
MATH 425 Written Homework 3 Solution Radford 02/12/08

1. (20 points) A =




4 98 −7
0 3 0
2 42 −5


 . Thus the characteristic polynomial of A is

cA(x) = Det(A− xI3)

=

∣∣∣∣∣∣∣

4− x 98 −7
0 3− x 0
2 42 −5− x

∣∣∣∣∣∣∣

= (3− x)

∣∣∣∣∣
4− x −7

2 −5− x

∣∣∣∣∣

= (3− x)(−(4− x)(5 + x) + 14)

= (3− x)(x2 + x− 6)

= (3− x)(x + 3)(x− 2)

which means that the eigenvalues for A are λ = −3, 2, 3. Thus A is diagonalizable by
Corollary 5.2.1. (5)

To find S we find a basis of eigenvectors for each eigenvalue.

λ = −3: By row reduction A−λI3 = A+3I3 =




7 98 −7
0 6 0
2 42 −2


 −→ · · · −→




7 0 −7
0 1 0
2 0 −2


 −→

· · · −→



1 0 −1
0 1 0
0 0 0


 which means N(A + 3I3) consists of the solutions to

x = z
y = 0

(z = z)

which in vector form can be expressed as




x
y
z


 = z




1
0
1


 for all z ∈ R. Thus {




1
0
1


}

is a basis of the subspace of eigenvectors of A for λ = −3. (2)

λ = 2: By row reduction A−λI3 = A−2I3 =




2 98 −7
0 1 0
2 42 −7


 −→ · · · −→




2 0 −7
0 1 0
2 0 −7


 −→

· · · −→



1 0 −7/2
0 1 0
0 0 0


 which means N(A−2I3) consists of the solutions to

x = (7/2)z
y = 0

(z = z)

which in vector form can be expressed as




x
y
z


 = z




7/2
0
1


 for all z ∈ R. Thus

1



{



7/2
0
1


}, and also {




7
0
2


}, is a basis of the subspace of eigenvectors of A for λ = 2.

(2)

λ = 3: By row reduction A − λI3 = A − 3I3 =




1 98 −7
0 0 0
2 42 −8


 −→




1 98 −7
0 0 0
1 21 −4


 −→




0 77 −3
0 0 0
1 21 −4


 −→ · · · −→




1 0 −245/77
0 1 −3/77
0 0 0


 which means N(A − 3I3) consists of

the solutions to
x = (245/77)z
y = (3/77)z

(z = z)
which in vector form can be expressed as




x
y
z


 =

z




245/77
3/77

1


 for all z ∈ R. Thus {




245/77
3/77

1


}, and also {




245
3

77


}, is a basis of the

subspace of eigenvectors of A for λ = 3. (3)

Let D =



−3 0 0

0 2 0
0 0 3


. (4) Natural choices for S are S =




1 7/2 245/77
0 0 3/77
1 1 1


 and

S =




1 7 245
0 0 3
1 2 77


. (4)

2. (20 points) cA(x) =

∣∣∣∣∣∣∣∣∣

3− x 7 5 2
0 2− x 9 8
0 0 3− x 1
0 0 0 2− x

∣∣∣∣∣∣∣∣∣
= (3 − x)2(2 − x)2. Thus λ = 2, 3

are the eigenvalues of A. (4) To compute the eigenvectors belonging to λ = 2 we use

row reduction A − λI4 = A − 2I4 =




1 7 5 2
0 0 9 8
0 0 1 1
0 0 0 0


 −→ · · · −→




1 7 0 −3
0 0 0 −1
0 0 1 1
0 0 0 0


 −→




1 7 0 0
0 0 1 0
0 0 0 1
0 0 0 0


; thus the eigenvectors for λ = 2 are given by




x
y
z
w


 = y




−7
1
0
0


, the

subspace of which has basis {




−7
1
0
0


}. (6)

(a) Since the characteristic polynomial of A is cA(x) = (x − 2)2(x − 3)2 the algebraic

2



multiplicity of λ = 2 is 2. (3)

(b) Since the subspace of eigenvectors of A for λ = 2 has dimension 1, the geometric
multiplicity of λ = 2 is 1. (3)

(c) Since the algebraic and geometric multiplicities of one of the eigenvalues of A differ, A
is not diagonalizable by Theorem 5.2.1. (4)

3. (20 points) A in an invertible n×n matrix with real entries.

(a) Suppose that λ = 0 is an eigenvalue for A. Then Ax = 0x = 0 for some non-zero
x ∈ Rn; in particular x ∈ N(A). Since A is invertible N(A) = (0), a contradiction.
Therefore λ 6= 0. (5)

(b) By part (a) the eigenvalues for A are not zero. Thus since A−1 is also invertible (with
inverse A) the eigenvalues for A−1 are not zero.

Let 0 6= λ ∈ R and x ∈ Rn. Then Ax = λx if and only if x = A−1Ax = A−1(λx) =
λA−1x if and only if λ−1x = λ−1(λA−1x) = A−1x. We have shown that

Ax = λx if and only if A−1x = λ−1x. (1)

Thus if λ is an eigenvalue for A then λ is invertible and λ−1 is an eigenvalue for A−1. (4)
Conversely, suppose that ρ is an eigenvalue for A−1. Then λ = ρ−1 is an eigenvalue for

(A−1)−1 = A. Since ρ = (ρ−1)−1 = λ−1, every eigenvalue for A−1 has the form λ−1 for some
eigenvalue λ for A. (4)

(c) x ∈ N(A − λIn) if and only if Ax = λx, and likewise x ∈ N(A−1 − λ−1In) if and only
if A−1x = λ−1x. Thus part (c) follows by (1). (7)

4. (20 points) A =

(
1− a b

a 1− b

)

(a) From the computation of the characteristic polynomial

cA(x) = Det A− Trace Ax + x2

= ((1− a)(1− b)− ab)− (2− a− b)x + x2

= (1− a− b)− (2− a− b)x + x2

= (x− 1)(x− (1− a− b))

we see λ = 1 is an eigenvalue for A (5) (as is λ = 1− a− b).

(b) For λ = 1, by row reduction A−λI2 = A− I2 =

(
−a b

a −b

)
−→ · · · −→

(
1 −b/a
0 0

)

we see that the eigenvectors are v =

(
x
y

)
= y

(
b/a

1

)
, where y ∈ R. Now v is a

probability vector if and only if its entries are non-negative and add to 1. This means

3



y(b/a + 1) = 1, or equivalently y =
a

a + b
, and therefore v =




b

a + b

a

a + b




. This vector is

indeed a probability vector. (5)

(c) By assumption 0 < a, b < 1. The two eigenvalues λ = 1 and λ = 1− a− b are distinct
since otherwise a + b = 0, a contradiction. Since 0 < a + b < 2 we have that

−1 < 1− (a + b) < 1. (2)

It is is not difficult to see {
(

b
a

)
} is a basis for the eigenvectors belonging to λ = 1 and

that {
(
−1

1

)
} is a basis for the eigenvectors belonging to λ = 1−a−b. Set D =

(
1 0
0 c

)
,

where c = 1−a−b, and S =

(
b −1
a 1

)
. Then A = SDS−1. Since S−1 =

1

a + b

(
1 1

−a b

)
,

it follows that

An = SDnS−1 =
1

a + b

(
b −1
a 1

) (
1 0
0 cn

) (
1 1

−a b

)
=

1

a + b

(
b + acn b− bcn

a− acn a + bcn

)
;

hence

An =
1

a + b

(
b + acn b− bcn

a− acn a + bcn

)
(3)

for all n ≥ 0. Let v =

(
x
y

)
∈ Rn. Then

Av =
1

a + b

(
b + acn b− bcn

a− acn a + bcn

) (
x
y

)
=

1

a + b

(
(b + acn)x + (b− bcn)y
(a− acn)x + (a + bcn)y

)
.

Now limn−→∞ cn = 0 since |c| < 1, which follows by (2); thus limn−→∞An

(
x
y

)
=




b(x + y)

a + b

a(x + y)

a + b




. When x + y = 1 note that limn−→∞An

(
x
y

)
=




b

a + b

a

a + b




. (5)

(d) follows by (3) since limn−→∞ cn = 0. (5)

5. (20 points) A =




1/5 3/11 0
2/5 6/11 0
2/5 2/11 1


. Therefore the characteristic polynomial is

cA(x) =

∣∣∣∣∣∣∣

1/5− x 3/11 0
2/5 6/11− x 0
2/5 2/11 1− x

∣∣∣∣∣∣∣

4



=

∣∣∣∣∣
1/5− x 3/11

2/5 6/11− x

∣∣∣∣∣ (1− x)

=

(
(1/5− x)(6/11− x)− (3/11)(2/5)

)
(1− x)

= (−41/55x + x2)(1− x)

= x(x− 41/55)(1− x).

(a) Thus the eigenvalues for A are λ = 0, 41/55, 1 which means that A is diagonalizable by
Corollary 5.2.1. (7)

(b) We show that A has a unique stable probability vector. This is a result of row reduction:

A− I3 =



−4/5 3/11 0

2/5 −5/11 0
2/5 2/11 0


 −→ · · · −→




0 −7/11 0
2/5 −5/11 0

0 7/11 0




−→ · · · −→



0 1 0
2/5 −5/11 0

0 0 0


 −→ · · · −→




1 0 0
0 1 0
0 0 0




which shows that {



0
0
1


} is a basis for the the eigenvectors for A belonging to λ = 1;

that is solutions v ∈ R3 to Av = v, the stable vectors for A. A stable vector, which has

the form a




0
0
1


 for some a ∈ R, is a probability vector if and only if a = 1. Therefore

A has a unique stable probability vector which is v =




0
0
1


. (8) That v is a limiting

distribution follows by part (b) of Theorem 5.5.1 and part (a) of Corollary 5.5.1. (5)

5


