
MATH 425 Written Homework 1 Solution Radford 02/05/08

1. (20 points)

(a) P is the set (subspace) of solutions to the system of linear equations 3x+2y−z+5w = 0
and consists of all vectors in R4 perpendicular to u. (10)

(b) Row reduction yields x +
2

3
y − 1

3
z +

5

3
w = 0 and thus

x = −2

3
y +

1

3
z − 5

3
w

y = 1y + 0z + 0w

z = 0y + 1z + 0w

w = 0y + 0z + 1w

which in vector form is




x
y
z
w


 = y




−2
3

1
0
0


 + z




1
3

0
1
0


 + w




−5
3

0
0
1


 .

Thus a basis for P is

{




−2
3

1
0
0


 ,




1
3

0
1
0


 ,




−5
3

0
0
1


},

(10) or clearing fractions

{




−2
3
0
0


 ,




1
0
3
0


 ,




−5
0
0
3


}.

Comment: There are many possible answers.

2. (20 points) First some very basic observations about matrix multiplication. Let
{e1, . . . , en} be the standard basis for Rn. Suppose that A is an m×n matrix (with real
coefficients). Then

Aej is the jth column of A.

Suppose that A is an n×m matrix. Then

et
iA is the ith row of A.
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Now suppose that m = n, write A = (ai j), and consider the bilinear form on Rn defined
by

<u, v> = utAv (1)

for all u,v ∈ Rn. Then the calculation

<ei, ej> = et
iAej = et

i(Aej) = et
i




a1 j
...

an j


 = ai j,

where the latter is identified with the 1×1 matrix with entry ai j, shows that

<ei, ej> = ai j

for all 1 ≤ i, j ≤ n.
Suppose that < , > is symmetric. Then ai j = <ei, ej> = <ej, ei> = aj i for all

1 ≤ i, j ≤ n shows that A is symmetric.

Comment: Some solutions ended “utAv = utAtv for all u,v ∈ Rn, and therefore A = At.”
There is a significant gap in this proof.

3. (20 points) Suppose that A =

(
a b
c d

)
defines an inner product on R2 by (1). Then

A is symmetric by Exercise 4.2.7. Thus c = b. Using the solution to Exercise 4.2.7 we
observe that

0 < <e1, e1> = a1 1 = a and 0 < <e2, e2> = a2 2 = d.

Since b = c and a, d 6= 0 (as they are positive), it follows that

<

(
x
y

)
,

(
x
y

)
> = ax2 + 2bxy + dy2 = a(x +

b

a
y)2 + (d− b2

a
)y2 (2)

for all

(
x
y

)
∈ R2. By virtue of (2) we have

0 < <

(
−b

a

)
,

(
−b

a

)
> = (d− b2

a
)a2

from which we deduce d− b2

a
> 0, or equivalently ad− b2 > 0, since a2 > 0. (10)

Conversely, suppose that A =

(
a b
b d

)
where a, d, ad − b2 > 0. Since A is symmetric

(1) defines a symmetric bilinear form on R2. Let

(
x
y

)
∈ R2. Then (2) holds, and the

right hand expression is a non-negative real number since it is the sum of products of
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non-negative real numbers. Suppose that the right hand expression is 0. Since the two
summands are non-negative, it follows that

a(x +
b

a
y)2 = (d− b2

a
)y2 = 0,

and thus

(x +
b

a
y)2 = y2 = 0

as a, d− b2

a
6= 0. Therefore y = 0, and hence x2 = 0. We have shown that

(
x
y

)
= 0. (10)

4. (20 points) Suppose that A is a 2×2 matrix with real coefficients as in Exercise 4.2.8.

Then A determines an inner product on R2 by (1). Such a matrix is A =

(
a 0
0 d

)
where

a, d are positive real numbers. Observe that

<

(
x1

x2

)
,

(
y1

y2

)
> = ax1y1 + dx2y2

for all

(
x1

x2

)
,

(
y1

y2

)
∈ R2.

(a) ||u|| =
√

a + d. Thus take a = 2000, d = 1 and a = 1, d = 2000. In either
case ||u|| =

√
2001. These choices give different inner products; indeed in the first case

||
(

1
0

)
|| =

√
2000 and in the second ||

(
1
0

)
|| = 1. (6)

(b) and (c). <u, v> = a− d and ||u|| = √
a + d = ||v||. Thus

cos θ =
<u, v>

||u|| ||v|| =
a− d

a + d
.

For part (a) we need to solve
a− d

a + d
=

1

2
, or equivalently a = 3d. Take d = 1, a = 3

for example. (7) For part (b) we need to solve
a− d

a + d
=

√
3

2
, or equivalently a(2 −√3) =

d(2 +
√

3). Take d = 1, a =
2 +

√
3

2−√3
for example. (7)

Comment: Some students assumed that ||u|| =
√

2 = ||v|| in solving parts (b) and (c).
This is the case for the standard inner product. These lengths depend on the choice of a
and d.

3



5. (20 points) Let u,v ∈ V . From the calculation

||u + v||2 = <u + v, u + v>

= <u + v, u> + <u + v, v>

= (<u, u> + <v, u>) + (<u, v> + <v, v>)

= ||u||2 + 2<u,v> + ||v||2

we conclude that
||u + v||2 = ||u||2 + 2<u,v> + ||v||2. (3)

“If”. Suppose that <u, v> = 0. Then 2<u, v> = 0 and thus ||u+v||2 = ||u||2 + ||v||2
by (3). (10)

“Only if”. Suppose that ||u+v||2 = ||u||2 + ||v||2. Then 2<u, v> = 0 by (3) and hence
<u, v> = 0. (10)
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