1. (20 points) We have noted that orthogonal complements are subspaces. Thus S^{\perp} is a subspace of \mathbf{R}^{4}.
(a) Let $\mathbf{v}=\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right) \in \mathbf{R}^{4}$. Then $\mathbf{v} \in S^{\perp}$ if and only if $\left.\left\langle\mathbf{u}_{1}, \mathbf{v}\right\rangle=0=<\mathbf{u}_{2}, \mathbf{v}\right\rangle$ by Lemma
4.3.1. Thus $\mathbf{v} \in S^{\perp}$ if and only if

$$
\begin{aligned}
& 1 x+2 y+1 z+0 w=0 \\
& 4 x+1 y+2 z+3 w=0 .
\end{aligned}
$$

Row reduction yields

$$
\left(\begin{array}{llll}
1 & 2 & 1 & 0 \\
4 & 1 & 2 & 3
\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{rrrr}
1 & 0 & 3 / 7 & 6 / 7 \\
0 & 1 & 2 / 7 & -3 / 7
\end{array}\right) .
$$

Therefore $\mathbf{v} \in S^{\perp}$ if and only if

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=z\left(\begin{array}{r}
-3 / 7 \\
-2 / 7 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{r}
-6 / 7 \\
3 / 7 \\
0 \\
1
\end{array}\right)
$$

which means $\left\{\left(\begin{array}{r}-3 / 7 \\ -2 / 7 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{r}-6 / 7 \\ 3 / 7 \\ 0 \\ 1\end{array}\right)\right\}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for S^{\perp}.
(b) $\mathbf{q}_{1}=\frac{7 \mathbf{v}_{1}}{\left\|7 \mathbf{v}_{1}\right\|}=\frac{1}{\sqrt{62}}\left(\begin{array}{r}-3 \\ -2 \\ 7 \\ 0\end{array}\right)$.

$$
\begin{aligned}
\mathbf{w}_{\mathbf{2}} & =\mathbf{v}_{2}-<\mathbf{v}_{2}, \mathbf{q}_{1}>\mathbf{q}_{1} \\
& =\left(\begin{array}{r}
-6 / 7 \\
3 / 7 \\
0 \\
1
\end{array}\right)-<\left(\begin{array}{r}
-6 / 7 \\
3 / 7 \\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{62}}\left(\begin{array}{r}
-3 \\
-2 \\
7 \\
0
\end{array}\right)>\frac{1}{\sqrt{62}}\left(\begin{array}{r}
-3 \\
-2 \\
7 \\
0
\end{array}\right) \\
& =\left(\begin{array}{r}
-6 / 7 \\
3 / 7 \\
0 \\
1
\end{array}\right)-\frac{12}{62 \cdot 7}\left(\begin{array}{r}
-3 \\
-2 \\
7 \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{31 \cdot 7}\left(\begin{array}{r}
-6 \cdot 31 \\
3 \cdot 31 \\
0 \\
7 \cdot 31
\end{array}\right)-\frac{6}{31 \cdot 7}\left(\begin{array}{r}
-3 \\
-2 \\
7 \\
0
\end{array}\right) \\
& =\frac{1}{31 \cdot 7}\left(\begin{array}{r}
-168 \\
105 \\
-6 \cdot 7 \\
31 \cdot 7
\end{array}\right) \\
& =\frac{1}{31}\left(\begin{array}{r}
-24 \\
15 \\
-6 \\
31
\end{array}\right)
\end{aligned}
$$

Thus $\mathbf{q}_{2}=\frac{31 \mathbf{w}_{2}}{\left\|31 \mathbf{w}_{2}\right\|}=\frac{1}{\sqrt{1798}}\left(\begin{array}{r}-24 \\ 15 \\ -6 \\ 31\end{array}\right)$. An answer is $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$.
2. ($\mathbf{2 0}$ points) From the calculation
$<\binom{x}{y},\binom{z}{w}>=\binom{x}{y}^{t}\left(\begin{array}{ll}1 & 2 \\ 2 & 7\end{array}\right)\binom{z}{w}=\left(\begin{array}{ll}x & y\end{array}\right)\binom{z+2 w}{2 z+7 w}=x z+2 x w+2 y z+7 y w$ we have

$$
\begin{equation*}
<\binom{x}{y},\binom{z}{w}>=x z+2 x w+2 y z+7 y w \tag{1}
\end{equation*}
$$

for all $\binom{x}{y},\binom{z}{w} \in \mathbf{R}^{2}$. We apply the Gram-Schmidt process to the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ for \mathbf{R}^{2}.

By (1) note that $\left\langle\mathbf{e}_{1}, \mathbf{e}_{1}\right\rangle=<\binom{1}{0},\binom{1}{0}>=1$. Therefore $\mathbf{q}_{1}=\mathbf{e}_{1} .(\mathbf{1 0})$ By (1) again
$\mathbf{w}_{2}=\mathbf{e}_{2}-<\mathbf{e}_{2}, \mathbf{q}_{1}>\mathbf{q}_{1}=\binom{0}{1}-<\binom{0}{1},\binom{1}{0}>\binom{1}{0}=\binom{0}{1}-2\binom{1}{0}=\binom{-2}{1}$.
Using (1) again we see $\left.<\mathbf{w}_{2}, \mathbf{w}_{2}\right\rangle=<\binom{-2}{1},\binom{-2}{1}>=3$ and thus $\mathbf{q}_{2}=\frac{1}{\sqrt{3}}\binom{-2}{1}$.
One answer is $\left\{\binom{1}{0}, \frac{1}{\sqrt{3}}\binom{-2}{1}\right\}$. (10)
3. (20 points) Since $V=S \oplus T$ is an orthogonal sum, by definition any $\mathbf{v} \in V$ can be written $\mathbf{v}=\mathbf{s}+\mathbf{t}$ for some $\mathbf{s} \in S, \mathbf{t} \in T$ and for all $\mathbf{s} \in S$ and $\mathbf{t} \in T$ it follows that $<\mathbf{s}, \mathbf{t}>=0$.

Let $\mathbf{t} \in T$. Thus $\langle\mathbf{t}, \mathbf{s}\rangle=\langle\mathbf{s}, \mathbf{t}\rangle=0$ for all $\mathbf{s} \in S$ since inner products are symmetric and by definition of orthogonal sum. Therefore $\mathbf{t} \in S^{\perp}$. We have shown that $T \subseteq S^{\perp}$. (10)

Suppose that $\mathbf{v} \in S^{\perp}$. Then $\mathbf{v}=\mathbf{s}+\mathbf{t}$ for some $\mathbf{s} \in S$ and $\mathbf{t} \in T$. Since $\mathbf{v}, \mathbf{t} \in S^{\perp}$ and $\mathbf{s} \in S$ we have

$$
0=\langle\mathbf{v}, \mathbf{s}>=\langle\mathbf{s}+\mathbf{t}, \mathbf{s}>=\langle\mathbf{s}, \mathbf{s}\rangle+\langle\mathbf{t}, \mathbf{s}\rangle=\langle\mathbf{s}, \mathbf{s}\rangle+0=\langle\mathbf{s}, \mathbf{s}\rangle
$$

which means that $\mathbf{s}=0$. Therefore $\mathbf{v}=\mathbf{t} \in T$. We have shown that $S^{\perp} \subseteq T$, and thus $T=S^{\perp}$. (10)
4. (20 points) We first show that $(\mathbf{v}-\mathbf{s}) \perp S$. This is equivalent to showing that $\left.<\mathbf{v}-\mathbf{s}, \mathbf{q}_{i}\right\rangle=0$ for all $1 \leq i \leq r$ by Lemma 4.3.1. The preceding equation holds since

$$
\begin{aligned}
<\mathbf{v}-\mathbf{s}, \mathbf{q}_{i}> & =<\mathbf{v}-<\mathbf{v}, \mathbf{q}_{1}>\mathbf{q}_{1}-\cdots-<\mathbf{v}, \mathbf{q}_{r}>\mathbf{q}_{r}, \mathbf{q}_{i}> \\
& =<\mathbf{v}, \mathbf{q}_{i}>-<\mathbf{v}, \mathbf{q}_{1}><\mathbf{q}_{1}, \mathbf{q}_{i}>-\cdots-<\mathbf{v}, \mathbf{q}_{r}><\mathbf{q}_{r}, \mathbf{q}_{i}> \\
& =<\mathbf{v}, \mathbf{q}_{i}>-<\mathbf{v}, \mathbf{q}_{i}><\mathbf{q}_{i}, \mathbf{q}_{i}> \\
& =<\mathbf{v}, \mathbf{q}_{i}>-<\mathbf{v}, \mathbf{q}_{i}> \\
& =0
\end{aligned}
$$

for all $1 \leq i \leq r$. (10)
Let $\mathbf{s}^{\prime} \in S$. Then $\mathbf{s}-\mathbf{s}^{\prime} \in S$, since S is a subspace of V. We have just shown that $\left.<\mathbf{v}-\mathbf{s}, \mathbf{s}-\mathbf{s}^{\prime}\right\rangle=0$. Thus by Exercise 5 of Written Homework 1 we compute

$$
\left\|\mathbf{v}-\mathbf{s}^{\prime}\right\|^{2}=\left\|(\mathbf{v}-\mathbf{s})+\left(\mathbf{s}-\mathbf{s}^{\prime}\right)\right\|^{2}=\|\mathbf{v}-\mathbf{s}\|^{2}+\left\|\mathbf{s}-\mathbf{s}^{\prime}\right\|^{2} \geq\|\mathbf{v}-\mathbf{s}\|^{2} .
$$

Since $\left\|\mathbf{v}-\mathbf{s}^{\prime}\right\|^{2} \geq\|\mathbf{v}-\mathbf{s}\|^{2}$ it follows that $\left\|\mathbf{v}-\mathbf{s}^{\prime}\right\| \geq\|(\mathbf{v}-\mathbf{s})\|$ as lengths are non-negative numbers. Our calculation shows that if \mathbf{s}^{\prime} is also a vector in S closest to \mathbf{v}, in which case $\left\|\mathbf{v}-\mathbf{s}^{\prime}\right\|=\|(\mathbf{v}-\mathbf{s})\|$, then $\left\|\mathbf{s}-\mathbf{s}^{\prime}\right\|^{2}=0$ and consequently $\mathbf{s}=\mathbf{s}^{\prime}$. (10)
5. (20 points) This exercise is application of formulas. $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{r}-2 \\ 0 \\ 1 \\ 2\end{array}\right)$ and $\mathbf{x}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 4 \\ 3\end{array}\right)$.
(a) Thus $\langle\mathbf{x}, \mathbf{y}\rangle=10, \bar{x}=\frac{1}{4}, \bar{y}=2$, and $\sigma^{2}=\left(-2-\frac{1}{4}\right)^{2}+\left(0-\frac{1}{4}\right)^{2}+\left(1-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{4}\right)^{2}=\frac{35}{4}$.

Consequently

$$
m=\frac{\langle\mathbf{x}, \mathbf{y}\rangle-4 \bar{x} \bar{y}}{\sigma^{2}}=\frac{10-4 \cdot \frac{1}{4} \cdot 2}{\frac{35}{4}}=\frac{32}{35} \quad \text { and } \quad b=\bar{y}-m \bar{x}=2-\frac{32}{35} \cdot \frac{1}{4}=\frac{62}{35} .
$$

Thus $y=\frac{32}{35} x+\frac{62}{35} \cdot(\mathbf{1 0})$
(b) $A=\left(\begin{array}{rrr}1 & -2 & 4 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4\end{array}\right)$ and thus $A^{t} A=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ -2 & 0 & 1 & 2 \\ 4 & 0 & 1 & 4\end{array}\right)\left(\begin{array}{rrr}1 & -2 & 4 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4\end{array}\right)=\left(\begin{array}{rrr}4 & 1 & 9 \\ 1 & 9 & 1 \\ 9 & 1 & 33\end{array}\right)$.

By Theorem 4.6.1 the polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ is determined by the linear system $A^{t} A\left(\begin{array}{c}a_{0} \\ a_{1} \\ a_{2}\end{array}\right)=A^{t} \mathbf{y}$; that is

$$
\left(\begin{array}{rrr}
4 & 1 & 9 \\
1 & 9 & 1 \\
9 & 1 & 33
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-2 & 0 & 1 & 2 \\
4 & 0 & 1 & 4
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
4 \\
3
\end{array}\right)=\left(\begin{array}{r}
8 \\
10 \\
16
\end{array}\right) .
$$

There are various ways of solving this system; using row reduction or by finding the inverse of $A^{t} A$. The latter can be done easily enough by computing the classical adjoint. In any

$$
\text { case }\left(\begin{array}{l}
a_{0} \tag{10}\\
a_{1} \\
a_{2}
\end{array}\right)=\left(\begin{array}{c}
\frac{106}{55} \\
\frac{199}{220} \\
-\frac{3}{44}
\end{array}\right) \text {. Thus } f(x)=\frac{106}{55}+\frac{199}{220} x-\frac{3}{44} x^{2}
$$

