MATH 425 Written Homework 2 Solution Radford 02/07/08

1. (20 points) We have noted that orthogonal complements are subspaces. Thus S^{\perp} is a subspace of \mathbf{R}^4 .

(a) Let
$$\mathbf{v} = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbf{R}^4$$
. Then $\mathbf{v} \in S^{\perp}$ if and only if $\langle \mathbf{u}_1, \mathbf{v} \rangle = 0 = \langle \mathbf{u}_2, \mathbf{v} \rangle$ by Lemma

4.3.1. Thus $\mathbf{v} \in S^{\perp}$ if and only if

$$1x + 2y + 1z + 0w = 0$$

$$4x + 1y + 2z + 3w = 0.$$

Row reduction yields

which

$$\left(\begin{array}{rrrr} 1 & 2 & 1 & 0 \\ 4 & 1 & 2 & 3 \end{array}\right) \longrightarrow \cdots \longrightarrow \left(\begin{array}{rrrr} 1 & 0 & 3/7 & 6/7 \\ 0 & 1 & 2/7 & -3/7 \end{array}\right).$$

Therefore $\mathbf{v} \in S^{\perp}$ if and only if

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = z \begin{pmatrix} -3/7 \\ -2/7 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} -6/7 \\ 3/7 \\ 0 \\ 1 \end{pmatrix}$$

means $\left\{ \begin{pmatrix} -3/7 \\ -2/7 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -6/7 \\ 3/7 \\ 0 \\ 1 \end{pmatrix} \right\} = \left\{ \mathbf{v}_1, \mathbf{v}_2 \right\}$ is a basis for S^{\perp} . (10)

(b)
$$\mathbf{q}_1 = \frac{7\mathbf{v}_1}{||7\mathbf{v}_1||} = \frac{1}{\sqrt{62}} \begin{pmatrix} -3 \\ -2 \\ 7 \\ 0 \end{pmatrix}.$$

$$\begin{aligned} \mathbf{w_2} &= \mathbf{v}_2 - \langle \mathbf{v}_2, \mathbf{q}_1 \rangle \mathbf{q}_1 \\ &= \begin{pmatrix} -6/7 \\ 3/7 \\ 0 \\ 1 \end{pmatrix} - \langle \begin{pmatrix} -6/7 \\ 3/7 \\ 0 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{62}} \begin{pmatrix} -3 \\ -2 \\ 7 \\ 0 \end{pmatrix} \rangle \frac{1}{\sqrt{62}} \begin{pmatrix} -3 \\ -2 \\ 7 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} -6/7 \\ 3/7 \\ 0 \\ 1 \end{pmatrix} - \frac{12}{62 \cdot 7} \begin{pmatrix} -3 \\ -2 \\ 7 \\ 0 \end{pmatrix} \end{aligned}$$

$$= \frac{1}{31 \cdot 7} \begin{pmatrix} -6 \cdot 31 \\ 3 \cdot 31 \\ 0 \\ 7 \cdot 31 \end{pmatrix} - \frac{6}{31 \cdot 7} \begin{pmatrix} -3 \\ -2 \\ 7 \\ 0 \end{pmatrix}$$
$$= \frac{1}{31 \cdot 7} \begin{pmatrix} -168 \\ 105 \\ -6 \cdot 7 \\ 31 \cdot 7 \end{pmatrix}$$
$$= \frac{1}{31} \begin{pmatrix} -24 \\ 15 \\ -6 \\ 31 \end{pmatrix}.$$

Thus
$$\mathbf{q}_2 = \frac{31\mathbf{w}_2}{||31\mathbf{w}_2||} = \frac{1}{\sqrt{1798}} \begin{pmatrix} -24\\ 15\\ -6\\ 31 \end{pmatrix}$$
. An answer is $\{\mathbf{q}_1, \mathbf{q}_2\}$. (10)

2. (20 points) From the calculation

$$< \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} z \\ w \end{pmatrix} > = \begin{pmatrix} x \\ y \end{pmatrix}^{t} \begin{pmatrix} 1 & 2 \\ 2 & 7 \end{pmatrix} \begin{pmatrix} z \\ w \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} z + 2w \\ 2z + 7w \end{pmatrix} = xz + 2xw + 2yz + 7yw$$
we have

we nave

$$< \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} z \\ w \end{pmatrix} > = xz + 2xw + 2yz + 7yw$$
 (1)

for all $\begin{pmatrix} x \\ y \end{pmatrix}$, $\begin{pmatrix} z \\ w \end{pmatrix} \in \mathbf{R}^2$. We apply the Gram-Schmidt process to the standard basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ for \mathbf{R}^2 .

By (1) note that $\langle \mathbf{e}_1, \mathbf{e}_1 \rangle = \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle = 1$. Therefore $\mathbf{q}_1 = \mathbf{e}_1$. (10) By (1) again

$$\mathbf{w}_{2} = \mathbf{e}_{2} - \langle \mathbf{e}_{2}, \mathbf{q}_{1} \rangle \mathbf{q}_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle \langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

Using (1) again we see $\langle \mathbf{w}_{2}, \mathbf{w}_{2} \rangle = \langle \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \rangle = 3$ and thus $\mathbf{q}_{2} = \frac{1}{\sqrt{3}} \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$
One answer is $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}.$ (10)

3. (20 points) Since $V = S \oplus T$ is an orthogonal sum, by definition any $\mathbf{v} \in V$ can be written $\mathbf{v} = \mathbf{s} + \mathbf{t}$ for some $\mathbf{s} \in S$, $\mathbf{t} \in T$ and for all $\mathbf{s} \in S$ and $\mathbf{t} \in T$ it follows that $< \mathbf{s}, \ \mathbf{t} > = 0.$

Let $\mathbf{t} \in T$. Thus $\langle \mathbf{t}, \mathbf{s} \rangle = \langle \mathbf{s}, \mathbf{t} \rangle = 0$ for all $\mathbf{s} \in S$ since inner products are symmetric and by definition of orthogonal sum. Therefore $\mathbf{t} \in S^{\perp}$. We have shown that $T \subseteq S^{\perp}$. (10)

Suppose that $\mathbf{v} \in S^{\perp}$. Then $\mathbf{v} = \mathbf{s} + \mathbf{t}$ for some $\mathbf{s} \in S$ and $\mathbf{t} \in T$. Since $\mathbf{v}, \mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$ we have

$$0 = \langle \mathbf{v}, \mathbf{s} \rangle = \langle \mathbf{s} + \mathbf{t}, \mathbf{s} \rangle = \langle \mathbf{s}, \mathbf{s} \rangle + \langle \mathbf{t}, \mathbf{s} \rangle = \langle \mathbf{s}, \mathbf{s} \rangle + 0 = \langle \mathbf{s}, \mathbf{s} \rangle$$

which means that $\mathbf{s} = 0$. Therefore $\mathbf{v} = \mathbf{t} \in T$. We have shown that $S^{\perp} \subseteq T$, and thus $T = S^{\perp}$. (10)

4. (20 points) We first show that $(\mathbf{v} - \mathbf{s}) \perp S$. This is equivalent to showing that $\langle \mathbf{v} - \mathbf{s}, \mathbf{q}_i \rangle = 0$ for all $1 \leq i \leq r$ by Lemma 4.3.1. The preceding equation holds since

$$\begin{aligned} \langle \mathbf{v} - \mathbf{s}, \mathbf{q}_i \rangle &= \langle \mathbf{v} - \langle \mathbf{v}, \mathbf{q}_1 \rangle \mathbf{q}_1 - \dots - \langle \mathbf{v}, \mathbf{q}_r \rangle \mathbf{q}_r, \mathbf{q}_i \rangle \\ &= \langle \mathbf{v}, \mathbf{q}_i \rangle - \langle \mathbf{v}, \mathbf{q}_1 \rangle \langle \mathbf{q}_1, \mathbf{q}_i \rangle - \dots - \langle \mathbf{v}, \mathbf{q}_r \rangle \langle \mathbf{q}_r, \mathbf{q}_i \rangle \\ &= \langle \mathbf{v}, \mathbf{q}_i \rangle - \langle \mathbf{v}, \mathbf{q}_i \rangle \langle \mathbf{q}_i, \mathbf{q}_i \rangle \\ &= \langle \mathbf{v}, \mathbf{q}_i \rangle - \langle \mathbf{v}, \mathbf{q}_i \rangle \langle \mathbf{q}_i, \mathbf{q}_i \rangle \\ &= 0 \end{aligned}$$

for all $1 \leq i \leq r$. (10)

Let $\mathbf{s}' \in S$. Then $\mathbf{s} - \mathbf{s}' \in S$, since S is a subspace of V. We have just shown that $\langle \mathbf{v} - \mathbf{s}, \mathbf{s} - \mathbf{s}' \rangle = 0$. Thus by Exercise 5 of Written Homework 1 we compute

$$||\mathbf{v} - \mathbf{s}'||^2 = ||(\mathbf{v} - \mathbf{s}) + (\mathbf{s} - \mathbf{s}')||^2 = ||\mathbf{v} - \mathbf{s}||^2 + ||\mathbf{s} - \mathbf{s}'||^2 \ge ||\mathbf{v} - \mathbf{s}||^2$$

Since $||\mathbf{v} - \mathbf{s}'||^2 \ge ||\mathbf{v} - \mathbf{s}||^2$ it follows that $||\mathbf{v} - \mathbf{s}'|| \ge ||(\mathbf{v} - \mathbf{s})||$ as lengths are non-negative numbers. Our calculation shows that if \mathbf{s}' is also a vector in S closest to \mathbf{v} , in which case $||\mathbf{v} - \mathbf{s}'|| = ||(\mathbf{v} - \mathbf{s})||$, then $||\mathbf{s} - \mathbf{s}'||^2 = 0$ and consequently $\mathbf{s} = \mathbf{s}'$. (10)

5. (20 points) This exercise is application of formulas. $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 1 \\ 2 \end{pmatrix}$ and

$$\mathbf{x} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 4 \\ 3 \end{pmatrix}.$$

(a) Thus $\langle \mathbf{x}, \mathbf{y} \rangle = 10, \overline{x} = \frac{1}{4}, \overline{y} = 2$, and $\sigma^2 = (-2 - \frac{1}{4})^2 + (0 - \frac{1}{4})^2 + (1 - \frac{1}{4})^2 + (2 - \frac{1}{4})^2 = \frac{35}{4}$. Consequently

$$m = \frac{\langle \mathbf{x}, \, \mathbf{y} \rangle - 4\overline{x}\,\overline{y}}{\sigma^2} = \frac{10 - 4 \cdot \frac{1}{4} \cdot 2}{\frac{35}{4}} = \frac{32}{35} \quad \text{and} \quad b = \overline{y} - m\overline{x} = 2 - \frac{32}{35} \cdot \frac{1}{4} = \frac{62}{35}$$

Thus
$$y = \frac{32}{35}x + \frac{62}{35}$$
. (10)
(b) $A = \begin{pmatrix} 1 & -2 & 4 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}$ and thus $A^{t}A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -2 & 0 & 1 & 2 \\ 4 & 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & -2 & 4 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 9 \\ 1 & 9 & 1 \\ 9 & 1 & 33 \end{pmatrix}$.

By Theorem 4.6.1 the polynomial $f(x) = a_0 + a_1 x + a_2 x^2$ is determined by the linear system $A^t A \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = A^t \mathbf{y}; \text{ that is}$ (0)

$$\begin{pmatrix} 4 & 1 & 9 \\ 1 & 9 & 1 \\ 9 & 1 & 33 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -2 & 0 & 1 & 2 \\ 4 & 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 10 \\ 16 \end{pmatrix}.$$

There are various ways of solving this system; using row reduction or by finding the inverse of A^tA . The latter can be done easily enough by computing the classical adjoint. In any $\begin{pmatrix} 106 \end{pmatrix}$

case
$$\begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \frac{100}{55} \\ \frac{199}{220} \\ -\frac{3}{44} \end{pmatrix}$$
. Thus $f(x) = \frac{106}{55} + \frac{199}{220}x - \frac{3}{44}x^2$. (10)