\left(\begin{array}{cc}a & 0 \\ 0 & d\end{array}\right)$ where a, d are positive real numbers. Observe that

$$
<\binom{x_{1}}{x_{2}},\binom{y_{1}}{y_{2}}>=a x_{1} y_{1}+d x_{2} y_{2}
$$

for all $\binom{x_{1}}{x_{2}},\binom{y_{1}}{y_{2}} \in \mathbf{R}^{2}$.
(a) $\|\mathbf{u}\|=\sqrt{a+d}$. Thus take $a=2000, d=1$ and $a=1, d=2000$. In either case $\|\mathbf{u}\|=\sqrt{2001}$. These choices give different inner products; indeed in the first case $\left\|\binom{1}{0}\right\|=\sqrt{2000}$ and in the second $\left\|\binom{1}{0}\right\|=1$.
(b) and (c). $\langle\mathbf{u}, \mathbf{v}\rangle=a-d$ and $\|\mathbf{u}\|=\sqrt{a+d}=\|\mathbf{v}\|$. Thus

$$
\cos \theta=\frac{\langle\mathbf{u}, \mathbf{v}>}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{a-d}{a+d} .
$$

For part (a) we need to solve $\frac{a-d}{a+d}=\frac{1}{2}$, or equivalently $a=3 d$. Take $d=1, a=3$ for example. (7) For part (b) we need to solve $\frac{a-d}{a+d}=\frac{\sqrt{3}}{2}$, or equivalently $a(2-\sqrt{3})=$ $d(2+\sqrt{3})$. Take $d=1, a=\frac{2+\sqrt{3}}{2-\sqrt{3}}$ for example. (7)
Comment: Some students assumed that $\|\mathbf{u}\|=\sqrt{2}=\|\mathbf{v}\|$ in solving parts (b) and (c). This is the case for the standard inner product. These lengths depend on the choice of a and d.
5. (20 points) Let $\mathbf{u}, \mathbf{v} \in V$. From the calculation

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =<\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}> \\
& =<\mathbf{u}+\mathbf{v}, \mathbf{u}>+<\mathbf{u}+\mathbf{v}, \mathbf{v}> \\
& =(\langle\mathbf{u}, \mathbf{u}>+<\mathbf{v}, \mathbf{u}>)+(<\mathbf{u}, \mathbf{v}>+<\mathbf{v}, \mathbf{v}>) \\
& =\|\mathbf{u}\|^{2}+2<\mathbf{u}, \mathbf{v}>+\|\mathbf{v}\|^{2}
\end{aligned}
$$

we conclude that

$$
\begin{equation*}
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+2<\mathbf{u}, \mathbf{v}>+\|\mathbf{v}\|^{2} . \tag{3}
\end{equation*}
$$

"If". Suppose that $\left\langle\mathbf{u}, \mathbf{v}>=0\right.$. Then $2<\mathbf{u}, \mathbf{v}>=0$ and thus $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$ by (3). (10)
"Only if". Suppose that $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$. Then $2<\mathbf{u}, \mathbf{v}>=0$ by (3) and hence $<\mathbf{u}, \mathbf{v}>=0$. (10)

