1. (20 points) $A=\left(\begin{array}{rrr}4 & 98 & -7 \\ 0 & 3 & 0 \\ 2 & 42 & -5\end{array}\right)$. Thus the characteristic polynomial of A is

$$
\begin{aligned}
c_{A}(x) & =\operatorname{Det}\left(A-x \mathrm{I}_{3}\right) \\
& =\left|\begin{array}{rrr}
4-x & 98 & -7 \\
0 & 3-x & 0 \\
2 & 42 & -5-x
\end{array}\right| \\
& =(3-x)\left|\begin{array}{rr}
4-x & -7 \\
2 & -5-x
\end{array}\right| \\
& =(3-x)(-(4-x)(5+x)+14) \\
& =(3-x)\left(x^{2}+x-6\right) \\
& =(3-x)(x+3)(x-2)
\end{aligned}
$$

which means that the eigenvalues for A are $\lambda=-3,2,3$. Thus A is diagonalizable by Corollary 5.2.1. (5)

To find S we find a basis of eigenvectors for each eigenvalue.
$\lambda=-3$: By row reduction $A-\lambda \mathrm{I}_{3}=A+3 \mathrm{I}_{3}=\left(\begin{array}{rrr}7 & 98 & -7 \\ 0 & 6 & 0 \\ 2 & 42 & -2\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{rrr}7 & 0 & -7 \\ 0 & 1 & 0 \\ 2 & 0 & -2\end{array}\right) \longrightarrow$ $\cdots \longrightarrow\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ which means $N\left(A+3 \mathrm{I}_{3}\right)$ consists of the solutions to $\begin{aligned} x & =z \\ y & =0 \\ (z & =z)\end{aligned}$ which in vector form can be expressed as $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=z\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ for all $z \in \mathbf{R}$. Thus $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis of the subspace of eigenvectors of A for $\lambda=-3$. (2)
$\lambda=2$: By row reduction $A-\lambda \mathrm{I}_{3}=A-2 \mathrm{I}_{3}=\left(\begin{array}{rrr}2 & 98 & -7 \\ 0 & 1 & 0 \\ 2 & 42 & -7\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{rrr}2 & 0 & -7 \\ 0 & 1 & 0 \\ 2 & 0 & -7\end{array}\right) \longrightarrow$ $\cdots \longrightarrow\left(\begin{array}{rrr}1 & 0 & -7 / 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$ which means $N\left(A-2 \mathrm{I}_{3}\right)$ consists of the solutions to $\begin{aligned} & x=(7 / 2) z \\ & y=0 \\ & (z=z)\end{aligned}$ which in vector form can be expressed as $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=z\left(\begin{array}{r}7 / 2 \\ 0 \\ 1\end{array}\right)$ for all $z \in \mathbf{R}$. Thus
$\left\{\left(\begin{array}{r}7 / 2 \\ 0 \\ 1\end{array}\right)\right\}$, and also $\left\{\left(\begin{array}{l}7 \\ 0 \\ 2\end{array}\right)\right\}$, is a basis of the subspace of eigenvectors of A for $\lambda=2$. (2)
$\lambda=3$: By row reduction $A-\lambda \mathrm{I}_{3}=A-3 \mathrm{I}_{3}=\left(\begin{array}{rrr}1 & 98 & -7 \\ 0 & 0 & 0 \\ 2 & 42 & -8\end{array}\right) \longrightarrow\left(\begin{array}{rrr}1 & 98 & -7 \\ 0 & 0 & 0 \\ 1 & 21 & -4\end{array}\right) \longrightarrow$ $\left(\begin{array}{rrr}0 & 77 & -3 \\ 0 & 0 & 0 \\ 1 & 21 & -4\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{rrr}1 & 0 & -245 / 77 \\ 0 & 1 & -3 / 77 \\ 0 & 0 & 0\end{array}\right)$ which means $N\left(A-3 \mathrm{I}_{3}\right)$ consists of the solutions to $\begin{array}{rrr}x & =(245 / 77) z \\ y & = & (3 / 77) z \\ (z= & z)\end{array}$ which in vector form can be expressed as $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=$ $z\left(\begin{array}{r}245 / 77 \\ 3 / 77 \\ 1\end{array}\right)$ for all $z \in \mathbf{R}$. Thus $\left\{\left(\begin{array}{r}245 / 77 \\ 3 / 77 \\ 1\end{array}\right)\right\}$, and also $\left\{\left(\begin{array}{r}245 \\ 3 \\ 77\end{array}\right)\right\}$, is a basis of the subspace of eigenvectors of A for $\lambda=3$.

Let $D=\left(\begin{array}{rrr}-3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$. (4) Natural choices for S are $S=\left(\begin{array}{rrr}1 & 7 / 2 & 245 / 77 \\ 0 & 0 & 3 / 77 \\ 1 & 1 & 1\end{array}\right)$ and $S=\left(\begin{array}{rrr}1 & 7 & 245 \\ 0 & 0 & 3 \\ 1 & 2 & 77\end{array}\right)$.
2. (20 points) $c_{A}(x)=\left|\begin{array}{rrrr}3-x & 7 & 5 & 2 \\ 0 & 2-x & 9 & 8 \\ 0 & 0 & 3-x & 1 \\ 0 & 0 & 0 & 2-x\end{array}\right|=(3-x)^{2}(2-x)^{2}$. Thus $\lambda=2,3$ are the eigenvalues of A. (4) To compute the eigenvectors belonging to $\lambda=2$ we use row reduction $A-\lambda \mathrm{I}_{4}=A-2 \mathrm{I}_{4}=\left(\begin{array}{cccc}1 & 7 & 5 & 2 \\ 0 & 0 & 9 & 8 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{rrrr}1 & 7 & 0 & -3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \longrightarrow$ $\left(\begin{array}{cccc}1 & 7 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$; thus the eigenvectors for $\lambda=2$ are given by $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)=y\left(\begin{array}{r}-7 \\ 1 \\ 0 \\ 0\end{array}\right)$, the subspace of which has basis $\left\{\left(\begin{array}{r}-7 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}$.
(a) Since the characteristic polynomial of A is $c_{A}(x)=(x-2)^{2}(x-3)^{2}$ the algebraic
multiplicity of $\lambda=2$ is 2 . (3)
(b) Since the subspace of eigenvectors of A for $\lambda=2$ has dimension 1 , the geometric multiplicity of $\lambda=2$ is 1 . (3)
(c) Since the algebraic and geometric multiplicities of one of the eigenvalues of A differ, A is not diagonalizable by Theorem 5.2.1. (4)
3. ($\mathbf{2 0}$ points) A in an invertible $n \times n$ matrix with real entries.
(a) Suppose that $\lambda=0$ is an eigenvalue for A. Then $A \mathbf{x}=0 \mathbf{x}=\mathbf{0}$ for some non-zero $\mathbf{x} \in \mathbf{R}^{n}$; in particular $\mathbf{x} \in N(A)$. Since A is invertible $N(A)=(0)$, a contradiction. Therefore $\lambda \neq 0$. (5)
(b) By part (a) the eigenvalues for A are not zero. Thus since A^{-1} is also invertible (with inverse A) the eigenvalues for A^{-1} are not zero.

Let $0 \neq \lambda \in \mathbf{R}$ and $\mathbf{x} \in \mathbf{R}^{n}$. Then $A \mathbf{x}=\lambda \mathbf{x}$ if and only if $\mathbf{x}=A^{-1} A \mathbf{x}=A^{-1}(\lambda \mathbf{x})=$ $\lambda A^{-1} \mathbf{x}$ if and only if $\lambda^{-1} \mathbf{x}=\lambda^{-1}\left(\lambda A^{-1} \mathbf{x}\right)=A^{-1} \mathbf{x}$. We have shown that

$$
\begin{equation*}
A \mathbf{x}=\lambda \mathbf{x} \quad \text { if and only if } \quad A^{-1} \mathbf{x}=\lambda^{-1} \mathbf{x} \tag{1}
\end{equation*}
$$

Thus if λ is an eigenvalue for A then λ is invertible and λ^{-1} is an eigenvalue for A^{-1}. (4)
Conversely, suppose that ρ is an eigenvalue for A^{-1}. Then $\lambda=\rho^{-1}$ is an eigenvalue for $\left(A^{-1}\right)^{-1}=A$. Since $\rho=\left(\rho^{-1}\right)^{-1}=\lambda^{-1}$, every eigenvalue for A^{-1} has the form λ^{-1} for some eigenvalue λ for A. (4)
(c) $\mathbf{x} \in N\left(A-\lambda \mathrm{I}_{n}\right)$ if and only if $A \mathbf{x}=\lambda \mathbf{x}$, and likewise $\mathbf{x} \in N\left(A^{-1}-\lambda^{-1} \mathrm{I}_{n}\right)$ if and only if $A^{-1} \mathbf{x}=\lambda^{-1} \mathbf{x}$. Thus part (c) follows by (1). (7)
4. (20 points) $A=\left(\begin{array}{rr}1-a & b \\ a & 1-b\end{array}\right)$
(a) From the computation of the characteristic polynomial

$$
\begin{aligned}
c_{A}(x) & =\operatorname{Det} A-\operatorname{Trace} A x+x^{2} \\
& =((1-a)(1-b)-a b)-(2-a-b) x+x^{2} \\
& =(1-a-b)-(2-a-b) x+x^{2} \\
& =(x-1)(x-(1-a-b))
\end{aligned}
$$

we see $\lambda=1$ is an eigenvalue for $A(5)$ (as is $\lambda=1-a-b$).
(b) For $\lambda=1$, by row reduction $A-\lambda \mathrm{I}_{2}=A-\mathrm{I}_{2}=\left(\begin{array}{rr}-a & b \\ a & -b\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{rr}1 & -b / a \\ 0 & 0\end{array}\right)$ we see that the eigenvectors are $\mathbf{v}=\binom{x}{y}=y\binom{b / a}{1}$, where $y \in \mathbf{R}$. Now \mathbf{v} is a probability vector if and only if its entries are non-negative and add to 1 . This means
$y(b / a+1)=1$, or equivalently $y=\frac{a}{a+b}$, and therefore $\mathbf{v}=\binom{\frac{b}{a+b}}{\frac{a}{a+b}}$. This vector is indeed a probability vector. (5)
(c) By assumption $0<a, b<1$. The two eigenvalues $\lambda=1$ and $\lambda=1-a-b$ are distinct since otherwise $a+b=0$, a contradiction. Since $0<a+b<2$ we have that

$$
\begin{equation*}
-1<1-(a+b)<1 \tag{2}
\end{equation*}
$$

It is is not difficult to see $\left\{\binom{b}{a}\right\}$ is a basis for the eigenvectors belonging to $\lambda=1$ and that $\left\{\binom{-1}{1}\right\}$ is a basis for the eigenvectors belonging to $\lambda=1-a-b$. Set $D=\left(\begin{array}{ll}1 & 0 \\ 0 & c\end{array}\right)$, where $c=1-a-b$, and $S=\left(\begin{array}{rr}b & -1 \\ a & 1\end{array}\right)$. Then $A=S D S^{-1}$. Since $S^{-1}=\frac{1}{a+b}\left(\begin{array}{rr}1 & 1 \\ -a & b\end{array}\right)$, it follows that

$$
A^{n}=S D^{n} S^{-1}=\frac{1}{a+b}\left(\begin{array}{rr}
b & -1 \\
a & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & c^{n}
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-a & b
\end{array}\right)=\frac{1}{a+b}\left(\begin{array}{cc}
b+a c^{n} & b-b c^{n} \\
a-a c^{n} & a+b c^{n}
\end{array}\right)
$$

hence

$$
A^{n}=\frac{1}{a+b}\left(\begin{array}{ll}
b+a c^{n} & b-b c^{n} \tag{3}\\
a-a c^{n} & a+b c^{n}
\end{array}\right)
$$

for all $n \geq 0$. Let $\mathbf{v}=\binom{x}{y} \in \mathbf{R}^{n}$. Then

$$
A \mathbf{v}=\frac{1}{a+b}\left(\begin{array}{cc}
b+a c^{n} & b-b c^{n} \\
a-a c^{n} & a+b c^{n}
\end{array}\right)\binom{x}{y}=\frac{1}{a+b}\binom{\left(b+a c^{n}\right) x+\left(b-b c^{n}\right) y}{\left(a-a c^{n}\right) x+\left(a+b c^{n}\right) y}
$$

Now $\lim _{n \rightarrow \infty} c^{n}=0$ since $|c|<1$, which follows by (2); thus $\lim _{n \rightarrow \infty} A^{n}\binom{x}{y}=$ $\binom{\frac{b(x+y)}{a+b}}{\frac{a(x+y)}{a+b}}$. When $x+y=1$ note that $\lim _{n \rightarrow \infty} A^{n}\binom{x}{y}=\binom{\frac{b}{a+b}}{\frac{a}{a+b}}$.
(d) follows by (3) since $\lim _{n \rightarrow \infty} c^{n}=0$. (5)
5. (20 points) $A=\left(\begin{array}{lll}1 / 5 & 3 / 11 & 0 \\ 2 / 5 & 6 / 11 & 0 \\ 2 / 5 & 2 / 11 & 1\end{array}\right)$. Therefore the characteristic polynomial is

$$
c_{A}(x)=\left|\begin{array}{rrr}
1 / 5-x & 3 / 11 & 0 \\
2 / 5 & 6 / 11-x & 0 \\
2 / 5 & 2 / 11 & 1-x
\end{array}\right|
$$

$$
\begin{aligned}
& =\left|\begin{array}{rr}
1 / 5-x & 3 / 11 \\
2 / 5 & 6 / 11-x
\end{array}\right|(1-x) \\
& =((1 / 5-x)(6 / 11-x)-(3 / 11)(2 / 5))(1-x) \\
& =\left(-41 / 55 x+x^{2}\right)(1-x) \\
& =x(x-41 / 55)(1-x) .
\end{aligned}
$$

(a) Thus the eigenvalues for A are $\lambda=0,41 / 55,1$ which means that A is diagonalizable by Corollary 5.2.1. (7)
(b) We show that A has a unique stable probability vector. This is a result of row reduction:

$$
\begin{aligned}
A-\mathrm{I}_{3}= & \left(\begin{array}{rrr}
-4 / 5 & 3 / 11 & 0 \\
2 / 5 & -5 / 11 & 0 \\
2 / 5 & 2 / 11 & 0
\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{rrr}
0 & -7 / 11 & 0 \\
2 / 5 & -5 / 11 & 0 \\
0 & 7 / 11 & 0
\end{array}\right) \\
& \longrightarrow \cdots \longrightarrow\left(\begin{array}{rrr}
0 & 1 & 0 \\
2 / 5 & -5 / 11 & 0 \\
0 & 0 & 0
\end{array}\right) \longrightarrow \cdots \longrightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

which shows that $\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for the the eigenvectors for A belonging to $\lambda=1$; that is solutions $\mathbf{v} \in \mathbf{R}^{3}$ to $A \mathbf{v}=\mathbf{v}$, the stable vectors for A. A stable vector, which has the form $a\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ for some $a \in \mathbf{R}$, is a probability vector if and only if $a=1$. Therefore A has a unique stable probability vector which is $\mathbf{v}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. (8) That \mathbf{v} is a limiting distribution follows by part (b) of Theorem 5.5.1 and part (a) of Corollary 5.5.1. (5)

