
MATH 425 Written Homework 2 Solution Radford 02/07/08

1. (20 points) We have noted that orthogonal complements are subspaces. Thus S⊥ is a
subspace of R4.

(a) Let v =




x
y
z
w


 ∈ R4. Then v ∈ S⊥ if and only if <u1,v> = 0 = <u2,v> by Lemma

4.3.1. Thus v ∈ S⊥ if and only if

1x + 2y + 1z + 0w = 0

4x + 1y + 2z + 3w = 0.

Row reduction yields
(

1 2 1 0
4 1 2 3

)
−→ · · · −→

(
1 0 3/7 6/7
0 1 2/7 −3/7

)
.

Therefore v ∈ S⊥ if and only if




x
y
z
w


 = z




−3/7
−2/7

1
0


 + w




−6/7
3/7

0
1




which means {




−3/7
−2/7

1
0


 ,




−6/7
3/7

0
1


} = {v1,v2} is a basis for S⊥. (10)

(b) q1 =
7v1

||7v1|| =
1√
62




−3
−2

7
0


 .

w2 = v2 −<v2,q1>q1

=




−6/7
3/7

0
1


−<




−6/7
3/7

0
1


 ,

1√
62




−3
−2

7
0


 >

1√
62




−3
−2

7
0




=




−6/7
3/7

0
1


− 12

62·7




−3
−2

7
0




1



=
1

31·7




−6·31
3·31

0
7·31


− 6

31·7




−3
−2

7
0




=
1

31·7




−168
105
−6·7
31·7




=
1

31




−24
15
−6
31


 .

Thus q2 =
31w2

||31w2|| =
1√
1798




−24
15
−6
31


. An answer is {q1,q2}. (10)

2. (20 points) From the calculation

<

(
x
y

)
,

(
z
w

)
> =

(
x
y

)t (
1 2
2 7

) (
z
w

)
=

(
x y

) (
z + 2w

2z + 7w

)
= xz+2xw+2yz+7yw

we have

<

(
x
y

)
,

(
z
w

)
> = xz + 2xw + 2yz + 7yw (1)

for all

(
x
y

)
,

(
z
w

)
∈ R2. We apply the Gram-Schmidt process to the standard basis

{e1, e2} for R2.

By (1) note that <e1, e1> = <

(
1
0

)
,

(
1
0

)
> = 1. Therefore q1 = e1. (10) By (1)

again

w2 = e2−<e2,q1>q1 =

(
0
1

)
−<

(
0
1

)
,

(
1
0

)
>

(
1
0

)
=

(
0
1

)
− 2

(
1
0

)
=

(
−2

1

)
.

Using (1) again we see <w2,w2> = <

(
−2

1

)
,

(
−2

1

)
> = 3 and thus q2 =

1√
3

(
−2

1

)
.

One answer is {
(

1
0

)
,

1√
3

(
−2

1

)
}. (10)

3. (20 points) Since V = S⊕T is an orthogonal sum, by definition any v ∈ V can be
written v = s + t for some s ∈ S, t ∈ T and for all s ∈ S and t ∈ T it follows that
<s, t> = 0.

2



Let t ∈ T . Thus <t, s> = <s, t> = 0 for all s ∈ S since inner products are symmetric
and by definition of orthogonal sum. Therefore t ∈ S⊥. We have shown that T ⊆ S⊥. (10)

Suppose that v ∈ S⊥. Then v = s + t for some s ∈ S and t ∈ T . Since v, t ∈ S⊥ and
s ∈ S we have

0 = <v, s> = <s + t, s> = <s, s> + <t, s> = <s, s> + 0 = <s, s>

which means that s = 0. Therefore v = t ∈ T . We have shown that S⊥ ⊆ T , and thus
T = S⊥. (10)

4. (20 points) We first show that (v − s) ⊥ S. This is equivalent to showing that
<v − s,qi> = 0 for all 1 ≤ i ≤ r by Lemma 4.3.1. The preceding equation holds since

<v − s,qi> = <v −<v, q1>q1 − · · · −<v, qr>qr,qi>

= <v, qi>−<v, q1><q1, qi>− · · · −<v, qr><qr, qi>

= <v, qi>−<v, qi><qi, qi>

= <v, qi>−<v, qi>

= 0

for all 1 ≤ i ≤ r. (10)
Let s′ ∈ S. Then s − s′ ∈ S, since S is a subspace of V . We have just shown that

<v − s, s− s′> = 0. Thus by Exercise 5 of Written Homework 1 we compute

||v − s′||2 = ||(v − s) + (s− s′)||2 = ||v − s||2 + ||s− s′||2 ≥ ||v − s||2.

Since ||v− s′||2 ≥ ||v− s||2 it follows that ||v− s′|| ≥ ||(v− s)|| as lengths are non-negative
numbers. Our calculation shows that if s′ is also a vector in S closest to v, in which case
||v − s′|| = ||(v − s)||, then ||s− s′||2 = 0 and consequently s = s′. (10)

5. (20 points) This exercise is application of formulas. x =




x1

x2

x3

x4


 =




−2
0
1
2


 and

x =




y1

y2

y3

y4


 =




0
1
4
3


.

(a) Thus <x, y> = 10, x =
1

4
, y = 2, and σ2 = (−2− 1

4
)2 + (0− 1

4
)2 + (1− 1

4
)2 + (2− 1

4
)2 =

35

4
.

Consequently

m =
<x, y>− 4x y

σ2
=

10− 4·1
4
·2

35

4

=
32

35
and b = y −mx = 2− 32

35
·1
4

=
62

35
.

3



Thus y =
32

35
x +

62

35
. (10)

(b) A =




1 −2 4
1 0 0
1 1 1
1 2 4


 and thus AtA =




1 1 1 1
−2 0 1 2

4 0 1 4







1 −2 4
1 0 0
1 1 1
1 2 4


 =




4 1 9
1 9 1
9 1 33


.

By Theorem 4.6.1 the polynomial f(x) = a0+a1x+a2x
2 is determined by the linear system

AtA




a0

a1

a2


 = Aty; that is




4 1 9
1 9 1
9 1 33







a0

a1

a2


 =




1 1 1 1
−2 0 1 2

4 0 1 4







0
1
4
3


 =




8
10
16


 .

There are various ways of solving this system; using row reduction or by finding the inverse
of AtA. The latter can be done easily enough by computing the classical adjoint. In any

case




a0

a1

a2


 =




106

55

199

220

− 3

44




. Thus f(x) =
106

55
+

199

220
x− 3

44
x2. (10)
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